Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.7 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00626 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 204.704
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.973784 0.900861 0.0144187 0.00149063 92821.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.679294 0.790585 0.0137751 0.00133258 96443.5 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.566783 0.774778 0.0137727 0.00135712 96652.9 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.477152 0.733492 0.0135226 0.00132955 98416.7 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.433858 0.695826 0.0136959 0.00133555 97084.9 0
: 6 | 0.385739 0.76699 0.0132932 0.00101828 97760.6 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.343998 0.666595 0.0136024 0.00131806 97685.3 0
: 8 | 0.27855 0.743369 0.0132186 0.00105783 98678.4 1
: 9 | 0.232424 0.737507 0.0132718 0.00104818 98170.8 2
: 10 | 0.215389 0.719892 0.0133457 0.00105803 97658.6 3
:
: Elapsed time for training with 1600 events: 0.147 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00538 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 177.269
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.44307 1.33449 0.250125 0.0202521 5220.28 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.923638 0.74253 0.250096 0.0195436 5204.9 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.7336 0.716173 0.251563 0.0192198 5164.78 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.689311 0.696013 0.252043 0.0194631 5159.51 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.675583 0.689576 0.251411 0.0194472 5173.22 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.668078 0.678571 0.252248 0.0198775 5164.17 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.656222 0.677569 0.251144 0.0195738 5182.02 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.64522 0.665865 0.247811 0.0198306 5263.61 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.627723 0.659606 0.250662 0.0197606 5197.02 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.61219 0.649424 0.251524 0.0197833 5178.21 0
:
: Elapsed time for training with 1600 events: 2.54 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0974 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.053e-02
: 2 : vars : 1.050e-02
: 3 : vars : 1.004e-02
: 4 : vars : 9.999e-03
: 5 : vars : 9.715e-03
: 6 : vars : 9.651e-03
: 7 : vars : 8.910e-03
: 8 : vars : 8.678e-03
: 9 : vars : 8.523e-03
: 10 : vars : 8.514e-03
: 11 : vars : 8.448e-03
: 12 : vars : 8.414e-03
: 13 : vars : 8.319e-03
: 14 : vars : 8.206e-03
: 15 : vars : 8.127e-03
: 16 : vars : 8.096e-03
: 17 : vars : 7.985e-03
: 18 : vars : 7.730e-03
: 19 : vars : 7.694e-03
: 20 : vars : 7.668e-03
: 21 : vars : 7.606e-03
: 22 : vars : 7.589e-03
: 23 : vars : 7.528e-03
: 24 : vars : 7.503e-03
: 25 : vars : 7.482e-03
: 26 : vars : 7.453e-03
: 27 : vars : 7.192e-03
: 28 : vars : 7.120e-03
: 29 : vars : 7.067e-03
: 30 : vars : 6.916e-03
: 31 : vars : 6.882e-03
: 32 : vars : 6.853e-03
: 33 : vars : 6.819e-03
: 34 : vars : 6.731e-03
: 35 : vars : 6.711e-03
: 36 : vars : 6.703e-03
: 37 : vars : 6.617e-03
: 38 : vars : 6.614e-03
: 39 : vars : 6.570e-03
: 40 : vars : 6.551e-03
: 41 : vars : 6.541e-03
: 42 : vars : 6.461e-03
: 43 : vars : 6.447e-03
: 44 : vars : 6.414e-03
: 45 : vars : 6.378e-03
: 46 : vars : 6.373e-03
: 47 : vars : 6.359e-03
: 48 : vars : 6.308e-03
: 49 : vars : 6.262e-03
: 50 : vars : 6.247e-03
: 51 : vars : 6.093e-03
: 52 : vars : 6.053e-03
: 53 : vars : 6.043e-03
: 54 : vars : 5.969e-03
: 55 : vars : 5.964e-03
: 56 : vars : 5.952e-03
: 57 : vars : 5.892e-03
: 58 : vars : 5.849e-03
: 59 : vars : 5.827e-03
: 60 : vars : 5.777e-03
: 61 : vars : 5.728e-03
: 62 : vars : 5.718e-03
: 63 : vars : 5.687e-03
: 64 : vars : 5.675e-03
: 65 : vars : 5.650e-03
: 66 : vars : 5.649e-03
: 67 : vars : 5.608e-03
: 68 : vars : 5.553e-03
: 69 : vars : 5.439e-03
: 70 : vars : 5.430e-03
: 71 : vars : 5.421e-03
: 72 : vars : 5.399e-03
: 73 : vars : 5.388e-03
: 74 : vars : 5.346e-03
: 75 : vars : 5.330e-03
: 76 : vars : 5.323e-03
: 77 : vars : 5.317e-03
: 78 : vars : 5.311e-03
: 79 : vars : 5.268e-03
: 80 : vars : 5.237e-03
: 81 : vars : 5.205e-03
: 82 : vars : 5.185e-03
: 83 : vars : 5.172e-03
: 84 : vars : 5.130e-03
: 85 : vars : 5.088e-03
: 86 : vars : 5.042e-03
: 87 : vars : 5.042e-03
: 88 : vars : 5.032e-03
: 89 : vars : 5.009e-03
: 90 : vars : 5.004e-03
: 91 : vars : 4.995e-03
: 92 : vars : 4.979e-03
: 93 : vars : 4.972e-03
: 94 : vars : 4.948e-03
: 95 : vars : 4.935e-03
: 96 : vars : 4.870e-03
: 97 : vars : 4.866e-03
: 98 : vars : 4.853e-03
: 99 : vars : 4.823e-03
: 100 : vars : 4.812e-03
: 101 : vars : 4.770e-03
: 102 : vars : 4.731e-03
: 103 : vars : 4.729e-03
: 104 : vars : 4.699e-03
: 105 : vars : 4.681e-03
: 106 : vars : 4.664e-03
: 107 : vars : 4.602e-03
: 108 : vars : 4.565e-03
: 109 : vars : 4.508e-03
: 110 : vars : 4.423e-03
: 111 : vars : 4.392e-03
: 112 : vars : 4.360e-03
: 113 : vars : 4.357e-03
: 114 : vars : 4.330e-03
: 115 : vars : 4.276e-03
: 116 : vars : 4.269e-03
: 117 : vars : 4.258e-03
: 118 : vars : 4.252e-03
: 119 : vars : 4.224e-03
: 120 : vars : 4.210e-03
: 121 : vars : 4.198e-03
: 122 : vars : 4.172e-03
: 123 : vars : 4.138e-03
: 124 : vars : 4.096e-03
: 125 : vars : 4.062e-03
: 126 : vars : 4.061e-03
: 127 : vars : 4.057e-03
: 128 : vars : 4.046e-03
: 129 : vars : 4.038e-03
: 130 : vars : 4.024e-03
: 131 : vars : 4.003e-03
: 132 : vars : 3.960e-03
: 133 : vars : 3.949e-03
: 134 : vars : 3.936e-03
: 135 : vars : 3.911e-03
: 136 : vars : 3.910e-03
: 137 : vars : 3.901e-03
: 138 : vars : 3.878e-03
: 139 : vars : 3.873e-03
: 140 : vars : 3.871e-03
: 141 : vars : 3.867e-03
: 142 : vars : 3.865e-03
: 143 : vars : 3.848e-03
: 144 : vars : 3.843e-03
: 145 : vars : 3.797e-03
: 146 : vars : 3.746e-03
: 147 : vars : 3.743e-03
: 148 : vars : 3.741e-03
: 149 : vars : 3.699e-03
: 150 : vars : 3.658e-03
: 151 : vars : 3.652e-03
: 152 : vars : 3.631e-03
: 153 : vars : 3.618e-03
: 154 : vars : 3.614e-03
: 155 : vars : 3.580e-03
: 156 : vars : 3.568e-03
: 157 : vars : 3.564e-03
: 158 : vars : 3.563e-03
: 159 : vars : 3.454e-03
: 160 : vars : 3.364e-03
: 161 : vars : 3.361e-03
: 162 : vars : 3.357e-03
: 163 : vars : 3.337e-03
: 164 : vars : 3.333e-03
: 165 : vars : 3.275e-03
: 166 : vars : 3.274e-03
: 167 : vars : 3.194e-03
: 168 : vars : 3.185e-03
: 169 : vars : 3.143e-03
: 170 : vars : 3.110e-03
: 171 : vars : 3.094e-03
: 172 : vars : 3.055e-03
: 173 : vars : 3.042e-03
: 174 : vars : 3.039e-03
: 175 : vars : 3.031e-03
: 176 : vars : 3.022e-03
: 177 : vars : 3.016e-03
: 178 : vars : 2.959e-03
: 179 : vars : 2.859e-03
: 180 : vars : 2.843e-03
: 181 : vars : 2.721e-03
: 182 : vars : 2.690e-03
: 183 : vars : 2.614e-03
: 184 : vars : 2.612e-03
: 185 : vars : 2.589e-03
: 186 : vars : 2.497e-03
: 187 : vars : 2.445e-03
: 188 : vars : 2.397e-03
: 189 : vars : 2.396e-03
: 190 : vars : 2.338e-03
: 191 : vars : 2.229e-03
: 192 : vars : 2.154e-03
: 193 : vars : 2.101e-03
: 194 : vars : 1.855e-03
: 195 : vars : 1.798e-03
: 196 : vars : 1.751e-03
: 197 : vars : 1.596e-03
: 198 : vars : 1.544e-03
: 199 : vars : 1.422e-03
: 200 : vars : 1.315e-03
: 201 : vars : 1.165e-03
: 202 : vars : 9.414e-04
: 203 : vars : 6.092e-04
: 204 : vars : 0.000e+00
: 205 : vars : 0.000e+00
: 206 : vars : 0.000e+00
: 207 : vars : 0.000e+00
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.58697
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.52989
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.67464
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.50982
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00176 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00112 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0276 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.737
: dataset TMVA_DNN_CPU : 0.675
: dataset TMVA_CNN_CPU : 0.660
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.035 (0.185) 0.315 (0.655) 0.675 (0.858)
: dataset TMVA_DNN_CPU : 0.038 (0.232) 0.212 (0.558) 0.515 (0.785)
: dataset TMVA_CNN_CPU : 0.015 (0.035) 0.232 (0.307) 0.475 (0.626)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m