Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
Factory : Booking method: ␛[1mPyKeras␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_cnn.h5
Factory : Booking method: ␛[1mPyTorch␛[0m
:
: Using PyTorch - setting special configuration options
: Using PyTorch version 2
: Setup PyTorch Model for training
: Executing user initialization code from /home/sftnight/build/workspace/root-makedoc-v632/rootspi/rdoc/src/v6-32-00-patches.build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchModelCNN.pt
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.924 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0182 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 66.96
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.02073 1.33922 0.181266 0.0160232 7262.04 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.719098 0.812235 0.180699 0.0158545 7279.57 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.646144 0.758262 0.180404 0.0158527 7292.57 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.559365 0.7216 0.180377 0.0158558 7293.87 0
: 5 | 0.50159 0.822514 0.180391 0.0151942 7264.08 1
: 6 | 0.446494 0.940647 0.180009 0.0149836 7271.62 2
: 7 Minimum Test error found - save the configuration
: 7 | 0.396244 0.702175 0.180009 0.0156573 7301.42 0
: 8 | 0.332777 0.83976 0.180794 0.0150412 7239.69 1
: 9 | 0.306256 0.766507 0.179509 0.0150206 7295.34 2
: 10 | 0.266196 0.789146 0.178735 0.014957 7327 3
:
: Elapsed time for training with 1600 events: 1.84 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0795 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 72.8007
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.58793 2.57276 1.47686 0.114249 880.662 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.29138 1.08981 1.44275 0.11165 901.509 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.792687 0.847538 1.45525 0.112715 893.829 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.757005 0.781411 1.46143 0.111656 889.039 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.681747 0.700026 1.44749 0.112663 898.99 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.670291 0.687222 1.45882 0.112499 891.317 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.655314 0.684649 1.45058 0.112136 896.563 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.638294 0.672178 1.45697 0.112156 892.316 0
: 9 | 0.622791 0.680893 1.44517 0.110579 899.153 1
: 10 | 0.624676 0.682386 1.43706 0.111268 905.121 2
:
: Elapsed time for training with 1600 events: 14.7 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.583 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyKeras ] :␛[0m
:
: Keras is a high-level API for the Theano and Tensorflow packages.
: This method wraps the training and predictions steps of the Keras
: Python package for TMVA, so that dataloading, preprocessing and
: evaluation can be done within the TMVA system. To use this Keras
: interface, you have to generate a model with Keras first. Then,
: this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Training Model Summary
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7f4cb6454ca0>, 'predict_func': <function predict at 0x7f4cb6454dc0>}
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/10
1/13 [=>............................] - ETA: 10s - loss: 0.7979 - accuracy: 0.4400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 1.6035 - accuracy: 0.4840 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/13 [======================>.......] - ETA: 0s - loss: 1.2426 - accuracy: 0.5030
Epoch 1: val_loss improved from inf to 0.69925, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 2s 59ms/step - loss: 1.1244 - accuracy: 0.5000 - val_loss: 0.6992 - val_accuracy: 0.5250
Epoch 2/10
1/13 [=>............................] - ETA: 0s - loss: 0.6942 - accuracy: 0.5500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.7030 - accuracy: 0.5067␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.7000 - accuracy: 0.5018
Epoch 2: val_loss improved from 0.69925 to 0.69869, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6984 - accuracy: 0.5102 - val_loss: 0.6987 - val_accuracy: 0.4812
Epoch 3/10
1/13 [=>............................] - ETA: 0s - loss: 0.6835 - accuracy: 0.4900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6894 - accuracy: 0.5133␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6893 - accuracy: 0.5164
Epoch 3: val_loss improved from 0.69869 to 0.68807, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6896 - accuracy: 0.5164 - val_loss: 0.6881 - val_accuracy: 0.5562
Epoch 4/10
1/13 [=>............................] - ETA: 0s - loss: 0.6904 - accuracy: 0.5400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6830 - accuracy: 0.5583␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6814 - accuracy: 0.5736
Epoch 4: val_loss improved from 0.68807 to 0.68728, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6812 - accuracy: 0.5773 - val_loss: 0.6873 - val_accuracy: 0.5656
Epoch 5/10
1/13 [=>............................] - ETA: 0s - loss: 0.6710 - accuracy: 0.6500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6744 - accuracy: 0.6133␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6736 - accuracy: 0.6136
Epoch 5: val_loss did not improve from 0.68728
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.6726 - accuracy: 0.6172 - val_loss: 0.6932 - val_accuracy: 0.5188
Epoch 6/10
1/13 [=>............................] - ETA: 0s - loss: 0.6690 - accuracy: 0.6400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6664 - accuracy: 0.6183␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6642 - accuracy: 0.6564
Epoch 6: val_loss improved from 0.68728 to 0.67816, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6645 - accuracy: 0.6492 - val_loss: 0.6782 - val_accuracy: 0.5813
Epoch 7/10
1/13 [=>............................] - ETA: 0s - loss: 0.6523 - accuracy: 0.6700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6494 - accuracy: 0.6800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6537 - accuracy: 0.6718
Epoch 7: val_loss did not improve from 0.67816
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.6526 - accuracy: 0.6750 - val_loss: 0.7042 - val_accuracy: 0.4875
Epoch 8/10
1/13 [=>............................] - ETA: 0s - loss: 0.6722 - accuracy: 0.5400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6435 - accuracy: 0.6417␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6435 - accuracy: 0.6527
Epoch 8: val_loss improved from 0.67816 to 0.67399, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 19ms/step - loss: 0.6428 - accuracy: 0.6711 - val_loss: 0.6740 - val_accuracy: 0.6094
Epoch 9/10
1/13 [=>............................] - ETA: 0s - loss: 0.6313 - accuracy: 0.7700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6172 - accuracy: 0.7783␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6207 - accuracy: 0.7564
Epoch 9: val_loss improved from 0.67399 to 0.65905, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6216 - accuracy: 0.7406 - val_loss: 0.6590 - val_accuracy: 0.6438
Epoch 10/10
1/13 [=>............................] - ETA: 0s - loss: 0.6189 - accuracy: 0.7200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.5987 - accuracy: 0.7283␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
8/13 [=================>............] - ETA: 0s - loss: 0.5958 - accuracy: 0.7350␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.5968 - accuracy: 0.7367
Epoch 10: val_loss improved from 0.65905 to 0.65199, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 32ms/step - loss: 0.5968 - accuracy: 0.7367 - val_loss: 0.6520 - val_accuracy: 0.6375
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 1600 events: 3.83 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.212 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyTorch for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyTorch ] :␛[0m
:
: PyTorch is a scientific computing package supporting
: automatic differentiation. This method wraps the training
: and predictions steps of the PyTorch Python package for
: TMVA, so that dataloading, preprocessing and evaluation
: can be done within the TMVA system. To use this PyTorch
: interface, you need to generatea model with PyTorch first.
: Then, this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Print Training Model Architecture
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
: Elapsed time for training with 1600 events: 22.7 sec
PyTorch : [dataset] : Evaluation of PyTorch on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.416 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.722e-03
: 2 : vars : 9.382e-03
: 3 : vars : 9.142e-03
: 4 : vars : 8.946e-03
: 5 : vars : 8.829e-03
: 6 : vars : 8.754e-03
: 7 : vars : 8.734e-03
: 8 : vars : 8.641e-03
: 9 : vars : 8.613e-03
: 10 : vars : 8.218e-03
: 11 : vars : 8.143e-03
: 12 : vars : 8.101e-03
: 13 : vars : 8.100e-03
: 14 : vars : 8.098e-03
: 15 : vars : 7.955e-03
: 16 : vars : 7.930e-03
: 17 : vars : 7.900e-03
: 18 : vars : 7.879e-03
: 19 : vars : 7.861e-03
: 20 : vars : 7.833e-03
: 21 : vars : 7.752e-03
: 22 : vars : 7.696e-03
: 23 : vars : 7.589e-03
: 24 : vars : 7.572e-03
: 25 : vars : 7.525e-03
: 26 : vars : 7.449e-03
: 27 : vars : 7.429e-03
: 28 : vars : 7.370e-03
: 29 : vars : 7.245e-03
: 30 : vars : 7.219e-03
: 31 : vars : 7.145e-03
: 32 : vars : 7.141e-03
: 33 : vars : 7.104e-03
: 34 : vars : 7.065e-03
: 35 : vars : 7.040e-03
: 36 : vars : 6.953e-03
: 37 : vars : 6.927e-03
: 38 : vars : 6.859e-03
: 39 : vars : 6.847e-03
: 40 : vars : 6.831e-03
: 41 : vars : 6.804e-03
: 42 : vars : 6.700e-03
: 43 : vars : 6.693e-03
: 44 : vars : 6.676e-03
: 45 : vars : 6.608e-03
: 46 : vars : 6.568e-03
: 47 : vars : 6.516e-03
: 48 : vars : 6.456e-03
: 49 : vars : 6.393e-03
: 50 : vars : 6.391e-03
: 51 : vars : 6.355e-03
: 52 : vars : 6.255e-03
: 53 : vars : 6.196e-03
: 54 : vars : 6.188e-03
: 55 : vars : 6.084e-03
: 56 : vars : 6.052e-03
: 57 : vars : 5.999e-03
: 58 : vars : 5.953e-03
: 59 : vars : 5.928e-03
: 60 : vars : 5.914e-03
: 61 : vars : 5.891e-03
: 62 : vars : 5.885e-03
: 63 : vars : 5.872e-03
: 64 : vars : 5.862e-03
: 65 : vars : 5.843e-03
: 66 : vars : 5.838e-03
: 67 : vars : 5.744e-03
: 68 : vars : 5.735e-03
: 69 : vars : 5.729e-03
: 70 : vars : 5.669e-03
: 71 : vars : 5.564e-03
: 72 : vars : 5.543e-03
: 73 : vars : 5.540e-03
: 74 : vars : 5.509e-03
: 75 : vars : 5.509e-03
: 76 : vars : 5.463e-03
: 77 : vars : 5.456e-03
: 78 : vars : 5.454e-03
: 79 : vars : 5.423e-03
: 80 : vars : 5.354e-03
: 81 : vars : 5.232e-03
: 82 : vars : 5.196e-03
: 83 : vars : 5.096e-03
: 84 : vars : 5.070e-03
: 85 : vars : 5.026e-03
: 86 : vars : 4.997e-03
: 87 : vars : 4.974e-03
: 88 : vars : 4.911e-03
: 89 : vars : 4.841e-03
: 90 : vars : 4.833e-03
: 91 : vars : 4.825e-03
: 92 : vars : 4.779e-03
: 93 : vars : 4.719e-03
: 94 : vars : 4.692e-03
: 95 : vars : 4.646e-03
: 96 : vars : 4.637e-03
: 97 : vars : 4.557e-03
: 98 : vars : 4.528e-03
: 99 : vars : 4.509e-03
: 100 : vars : 4.506e-03
: 101 : vars : 4.500e-03
: 102 : vars : 4.406e-03
: 103 : vars : 4.371e-03
: 104 : vars : 4.367e-03
: 105 : vars : 4.357e-03
: 106 : vars : 4.342e-03
: 107 : vars : 4.330e-03
: 108 : vars : 4.311e-03
: 109 : vars : 4.298e-03
: 110 : vars : 4.286e-03
: 111 : vars : 4.276e-03
: 112 : vars : 4.246e-03
: 113 : vars : 4.237e-03
: 114 : vars : 4.198e-03
: 115 : vars : 4.184e-03
: 116 : vars : 4.144e-03
: 117 : vars : 4.123e-03
: 118 : vars : 4.111e-03
: 119 : vars : 4.105e-03
: 120 : vars : 4.085e-03
: 121 : vars : 4.082e-03
: 122 : vars : 4.066e-03
: 123 : vars : 4.043e-03
: 124 : vars : 3.975e-03
: 125 : vars : 3.960e-03
: 126 : vars : 3.942e-03
: 127 : vars : 3.934e-03
: 128 : vars : 3.919e-03
: 129 : vars : 3.907e-03
: 130 : vars : 3.892e-03
: 131 : vars : 3.888e-03
: 132 : vars : 3.842e-03
: 133 : vars : 3.818e-03
: 134 : vars : 3.798e-03
: 135 : vars : 3.784e-03
: 136 : vars : 3.777e-03
: 137 : vars : 3.766e-03
: 138 : vars : 3.761e-03
: 139 : vars : 3.749e-03
: 140 : vars : 3.744e-03
: 141 : vars : 3.736e-03
: 142 : vars : 3.728e-03
: 143 : vars : 3.671e-03
: 144 : vars : 3.670e-03
: 145 : vars : 3.601e-03
: 146 : vars : 3.583e-03
: 147 : vars : 3.563e-03
: 148 : vars : 3.518e-03
: 149 : vars : 3.504e-03
: 150 : vars : 3.484e-03
: 151 : vars : 3.455e-03
: 152 : vars : 3.401e-03
: 153 : vars : 3.397e-03
: 154 : vars : 3.392e-03
: 155 : vars : 3.382e-03
: 156 : vars : 3.376e-03
: 157 : vars : 3.333e-03
: 158 : vars : 3.324e-03
: 159 : vars : 3.317e-03
: 160 : vars : 3.253e-03
: 161 : vars : 3.250e-03
: 162 : vars : 3.239e-03
: 163 : vars : 3.221e-03
: 164 : vars : 3.195e-03
: 165 : vars : 3.156e-03
: 166 : vars : 3.131e-03
: 167 : vars : 3.119e-03
: 168 : vars : 3.104e-03
: 169 : vars : 3.060e-03
: 170 : vars : 3.048e-03
: 171 : vars : 3.027e-03
: 172 : vars : 3.004e-03
: 173 : vars : 2.999e-03
: 174 : vars : 2.995e-03
: 175 : vars : 2.960e-03
: 176 : vars : 2.957e-03
: 177 : vars : 2.912e-03
: 178 : vars : 2.888e-03
: 179 : vars : 2.810e-03
: 180 : vars : 2.775e-03
: 181 : vars : 2.756e-03
: 182 : vars : 2.749e-03
: 183 : vars : 2.736e-03
: 184 : vars : 2.726e-03
: 185 : vars : 2.697e-03
: 186 : vars : 2.695e-03
: 187 : vars : 2.695e-03
: 188 : vars : 2.692e-03
: 189 : vars : 2.650e-03
: 190 : vars : 2.586e-03
: 191 : vars : 2.586e-03
: 192 : vars : 2.570e-03
: 193 : vars : 2.547e-03
: 194 : vars : 2.422e-03
: 195 : vars : 2.324e-03
: 196 : vars : 2.254e-03
: 197 : vars : 2.246e-03
: 198 : vars : 2.205e-03
: 199 : vars : 2.066e-03
: 200 : vars : 2.009e-03
: 201 : vars : 1.820e-03
: 202 : vars : 1.559e-03
: 203 : vars : 1.387e-03
: 204 : vars : 1.016e-03
: 205 : vars : 8.149e-04
: 206 : vars : 0.000e+00
: 207 : vars : 0.000e+00
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
: No variable ranking supplied by classifier: PyKeras
: No variable ranking supplied by classifier: PyTorch
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.1949
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 8.49206
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 10.3221
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 9.39887
TH1.Print Name = TrainingHistory_PyKeras_'accuracy', Entries= 0, Total sum= 6.19375
TH1.Print Name = TrainingHistory_PyKeras_'loss', Entries= 0, Total sum= 7.04455
TH1.Print Name = TrainingHistory_PyKeras_'val_accuracy', Entries= 0, Total sum= 5.60625
TH1.Print Name = TrainingHistory_PyKeras_'val_loss', Entries= 0, Total sum= 6.83384
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00625 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.019 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.149 sec
Factory : Test method: PyKeras for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.166 sec
Factory : Test method: PyTorch for Classification performance
:
: Setup PyTorch Model for training
: Executing user initialization code from /home/sftnight/build/workspace/root-makedoc-v632/rootspi/rdoc/src/v6-32-00-patches.build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Reshape)
(1): RecursiveScriptModule(original_name=Conv2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=BatchNorm2d)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ReLU)
(6): RecursiveScriptModule(original_name=MaxPool2d)
(7): RecursiveScriptModule(original_name=Flatten)
(8): RecursiveScriptModule(original_name=Linear)
(9): RecursiveScriptModule(original_name=ReLU)
(10): RecursiveScriptModule(original_name=Linear)
(11): RecursiveScriptModule(original_name=Sigmoid)
)
[1, 4] train loss: 1.130
[1, 8] train loss: 0.725
[1, 12] train loss: 0.690
[1] val loss: 0.768
[2, 4] train loss: 0.700
[2, 8] train loss: 0.695
[2, 12] train loss: 0.672
[2] val loss: 0.696
[3, 4] train loss: 0.671
[3, 8] train loss: 0.658
[3, 12] train loss: 0.627
[3] val loss: 0.676
[4, 4] train loss: 0.627
[4, 8] train loss: 0.668
[4, 12] train loss: 0.637
[4] val loss: 0.561
[5, 4] train loss: 0.601
[5, 8] train loss: 0.579
[5, 12] train loss: 0.549
[5] val loss: 0.488
[6, 4] train loss: 0.511
[6, 8] train loss: 0.571
[6, 12] train loss: 0.516
[6] val loss: 0.423
[7, 4] train loss: 0.456
[7, 8] train loss: 0.506
[7, 12] train loss: 0.483
[7] val loss: 0.399
[8, 4] train loss: 0.438
[8, 8] train loss: 0.493
[8, 12] train loss: 0.414
[8] val loss: 0.358
[9, 4] train loss: 0.382
[9, 8] train loss: 0.423
[9, 12] train loss: 0.367
[9] val loss: 0.365
[10, 4] train loss: 0.367
[10, 8] train loss: 0.408
[10, 12] train loss: 0.423
[10] val loss: 0.499
Finished Training on 10 Epochs!
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchTrainedModelCNN.pt
PyTorch : [dataset] : Evaluation of PyTorch on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.119 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyKeras
:
PyKeras : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyTorch
:
PyTorch : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset PyTorch : 0.878
: dataset PyKeras : 0.716
: dataset BDT : 0.692
: dataset TMVA_CNN_CPU : 0.666
: dataset TMVA_DNN_CPU : 0.666
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset PyTorch : 0.235 (0.410) 0.635 (0.732) 0.850 (0.902)
: dataset PyKeras : 0.155 (0.140) 0.355 (0.435) 0.585 (0.708)
: dataset BDT : 0.035 (0.208) 0.290 (0.534) 0.565 (0.791)
: dataset TMVA_CNN_CPU : 0.055 (0.052) 0.229 (0.234) 0.510 (0.495)
: dataset TMVA_DNN_CPU : 0.000 (0.120) 0.235 (0.425) 0.529 (0.664)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m