Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.34 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0144 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 80.4897
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.929372 0.887986 0.0149441 0.0015997 89925.1 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.715348 0.791278 0.0135736 0.00139169 98506.5 0
: 3 | 0.602772 0.827424 0.0135467 0.00113636 96693.3 1
: 4 Minimum Test error found - save the configuration
: 4 | 0.550864 0.745584 0.0137295 0.00144655 97696.7 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.484805 0.736861 0.0135887 0.00145024 98859 0
: 6 | 0.445427 0.737602 0.0134801 0.00110945 97003.4 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.387428 0.711914 0.0139106 0.00153269 96946.8 0
: 8 | 0.35565 0.746832 0.0137479 0.00105615 94549.8 1
: 9 | 0.307305 0.72886 0.013716 0.00107331 94916.7 2
: 10 | 0.267965 0.76212 0.0140032 0.00136916 94981.5 3
:
: Elapsed time for training with 1600 events: 0.15 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00563 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 60.057
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.72028 1.70565 0.320956 0.0208995 3999.25 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.01322 0.930323 0.324647 0.0199524 3938.37 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.752195 0.715854 0.326148 0.0196644 3915.38 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.687701 0.712307 0.323734 0.0196537 3946.32 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.679943 0.701184 0.327069 0.0196989 3904.09 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.671447 0.696941 0.330654 0.0195981 3857.83 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.664972 0.673619 0.333702 0.0198044 3822.9 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.646674 0.664751 0.333508 0.0202308 3830.48 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.63321 0.646475 0.318114 0.0212359 4042.06 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.615202 0.639832 0.317296 0.0202145 4039.29 0
:
: Elapsed time for training with 1600 events: 3.29 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.103 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.190e-03
: 2 : vars : 8.722e-03
: 3 : vars : 7.907e-03
: 4 : vars : 7.650e-03
: 5 : vars : 7.530e-03
: 6 : vars : 7.511e-03
: 7 : vars : 7.459e-03
: 8 : vars : 7.291e-03
: 9 : vars : 7.189e-03
: 10 : vars : 7.043e-03
: 11 : vars : 7.026e-03
: 12 : vars : 6.938e-03
: 13 : vars : 6.910e-03
: 14 : vars : 6.904e-03
: 15 : vars : 6.875e-03
: 16 : vars : 6.851e-03
: 17 : vars : 6.830e-03
: 18 : vars : 6.826e-03
: 19 : vars : 6.785e-03
: 20 : vars : 6.598e-03
: 21 : vars : 6.475e-03
: 22 : vars : 6.468e-03
: 23 : vars : 6.437e-03
: 24 : vars : 6.417e-03
: 25 : vars : 6.384e-03
: 26 : vars : 6.362e-03
: 27 : vars : 6.296e-03
: 28 : vars : 6.278e-03
: 29 : vars : 6.238e-03
: 30 : vars : 6.148e-03
: 31 : vars : 6.119e-03
: 32 : vars : 6.105e-03
: 33 : vars : 6.080e-03
: 34 : vars : 6.044e-03
: 35 : vars : 5.958e-03
: 36 : vars : 5.923e-03
: 37 : vars : 5.843e-03
: 38 : vars : 5.801e-03
: 39 : vars : 5.753e-03
: 40 : vars : 5.699e-03
: 41 : vars : 5.650e-03
: 42 : vars : 5.645e-03
: 43 : vars : 5.591e-03
: 44 : vars : 5.575e-03
: 45 : vars : 5.569e-03
: 46 : vars : 5.554e-03
: 47 : vars : 5.524e-03
: 48 : vars : 5.520e-03
: 49 : vars : 5.511e-03
: 50 : vars : 5.511e-03
: 51 : vars : 5.473e-03
: 52 : vars : 5.428e-03
: 53 : vars : 5.421e-03
: 54 : vars : 5.377e-03
: 55 : vars : 5.367e-03
: 56 : vars : 5.315e-03
: 57 : vars : 5.309e-03
: 58 : vars : 5.283e-03
: 59 : vars : 5.274e-03
: 60 : vars : 5.229e-03
: 61 : vars : 5.183e-03
: 62 : vars : 5.167e-03
: 63 : vars : 5.163e-03
: 64 : vars : 5.147e-03
: 65 : vars : 5.124e-03
: 66 : vars : 5.108e-03
: 67 : vars : 5.098e-03
: 68 : vars : 5.086e-03
: 69 : vars : 5.059e-03
: 70 : vars : 5.025e-03
: 71 : vars : 4.975e-03
: 72 : vars : 4.966e-03
: 73 : vars : 4.947e-03
: 74 : vars : 4.947e-03
: 75 : vars : 4.946e-03
: 76 : vars : 4.935e-03
: 77 : vars : 4.928e-03
: 78 : vars : 4.900e-03
: 79 : vars : 4.886e-03
: 80 : vars : 4.851e-03
: 81 : vars : 4.828e-03
: 82 : vars : 4.821e-03
: 83 : vars : 4.815e-03
: 84 : vars : 4.805e-03
: 85 : vars : 4.793e-03
: 86 : vars : 4.775e-03
: 87 : vars : 4.724e-03
: 88 : vars : 4.702e-03
: 89 : vars : 4.700e-03
: 90 : vars : 4.681e-03
: 91 : vars : 4.677e-03
: 92 : vars : 4.674e-03
: 93 : vars : 4.673e-03
: 94 : vars : 4.561e-03
: 95 : vars : 4.541e-03
: 96 : vars : 4.531e-03
: 97 : vars : 4.529e-03
: 98 : vars : 4.513e-03
: 99 : vars : 4.510e-03
: 100 : vars : 4.510e-03
: 101 : vars : 4.503e-03
: 102 : vars : 4.446e-03
: 103 : vars : 4.365e-03
: 104 : vars : 4.324e-03
: 105 : vars : 4.317e-03
: 106 : vars : 4.315e-03
: 107 : vars : 4.309e-03
: 108 : vars : 4.283e-03
: 109 : vars : 4.252e-03
: 110 : vars : 4.232e-03
: 111 : vars : 4.228e-03
: 112 : vars : 4.225e-03
: 113 : vars : 4.220e-03
: 114 : vars : 4.216e-03
: 115 : vars : 4.211e-03
: 116 : vars : 4.204e-03
: 117 : vars : 4.143e-03
: 118 : vars : 4.140e-03
: 119 : vars : 4.128e-03
: 120 : vars : 4.076e-03
: 121 : vars : 4.045e-03
: 122 : vars : 4.033e-03
: 123 : vars : 4.008e-03
: 124 : vars : 3.999e-03
: 125 : vars : 3.976e-03
: 126 : vars : 3.946e-03
: 127 : vars : 3.943e-03
: 128 : vars : 3.929e-03
: 129 : vars : 3.889e-03
: 130 : vars : 3.852e-03
: 131 : vars : 3.818e-03
: 132 : vars : 3.771e-03
: 133 : vars : 3.754e-03
: 134 : vars : 3.746e-03
: 135 : vars : 3.718e-03
: 136 : vars : 3.711e-03
: 137 : vars : 3.690e-03
: 138 : vars : 3.675e-03
: 139 : vars : 3.653e-03
: 140 : vars : 3.644e-03
: 141 : vars : 3.621e-03
: 142 : vars : 3.608e-03
: 143 : vars : 3.603e-03
: 144 : vars : 3.573e-03
: 145 : vars : 3.556e-03
: 146 : vars : 3.533e-03
: 147 : vars : 3.530e-03
: 148 : vars : 3.528e-03
: 149 : vars : 3.454e-03
: 150 : vars : 3.442e-03
: 151 : vars : 3.438e-03
: 152 : vars : 3.427e-03
: 153 : vars : 3.393e-03
: 154 : vars : 3.381e-03
: 155 : vars : 3.298e-03
: 156 : vars : 3.294e-03
: 157 : vars : 3.279e-03
: 158 : vars : 3.259e-03
: 159 : vars : 3.223e-03
: 160 : vars : 3.193e-03
: 161 : vars : 3.186e-03
: 162 : vars : 3.173e-03
: 163 : vars : 3.172e-03
: 164 : vars : 3.171e-03
: 165 : vars : 3.158e-03
: 166 : vars : 3.148e-03
: 167 : vars : 3.147e-03
: 168 : vars : 3.139e-03
: 169 : vars : 3.117e-03
: 170 : vars : 3.100e-03
: 171 : vars : 3.093e-03
: 172 : vars : 3.056e-03
: 173 : vars : 3.041e-03
: 174 : vars : 2.989e-03
: 175 : vars : 2.940e-03
: 176 : vars : 2.939e-03
: 177 : vars : 2.917e-03
: 178 : vars : 2.905e-03
: 179 : vars : 2.904e-03
: 180 : vars : 2.903e-03
: 181 : vars : 2.897e-03
: 182 : vars : 2.880e-03
: 183 : vars : 2.879e-03
: 184 : vars : 2.873e-03
: 185 : vars : 2.871e-03
: 186 : vars : 2.863e-03
: 187 : vars : 2.848e-03
: 188 : vars : 2.836e-03
: 189 : vars : 2.818e-03
: 190 : vars : 2.795e-03
: 191 : vars : 2.791e-03
: 192 : vars : 2.767e-03
: 193 : vars : 2.765e-03
: 194 : vars : 2.736e-03
: 195 : vars : 2.729e-03
: 196 : vars : 2.714e-03
: 197 : vars : 2.666e-03
: 198 : vars : 2.652e-03
: 199 : vars : 2.626e-03
: 200 : vars : 2.593e-03
: 201 : vars : 2.579e-03
: 202 : vars : 2.562e-03
: 203 : vars : 2.546e-03
: 204 : vars : 2.543e-03
: 205 : vars : 2.504e-03
: 206 : vars : 2.494e-03
: 207 : vars : 2.461e-03
: 208 : vars : 2.454e-03
: 209 : vars : 2.374e-03
: 210 : vars : 2.325e-03
: 211 : vars : 2.313e-03
: 212 : vars : 2.309e-03
: 213 : vars : 2.286e-03
: 214 : vars : 2.252e-03
: 215 : vars : 2.240e-03
: 216 : vars : 2.156e-03
: 217 : vars : 2.142e-03
: 218 : vars : 2.115e-03
: 219 : vars : 2.097e-03
: 220 : vars : 2.091e-03
: 221 : vars : 2.083e-03
: 222 : vars : 2.080e-03
: 223 : vars : 2.073e-03
: 224 : vars : 2.055e-03
: 225 : vars : 2.028e-03
: 226 : vars : 1.970e-03
: 227 : vars : 1.946e-03
: 228 : vars : 1.945e-03
: 229 : vars : 1.924e-03
: 230 : vars : 1.915e-03
: 231 : vars : 1.729e-03
: 232 : vars : 1.649e-03
: 233 : vars : 1.607e-03
: 234 : vars : 1.558e-03
: 235 : vars : 1.350e-03
: 236 : vars : 1.156e-03
: 237 : vars : 1.094e-03
: 238 : vars : 1.087e-03
: 239 : vars : 8.475e-04
: 240 : vars : 7.276e-04
: 241 : vars : 6.248e-04
: 242 : vars : 5.520e-04
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.04693
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.67646
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.08485
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.08694
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00361 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00117 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0289 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.787
: dataset TMVA_CNN_CPU : 0.759
: dataset TMVA_DNN_CPU : 0.681
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.085 (0.365) 0.475 (0.693) 0.715 (0.884)
: dataset TMVA_CNN_CPU : 0.045 (0.105) 0.395 (0.458) 0.635 (0.720)
: dataset TMVA_DNN_CPU : 0.035 (0.080) 0.292 (0.515) 0.585 (0.764)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m