Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
hf001_example.py File Reference

Detailed Description

A ROOT script demonstrating an example of writing and fitting a HistFactory model using Python.

import ROOT
"""
Create a HistFactory measurement from python
"""
InputFile = "./data/example.root"
if ROOT.gSystem.AccessPathName(InputFile):
ROOT.Info("example.py", InputFile + " does not exist")
ROOT.gROOT.ProcessLine(".! prepareHistFactory .")
if ROOT.gSystem.AccessPathName(InputFile):
ROOT.Info("example.py", InputFile + " still does not exist. \n EXIT")
exit()
# Create the measurement
meas = ROOT.RooStats.HistFactory.Measurement("meas", "meas")
meas.SetOutputFilePrefix("./results/example_UsingPy")
meas.SetPOI("SigXsecOverSM")
meas.AddConstantParam("Lumi")
meas.AddConstantParam("alpha_syst1")
meas.SetLumi(1.0)
meas.SetLumiRelErr(0.10)
# Create a channel
chan = ROOT.RooStats.HistFactory.Channel("channel1")
chan.SetData("data", InputFile)
chan.SetStatErrorConfig(0.05, "Poisson")
# Now, create some samples
# Create the signal sample
signal = ROOT.RooStats.HistFactory.Sample("signal", "signal", InputFile)
signal.AddOverallSys("syst1", 0.95, 1.05)
signal.AddNormFactor("SigXsecOverSM", 1, 0, 3)
chan.AddSample(signal)
# Background 1
background1 = ROOT.RooStats.HistFactory.Sample("background1", "background1", InputFile)
background1.ActivateStatError("background1_statUncert", InputFile)
background1.AddOverallSys("syst2", 0.95, 1.05)
chan.AddSample(background1)
# Background 1
background2 = ROOT.RooStats.HistFactory.Sample("background2", "background2", InputFile)
background2.ActivateStatError()
background2.AddOverallSys("syst3", 0.95, 1.05)
chan.AddSample(background2)
# Done with this channel
# Add it to the measurement:
meas.AddChannel(chan)
# Collect the histograms from their files,
# print some output,
meas.CollectHistograms()
meas.PrintTree()
# One can print XML code to an output directory:
# meas.PrintXML("xmlFromPyCode", meas.GetOutputFilePrefix())
# Now, do the measurement
ws = ROOT.RooStats.HistFactory.MakeModelAndMeasurementFast(meas)
# Retrieve the ModelConfig
modelConfig = ws["ModelConfig"]
# Extract the PDF and global observables
pdf = modelConfig.GetPdf()
# Perform the fit using Minos to get the correct asymmetric uncertainties
result = pdf.fitTo(
ws["obsData"], Save=True, PrintLevel=-1, GlobalObservables=modelConfig.GetGlobalObservables(), Minos=True
)
# Getting list of Parameters of Interest and getting first from them
poi = modelConfig.GetParametersOfInterest().first()
nll = pdf.createNLL(ws["obsData"])
profile = nll.createProfile(poi)
# frame for future plot
frame = poi.frame()
frame.SetTitle("")
frame.GetYaxis().SetTitle("-log likelihood")
frame.GetXaxis().SetTitle(poi.GetTitle())
profileLikelihoodCanvas = ROOT.TCanvas("combined", "", 800, 600)
xmin = poi.getMin()
xmax = poi.getMax()
line = ROOT.TLine(xmin, 0.5, xmax, 0.5)
line.SetLineColor(ROOT.kGreen)
line90 = ROOT.TLine(xmin, 2.71 / 2, xmax, 2.71 / 2)
line90.SetLineColor(ROOT.kGreen)
line95 = ROOT.TLine(xmin, 3.84 / 2, xmax, 3.84 / 2)
line95.SetLineColor(ROOT.kGreen)
frame.addObject(line)
frame.addObject(line90)
frame.addObject(line95)
nll.plotOn(frame, ShiftToZero=True, LineColor="r", LineStyle="--")
profile.plotOn(frame)
frame.SetMinimum(0)
frame.SetMaximum(2)
frame.Draw()
# Print fit results to console in verbose mode to see asymmetric uncertainties
result.Print("v")
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/data
[#2] INFO:HistFactory -- Opened input file: ./data/example.root:
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/signal
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/background1
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/background1_statUncert
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/background2
Measurement Name: meas OutputFilePrefix: ./results/example_UsingPy POI: SigXsecOverSM Lumi: 1 LumiRelErr: 0.1 BinLow: 0 BinHigh: 1 ExportOnly: 1
Constant Params: Lumi alpha_syst1
Channels:
Channel Name: channel1 InputFile:
Data:
InputFile: ./data/example.root HistoName: data HistoPath: HistoAddress: 0x7a9a700
statErrorConfig:
RelErrorThreshold: 0.05 ConstraintType: Poisson
Samples:
Name: signal Channel: channel1 NormalizeByTheory: True StatErrorActivate: False
InputFile: ./data/example.root HistName: signal HistoPath: HistoAddress: 0x270e140
Name: background1 Channel: channel1 NormalizeByTheory: True StatErrorActivate: False
InputFile: ./data/example.root HistName: background1 HistoPath: HistoAddress: 0x3172fb0
StatError Activate: 1 InputFile: ./data/example.root HistName: background1_statUncert HistoPath: HistoAddress: 0x81a32e0
Name: background2 Channel: channel1 NormalizeByTheory: True StatErrorActivate: False
InputFile: ./data/example.root HistName: background2 HistoPath: HistoAddress: 0x81a3d00
StatError Activate: 1 InputFile: ./data/example.root HistName: HistoPath: HistoAddress: 0
End of Channel channel1
[#2] INFO:HistFactory -- End Measurement: meas
[#2] INFO:HistFactory -- Making Model and Measurements (Fast) for measurement: meas
[#2] INFO:HistFactory -- using lumi = 1 and lumiError = 0.1 including bins between 0 and 1
[#2] INFO:HistFactory -- fixing the following parameters:
Lumi
alpha_syst1
[#2] INFO:HistFactory -- Creating the output file: ./results/example_UsingPy_meas.root
[#2] INFO:HistFactory -- Creating the HistoToWorkspaceFactoryFast factory
[#2] INFO:HistFactory -- Setting preprocess functions
[#2] PROGRESS:HistFactory -- Starting to process channel: channel1
[#2] PROGRESS:HistFactory --
-----------------------------------------
Starting to process 'channel1' channel with 1 observables
-----------------------------------------
[#2] INFO:HistFactory -- making normFactor: SigXsecOverSM
[#2] INFO:HistFactory -- processing hist signal
[#2] INFO:HistFactory -- signal_channel1 has no variation histograms
[#2] INFO:HistFactory -- processing hist background1
[#2] INFO:HistFactory -- background1_channel1 has no variation histograms
[#2] INFO:HistFactory -- Sample: background1 to be included in Stat Error for channel channel1
[#2] INFO:HistFactory -- Using external histogram for Stat Errors for Channel: channel1 Sample: background1 Error Histogram: background1_statUncert
[#2] INFO:HistFactory -- processing hist background2
[#2] INFO:HistFactory -- background2_channel1 has no variation histograms
[#2] INFO:HistFactory -- Sample: background2 to be included in Stat Error for channel channel1
[#2] INFO:HistFactory -- Making Statistical Uncertainty Hist for Channel: channel1 Sample: background2
[#2] INFO:HistFactory -- Making Total Uncertainty for bin 1 Error = 5 CentralVal = 100 RelativeError = 0.05
[#2] INFO:HistFactory -- Making Total Uncertainty for bin 2 Error = 10 CentralVal = 100 RelativeError = 0.1
[#2] INFO:HistFactory -- About to create Constraint Terms from: mc_stat_channel1 params: (gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
[#2] INFO:HistFactory -- Using Poisson StatErrors in channel: channel1
[#2] INFO:HistFactory -- Creating constraint for: gamma_stat_channel1_bin_0. Type of constraint: 1
[#2] INFO:HistFactory -- Creating constraint for: gamma_stat_channel1_bin_1. Type of constraint: 1
[#2] PROGRESS:HistFactory --
-----------------------------------------
import model into workspace
-----------------------------------------
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
RooDataSet::AsimovData[obs_x_channel1,weight:binWeightAsimov] = 2 entries (230 weighted)
RooWorkspace(channel1) channel1 workspace contents
variables
---------
(Lumi,SigXsecOverSM,alpha_syst1,alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1,nominalLumi,obs_x_channel1)
p.d.f.s
-------
RooGaussian::alpha_syst1Constraint[ x=alpha_syst1 mean=nom_alpha_syst1 sigma=1 ] = 1
RooGaussian::alpha_syst2Constraint[ x=alpha_syst2 mean=nom_alpha_syst2 sigma=1 ] = 1
RooGaussian::alpha_syst3Constraint[ x=alpha_syst3 mean=nom_alpha_syst3 sigma=1 ] = 1
RooRealSumPdf::channel1_model[ signal_channel1_scaleFactors * signal_channel1_shapes + background1_channel1_scaleFactors * background1_channel1_shapes + background2_channel1_scaleFactors * background2_channel1_shapes ] = 220/230
RooPoisson::gamma_stat_channel1_bin_0_constraint[ x=nom_gamma_stat_channel1_bin_0 mean=gamma_stat_channel1_bin_0_poisMean ] = 0.019943
RooPoisson::gamma_stat_channel1_bin_1_constraint[ x=nom_gamma_stat_channel1_bin_1 mean=gamma_stat_channel1_bin_1_poisMean ] = 0.039861
RooGaussian::lumiConstraint[ x=Lumi mean=nominalLumi sigma=0.1 ] = 1
RooProdPdf::model_channel1[ lumiConstraint * alpha_syst1Constraint * alpha_syst2Constraint * alpha_syst3Constraint * gamma_stat_channel1_bin_0_constraint * gamma_stat_channel1_bin_1_constraint * channel1_model(obs_x_channel1) ] = 0.174888
functions
--------
RooHistFunc::background1_channel1_Hist_alphanominal[ depList=(obs_x_channel1) ] = 0
RooStats::HistFactory::FlexibleInterpVar::background1_channel1_epsilon[ paramList=(alpha_syst2) ] = 1
RooProduct::background1_channel1_scaleFactors[ background1_channel1_epsilon * Lumi ] = 1
RooProduct::background1_channel1_shapes[ background1_channel1_Hist_alphanominal * mc_stat_channel1 * channel1_model_binWidth ] = 0
RooHistFunc::background2_channel1_Hist_alphanominal[ depList=(obs_x_channel1) ] = 100
RooStats::HistFactory::FlexibleInterpVar::background2_channel1_epsilon[ paramList=(alpha_syst3) ] = 1
RooProduct::background2_channel1_scaleFactors[ background2_channel1_epsilon * Lumi ] = 1
RooProduct::background2_channel1_shapes[ background2_channel1_Hist_alphanominal * mc_stat_channel1 * channel1_model_binWidth ] = 200
RooBinWidthFunction::channel1_model_binWidth[ HistFuncForBinWidth=signal_channel1_Hist_alphanominal ] = 2
RooProduct::gamma_stat_channel1_bin_0_poisMean[ gamma_stat_channel1_bin_0 * gamma_stat_channel1_bin_0_tau ] = 400
RooProduct::gamma_stat_channel1_bin_1_poisMean[ gamma_stat_channel1_bin_1 * gamma_stat_channel1_bin_1_tau ] = 100
ParamHistFunc::mc_stat_channel1[ ] = 1
RooHistFunc::signal_channel1_Hist_alphanominal[ depList=(obs_x_channel1) ] = 10
RooStats::HistFactory::FlexibleInterpVar::signal_channel1_epsilon[ paramList=(alpha_syst1) ] = 1
RooProduct::signal_channel1_scaleFactors[ signal_channel1_epsilon * SigXsecOverSM * Lumi ] = 1
RooProduct::signal_channel1_shapes[ signal_channel1_Hist_alphanominal * channel1_model_binWidth ] = 20
datasets
--------
RooDataSet::asimovData(obs_x_channel1)
RooDataSet::obsData(obs_x_channel1)
embedded datasets (in pdfs and functions)
-----------------------------------------
RooDataHist::signal_channel1_Hist_alphanominalDHist(obs_x_channel1)
RooDataHist::background1_channel1_Hist_alphanominalDHist(obs_x_channel1)
RooDataHist::background2_channel1_Hist_alphanominalDHist(obs_x_channel1)
named sets
----------
ModelConfig_GlobalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
ModelConfig_Observables:(obs_x_channel1)
constraintTerms:(lumiConstraint,alpha_syst1Constraint,alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
globalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
likelihoodTerms:(channel1_model)
observables:(obs_x_channel1)
observablesSet:(obs_x_channel1)
generic objects
---------------
RooStats::ModelConfig::ModelConfig
[#2] INFO:HistFactory -- Setting Parameter(s) of Interest as: SigXsecOverSM
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_x_channel1)
Parameters of Interest: RooArgSet:: = (SigXsecOverSM)
Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
Global Observables: RooArgSet:: = (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
PDF: RooProdPdf::model_channel1[ lumiConstraint * alpha_syst1Constraint * alpha_syst2Constraint * alpha_syst3Constraint * gamma_stat_channel1_bin_0_constraint * gamma_stat_channel1_bin_1_constraint * channel1_model(obs_x_channel1) ] = 0.174888
[#2] INFO:HistFactory -- Opening File to hold channel: ./results/example_UsingPy_channel1_meas_model.root
[#2] INFO:HistFactory -- About to write channel measurement to file
[#2] PROGRESS:HistFactory -- Writing sample: signal
[#2] PROGRESS:HistFactory -- Writing sample: background1
[#2] PROGRESS:HistFactory -- Writing sample: background2
[#2] PROGRESS:HistFactory -- Saved all histograms
[#2] PROGRESS:HistFactory -- Saved Measurement
[#2] PROGRESS:HistFactory -- Successfully wrote channel to file
[#2] INFO:HistFactory -- full list of observables:
(obs_x_channel1)
[#2] PROGRESS:HistFactory --
-----------------------------------------
Entering combination
-----------------------------------------
RooWorkspace(combined) combined contents
variables
---------
(channelCat,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1,nominalLumi,obs_x_channel1)
datasets
--------
RooDataSet::obsData(obs_x_channel1,channelCat)
named sets
----------
ModelConfig_GlobalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
ModelConfig_Observables:(obs_x_channel1,channelCat)
globalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
observables:(obs_x_channel1,channelCat)
[#2] PROGRESS:HistFactory --
-----------------------------------------
Importing combined model
-----------------------------------------
[#2] INFO:HistFactory -- setting Lumi constant
[#2] INFO:HistFactory -- setting alpha_syst1 constant
[#2] PROGRESS:HistFactory --
-----------------------------------------
create toy data
-----------------------------------------
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
RooDataSet::AsimovData0[obs_x_channel1,channelCat,weight:binWeightAsimov] = 2 entries (230 weighted)
[#2] INFO:HistFactory -- Setting Parameter(s) of Interest as: SigXsecOverSM
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_x_channel1,channelCat)
Parameters of Interest: RooArgSet:: = (SigXsecOverSM)
Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
Global Observables: RooArgSet:: = (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
PDF: RooSimultaneous::simPdf[ indexCat=channelCat channel1=model_channel1 ] = 0.190787
[#2] PROGRESS:HistFactory -- Writing combined workspace to file: ./results/example_UsingPy_combined_meas_model.root
[#2] PROGRESS:HistFactory -- Writing combined measurement to file: ./results/example_UsingPy_combined_meas_model.root
[#2] PROGRESS:HistFactory -- Writing sample: signal
[#2] PROGRESS:HistFactory -- Writing sample: background1
[#2] PROGRESS:HistFactory -- Writing sample: background2
[#2] PROGRESS:HistFactory -- Saved all histograms
[#2] PROGRESS:HistFactory -- Saved Measurement
[#1] INFO:Minimization -- p.d.f. provides expected number of events, including extended term in likelihood.
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (lumiConstraint,alpha_syst1Constraint,alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(simPdf) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx2
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_simPdf_obsData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Minimization -- p.d.f. provides expected number of events, including extended term in likelihood.
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (lumiConstraint,alpha_syst1Constraint,alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
[#1] INFO:Minimization -- The global observables are not defined , normalize constraints with respect to the parameters (Lumi,SigXsecOverSM,alpha_syst1,alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(simPdf) fixing normalization set for coefficient determination to observables in data
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gamma_stat_channel1_bin_1_constraint_Int[gamma_stat_channel1_bin_1]) using numeric integrator RooIntegrator1D to calculate Int(gamma_stat_channel1_bin_1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gamma_stat_channel1_bin_0_constraint_Int[gamma_stat_channel1_bin_0]) using numeric integrator RooIntegrator1D to calculate Int(gamma_stat_channel1_bin_0)
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[SigXsecOverSM]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_simPdf_obsData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[SigXsecOverSM]) determining minimum likelihood for current configurations w.r.t all observable
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[SigXsecOverSM]) minimum found at (SigXsecOverSM=1.11284)
..........................................................................................................................................................................................................
RooFitResult: minimized FCN value: 15.1129, estimated distance to minimum: 0.000182975
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0 MINOS=0
Constant Parameter Value
-------------------- ------------
Lumi 1.0000e+00
alpha_syst1 0.0000e+00
nom_alpha_syst1 0.0000e+00
nom_alpha_syst2 0.0000e+00
nom_alpha_syst3 0.0000e+00
nom_gamma_stat_channel1_bin_0 4.0000e+02
nom_gamma_stat_channel1_bin_1 1.0000e+02
nominalLumi 1.0000e+00
Floating Parameter InitialValue FinalValue (+HiError,-LoError) GblCorr.
-------------------- ------------ ---------------------------------- --------
SigXsecOverSM 1.0000e+00 1.1109e+00 (+6.16e-01,-5.93e-01) <none>
alpha_syst2 0.0000e+00 -1.0039e-02 (+9.90e-01,-9.88e-01) <none>
alpha_syst3 0.0000e+00 1.5339e-02 (+9.58e-01,-9.50e-01) <none>
gamma_stat_channel1_bin_0 1.0000e+00 9.9953e-01 (+5.03e-02,-4.86e-02) <none>
gamma_stat_channel1_bin_1 1.0000e+00 1.0050e+00 (+8.08e-02,-7.98e-02) <none>
Author
George Lewis

Definition in file hf001_example.py.