Likelihood and minimization: setting up a multi-core parallelized unbinned maximum likelihood fit
import ROOT
frame =
x.frame(Title=
"Projection on X with LLratio(y,z)>0.7", Bins=40)
c =
ROOT.TCanvas(
"rf603_multicpu",
"rf603_multicpu", 600, 600)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_modelData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- Command timer: Real time 0:00:00, CP time 0.070
[#1] INFO:Minimization -- Session timer: Real time 0:00:00, CP time 0.070
[#1] INFO:Minimization -- Command timer: Real time 0:00:00, CP time 0.010
[#1] INFO:Minimization -- Session timer: Real time 0:00:00, CP time 0.080, 2 slices
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y,z)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) only the following components of the projection data will be used: (y,z)
- Date
- February 2018
- Authors
- Clemens Lange, Wouter Verkerke (C++ version)
Definition in file rf603_multicpu.py.