Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TH1.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include <array>
13#include <cctype>
14#include <climits>
15#include <cmath>
16#include <cstdio>
17#include <cstdlib>
18#include <cstring>
19#include <iostream>
20#include <memory>
21#include <sstream>
22#include <fstream>
23#include <limits>
24#include <iomanip>
25
26#include "TROOT.h"
27#include "TBuffer.h"
28#include "TEnv.h"
29#include "TClass.h"
30#include "TMath.h"
31#include "THashList.h"
32#include "TH1.h"
33#include "TH2.h"
34#include "TH3.h"
35#include "TF2.h"
36#include "TF3.h"
37#include "TPluginManager.h"
38#include "TVirtualPad.h"
39#include "TRandom.h"
40#include "TVirtualFitter.h"
41#include "THLimitsFinder.h"
42#include "TProfile.h"
43#include "TStyle.h"
44#include "TVectorF.h"
45#include "TVectorD.h"
46#include "TBrowser.h"
47#include "TError.h"
48#include "TVirtualHistPainter.h"
49#include "TVirtualFFT.h"
50#include "TVirtualPaveStats.h"
51
52#include "HFitInterface.h"
53#include "Fit/DataRange.h"
54#include "Fit/BinData.h"
55#include "Math/GoFTest.h"
58
59#include "TH1Merger.h"
60
61/** \addtogroup Histograms
62@{
63\class TH1C
64\brief 1-D histogram with a byte per channel (see TH1 documentation)
65\class TH1S
66\brief 1-D histogram with a short per channel (see TH1 documentation)
67\class TH1I
68\brief 1-D histogram with an int per channel (see TH1 documentation)
69\class TH1L
70\brief 1-D histogram with a long64 per channel (see TH1 documentation)
71\class TH1F
72\brief 1-D histogram with a float per channel (see TH1 documentation)
73\class TH1D
74\brief 1-D histogram with a double per channel (see TH1 documentation)
75@}
76*/
77
78/** \class TH1
79 \ingroup Histograms
80TH1 is the base class of all histogram classes in %ROOT.
81
82It provides the common interface for operations such as binning, filling, drawing, which
83will be detailed below.
84
85-# [Creating histograms](\ref creating-histograms)
86 - [Labelling axes](\ref labelling-axis)
87-# [Binning](\ref binning)
88 - [Fix or variable bin size](\ref fix-var)
89 - [Convention for numbering bins](\ref convention)
90 - [Alphanumeric Bin Labels](\ref alpha)
91 - [Histograms with automatic bins](\ref auto-bin)
92 - [Rebinning](\ref rebinning)
93-# [Filling histograms](\ref filling-histograms)
94 - [Associated errors](\ref associated-errors)
95 - [Associated functions](\ref associated-functions)
96 - [Projections of histograms](\ref prof-hist)
97 - [Random Numbers and histograms](\ref random-numbers)
98 - [Making a copy of a histogram](\ref making-a-copy)
99 - [Normalizing histograms](\ref normalizing)
100-# [Drawing histograms](\ref drawing-histograms)
101 - [Setting Drawing histogram contour levels (2-D hists only)](\ref cont-level)
102 - [Setting histogram graphics attributes](\ref graph-att)
103 - [Customising how axes are drawn](\ref axis-drawing)
104-# [Fitting histograms](\ref fitting-histograms)
105-# [Saving/reading histograms to/from a ROOT file](\ref saving-histograms)
106-# [Operations on histograms](\ref operations-on-histograms)
107-# [Miscellaneous operations](\ref misc)
108
109ROOT supports the following histogram types:
110
111 - 1-D histograms:
112 - TH1C : histograms with one byte per channel. Maximum bin content = 127
113 - TH1S : histograms with one short per channel. Maximum bin content = 32767
114 - TH1I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
115 - TH1L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
116 - TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
117 - TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
118 - 2-D histograms:
119 - TH2C : histograms with one byte per channel. Maximum bin content = 127
120 - TH2S : histograms with one short per channel. Maximum bin content = 32767
121 - TH2I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
122 - TH2L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
123 - TH2F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
124 - TH2D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
125 - 3-D histograms:
126 - TH3C : histograms with one byte per channel. Maximum bin content = 127
127 - TH3S : histograms with one short per channel. Maximum bin content = 32767
128 - TH3I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
129 - TH3L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
130 - TH3F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
131 - TH3D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
132 - Profile histograms: See classes TProfile, TProfile2D and TProfile3D.
133 Profile histograms are used to display the mean value of Y and its standard deviation
134 for each bin in X. Profile histograms are in many cases an elegant
135 replacement of two-dimensional histograms : the inter-relation of two
136 measured quantities X and Y can always be visualized by a two-dimensional
137 histogram or scatter-plot; If Y is an unknown (but single-valued)
138 approximate function of X, this function is displayed by a profile
139 histogram with much better precision than by a scatter-plot.
140
141<sup>
142\anchor intmax (*) INT_MAX = 2147483647 is the [maximum value for a variable of type int.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
143\anchor llongmax (**) LLONG_MAX = 9223372036854775807 is the [maximum value for a variable of type long64.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
144\anchor floatmax (***) 2^24 = 16777216 is the [maximum integer that can be properly represented by a float32 with 23-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)<br>
145\anchor doublemax (****) 2^53 = 9007199254740992 is the [maximum integer that can be properly represented by a double64 with 52-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)
146</sup>
147
148The inheritance hierarchy looks as follows:
149
150\image html classTH1__inherit__graph_org.svg width=100%
151
152\anchor creating-histograms
153## Creating histograms
154
155Histograms are created by invoking one of the constructors, e.g.
156~~~ {.cpp}
157 TH1F *h1 = new TH1F("h1", "h1 title", 100, 0, 4.4);
158 TH2F *h2 = new TH2F("h2", "h2 title", 40, 0, 4, 30, -3, 3);
159~~~
160Histograms may also be created by:
161
162 - calling the Clone() function, see below
163 - making a projection from a 2-D or 3-D histogram, see below
164 - reading a histogram from a file
165
166 When a histogram is created, a reference to it is automatically added
167 to the list of in-memory objects for the current file or directory.
168 Then the pointer to this histogram in the current directory can be found
169 by its name, doing:
170~~~ {.cpp}
171 TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
172~~~
173
174 This default behaviour can be changed by:
175~~~ {.cpp}
176 h->SetDirectory(nullptr); // for the current histogram h
177 TH1::AddDirectory(kFALSE); // sets a global switch disabling the referencing
178~~~
179 When the histogram is deleted, the reference to it is removed from
180 the list of objects in memory.
181 When a file is closed, all histograms in memory associated with this file
182 are automatically deleted.
183
184\anchor labelling-axis
185### Labelling axes
186
187 Axis titles can be specified in the title argument of the constructor.
188 They must be separated by ";":
189~~~ {.cpp}
190 TH1F* h=new TH1F("h", "Histogram title;X Axis;Y Axis", 100, 0, 1);
191~~~
192 The histogram title and the axis titles can be any TLatex string, and
193 are persisted if a histogram is written to a file.
194
195 Any title can be omitted:
196~~~ {.cpp}
197 TH1F* h=new TH1F("h", "Histogram title;;Y Axis", 100, 0, 1);
198 TH1F* h=new TH1F("h", ";;Y Axis", 100, 0, 1);
199~~~
200 The method SetTitle() has the same syntax:
201~~~ {.cpp}
202 h->SetTitle("Histogram title;Another X title Axis");
203~~~
204Alternatively, the title of each axis can be set directly:
205~~~ {.cpp}
206 h->GetXaxis()->SetTitle("X axis title");
207 h->GetYaxis()->SetTitle("Y axis title");
208~~~
209For bin labels see \ref binning.
210
211\anchor binning
212## Binning
213
214\anchor fix-var
215### Fix or variable bin size
216
217 All histogram types support either fix or variable bin sizes.
218 2-D histograms may have fix size bins along X and variable size bins
219 along Y or vice-versa. The functions to fill, manipulate, draw or access
220 histograms are identical in both cases.
221
222 Each histogram always contains 3 axis objects of type TAxis: fXaxis, fYaxis and fZaxis.
223 To access the axis parameters, use:
224~~~ {.cpp}
225 TAxis *xaxis = h->GetXaxis(); etc.
226 Double_t binCenter = xaxis->GetBinCenter(bin), etc.
227~~~
228 See class TAxis for a description of all the access functions.
229 The axis range is always stored internally in double precision.
230
231\anchor convention
232### Convention for numbering bins
233
234 For all histogram types: nbins, xlow, xup
235~~~ {.cpp}
236 bin = 0; underflow bin
237 bin = 1; first bin with low-edge xlow INCLUDED
238 bin = nbins; last bin with upper-edge xup EXCLUDED
239 bin = nbins+1; overflow bin
240~~~
241 In case of 2-D or 3-D histograms, a "global bin" number is defined.
242 For example, assuming a 3-D histogram with (binx, biny, binz), the function
243~~~ {.cpp}
244 Int_t gbin = h->GetBin(binx, biny, binz);
245~~~
246 returns a global/linearized gbin number. This global gbin is useful
247 to access the bin content/error information independently of the dimension.
248 Note that to access the information other than bin content and errors
249 one should use the TAxis object directly with e.g.:
250~~~ {.cpp}
251 Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
252~~~
253 returns the center along z of bin number 27 (not the global bin)
254 in the 3-D histogram h3.
255
256\anchor alpha
257### Alphanumeric Bin Labels
258
259 By default, a histogram axis is drawn with its numeric bin labels.
260 One can specify alphanumeric labels instead with:
261
262 - call TAxis::SetBinLabel(bin, label);
263 This can always be done before or after filling.
264 When the histogram is drawn, bin labels will be automatically drawn.
265 See examples labels1.C and labels2.C
266 - call to a Fill function with one of the arguments being a string, e.g.
267~~~ {.cpp}
268 hist1->Fill(somename, weight);
269 hist2->Fill(x, somename, weight);
270 hist2->Fill(somename, y, weight);
271 hist2->Fill(somenamex, somenamey, weight);
272~~~
273 See examples hlabels1.C and hlabels2.C
274 - via TTree::Draw. see for example cernstaff.C
275~~~ {.cpp}
276 tree.Draw("Nation::Division");
277~~~
278 where "Nation" and "Division" are two branches of a Tree.
279
280When using the options 2 or 3 above, the labels are automatically
281 added to the list (THashList) of labels for a given axis.
282 By default, an axis is drawn with the order of bins corresponding
283 to the filling sequence. It is possible to reorder the axis
284
285 - alphabetically
286 - by increasing or decreasing values
287
288 The reordering can be triggered via the TAxis context menu by selecting
289 the menu item "LabelsOption" or by calling directly
290 TH1::LabelsOption(option, axis) where
291
292 - axis may be "X", "Y" or "Z"
293 - option may be:
294 - "a" sort by alphabetic order
295 - ">" sort by decreasing values
296 - "<" sort by increasing values
297 - "h" draw labels horizontal
298 - "v" draw labels vertical
299 - "u" draw labels up (end of label right adjusted)
300 - "d" draw labels down (start of label left adjusted)
301
302 When using the option 2 above, new labels are added by doubling the current
303 number of bins in case one label does not exist yet.
304 When the Filling is terminated, it is possible to trim the number
305 of bins to match the number of active labels by calling
306~~~ {.cpp}
307 TH1::LabelsDeflate(axis) with axis = "X", "Y" or "Z"
308~~~
309 This operation is automatic when using TTree::Draw.
310 Once bin labels have been created, they become persistent if the histogram
311 is written to a file or when generating the C++ code via SavePrimitive.
312
313\anchor auto-bin
314### Histograms with automatic bins
315
316 When a histogram is created with an axis lower limit greater or equal
317 to its upper limit, the SetBuffer is automatically called with an
318 argument fBufferSize equal to fgBufferSize (default value=1000).
319 fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
320 The axis limits will be automatically computed when the buffer will
321 be full or when the function BufferEmpty is called.
322
323\anchor rebinning
324### Rebinning
325
326 At any time, a histogram can be rebinned via TH1::Rebin. This function
327 returns a new histogram with the rebinned contents.
328 If bin errors were stored, they are recomputed during the rebinning.
329
330
331\anchor filling-histograms
332## Filling histograms
333
334 A histogram is typically filled with statements like:
335~~~ {.cpp}
336 h1->Fill(x);
337 h1->Fill(x, w); //fill with weight
338 h2->Fill(x, y)
339 h2->Fill(x, y, w)
340 h3->Fill(x, y, z)
341 h3->Fill(x, y, z, w)
342~~~
343 or via one of the Fill functions accepting names described above.
344 The Fill functions compute the bin number corresponding to the given
345 x, y or z argument and increment this bin by the given weight.
346 The Fill functions return the bin number for 1-D histograms or global
347 bin number for 2-D and 3-D histograms.
348 If TH1::Sumw2 has been called before filling, the sum of squares of
349 weights is also stored.
350 One can also increment directly a bin number via TH1::AddBinContent
351 or replace the existing content via TH1::SetBinContent. Passing an
352 out-of-range bin to TH1::AddBinContent leads to undefined behavior.
353 To access the bin content of a given bin, do:
354~~~ {.cpp}
355 Double_t binContent = h->GetBinContent(bin);
356~~~
357
358 By default, the bin number is computed using the current axis ranges.
359 If the automatic binning option has been set via
360~~~ {.cpp}
361 h->SetCanExtend(TH1::kAllAxes);
362~~~
363 then, the Fill Function will automatically extend the axis range to
364 accomodate the new value specified in the Fill argument. The method
365 used is to double the bin size until the new value fits in the range,
366 merging bins two by two. This automatic binning options is extensively
367 used by the TTree::Draw function when histogramming Tree variables
368 with an unknown range.
369 This automatic binning option is supported for 1-D, 2-D and 3-D histograms.
370
371 During filling, some statistics parameters are incremented to compute
372 the mean value and Root Mean Square with the maximum precision.
373
374 In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
375 a check is made that the bin contents do not exceed the maximum positive
376 capacity (127 or 32767). Histograms of all types may have positive
377 or/and negative bin contents.
378
379\anchor associated-errors
380### Associated errors
381 By default, for each bin, the sum of weights is computed at fill time.
382 One can also call TH1::Sumw2 to force the storage and computation
383 of the sum of the square of weights per bin.
384 If Sumw2 has been called, the error per bin is computed as the
385 sqrt(sum of squares of weights), otherwise the error is set equal
386 to the sqrt(bin content).
387 To return the error for a given bin number, do:
388~~~ {.cpp}
389 Double_t error = h->GetBinError(bin);
390~~~
391
392\anchor associated-functions
393### Associated functions
394 One or more objects (typically a TF1*) can be added to the list
395 of functions (fFunctions) associated to each histogram.
396 When TH1::Fit is invoked, the fitted function is added to this list.
397 Given a histogram (or TGraph) `h`, one can retrieve an associated function
398 with:
399~~~ {.cpp}
400 TF1 *myfunc = h->GetFunction("myfunc");
401~~~
402
403
404\anchor operations-on-histograms
405## Operations on histograms
406
407 Many types of operations are supported on histograms or between histograms
408
409 - Addition of a histogram to the current histogram.
410 - Additions of two histograms with coefficients and storage into the current
411 histogram.
412 - Multiplications and Divisions are supported in the same way as additions.
413 - The Add, Divide and Multiply functions also exist to add, divide or multiply
414 a histogram by a function.
415
416 If a histogram has associated error bars (TH1::Sumw2 has been called),
417 the resulting error bars are also computed assuming independent histograms.
418 In case of divisions, Binomial errors are also supported.
419 One can mark a histogram to be an "average" histogram by setting its bit kIsAverage via
420 myhist.SetBit(TH1::kIsAverage);
421 When adding (see TH1::Add) average histograms, the histograms are averaged and not summed.
422
423
424\anchor prof-hist
425### Projections of histograms
426
427 One can:
428
429 - make a 1-D projection of a 2-D histogram or Profile
430 see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
431 - make a 1-D, 2-D or profile out of a 3-D histogram
432 see functions TH3::ProjectionZ, TH3::Project3D.
433
434 One can fit these projections via:
435~~~ {.cpp}
436 TH2::FitSlicesX,Y, TH3::FitSlicesZ.
437~~~
438
439\anchor random-numbers
440### Random Numbers and histograms
441
442 TH1::FillRandom can be used to randomly fill a histogram using
443 the contents of an existing TF1 function or another
444 TH1 histogram (for all dimensions).
445 For example, the following two statements create and fill a histogram
446 10000 times with a default gaussian distribution of mean 0 and sigma 1:
447~~~ {.cpp}
448 TH1F h1("h1", "histo from a gaussian", 100, -3, 3);
449 h1.FillRandom("gaus", 10000);
450~~~
451 TH1::GetRandom can be used to return a random number distributed
452 according to the contents of a histogram.
453
454\anchor making-a-copy
455### Making a copy of a histogram
456 Like for any other ROOT object derived from TObject, one can use
457 the Clone() function. This makes an identical copy of the original
458 histogram including all associated errors and functions, e.g.:
459~~~ {.cpp}
460 TH1F *hnew = (TH1F*)h->Clone("hnew");
461~~~
462
463\anchor normalizing
464### Normalizing histograms
465
466 One can scale a histogram such that the bins integral is equal to
467 the normalization parameter via TH1::Scale(Double_t norm), where norm
468 is the desired normalization divided by the integral of the histogram.
471\anchor drawing-histograms
472## Drawing histograms
473
474 Histograms are drawn via the THistPainter class. Each histogram has
475 a pointer to its own painter (to be usable in a multithreaded program).
476 Many drawing options are supported.
477 See THistPainter::Paint() for more details.
478
479 The same histogram can be drawn with different options in different pads.
480 When a histogram drawn in a pad is deleted, the histogram is
481 automatically removed from the pad or pads where it was drawn.
482 If a histogram is drawn in a pad, then filled again, the new status
483 of the histogram will be automatically shown in the pad next time
484 the pad is updated. One does not need to redraw the histogram.
485 To draw the current version of a histogram in a pad, one can use
486~~~ {.cpp}
487 h->DrawCopy();
488~~~
489 This makes a clone (see Clone below) of the histogram. Once the clone
490 is drawn, the original histogram may be modified or deleted without
491 affecting the aspect of the clone.
492
493 One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
494 value for the maximum or the minimum scale on the plot. (For 1-D
495 histograms this means the y-axis, while for 2-D histograms these
496 functions affect the z-axis).
497
498 TH1::UseCurrentStyle() can be used to change all histogram graphics
499 attributes to correspond to the current selected style.
500 This function must be called for each histogram.
501 In case one reads and draws many histograms from a file, one can force
502 the histograms to inherit automatically the current graphics style
503 by calling before gROOT->ForceStyle().
504
505\anchor cont-level
506### Setting Drawing histogram contour levels (2-D hists only)
507
508 By default contours are automatically generated at equidistant
509 intervals. A default value of 20 levels is used. This can be modified
510 via TH1::SetContour() or TH1::SetContourLevel().
511 the contours level info is used by the drawing options "cont", "surf",
512 and "lego".
513
514\anchor graph-att
515### Setting histogram graphics attributes
517 The histogram classes inherit from the attribute classes:
518 TAttLine, TAttFill, and TAttMarker.
519 See the member functions of these classes for the list of options.
520
521\anchor axis-drawing
522### Customizing how axes are drawn
523
524 Use the functions of TAxis, such as
525~~~ {.cpp}
526 histogram.GetXaxis()->SetTicks("+");
527 histogram.GetYaxis()->SetRangeUser(1., 5.);
528~~~
529
530\anchor fitting-histograms
531## Fitting histograms
532
533 Histograms (1-D, 2-D, 3-D and Profiles) can be fitted with a user
534 specified function or a pre-defined function via TH1::Fit.
535 See TH1::Fit(TF1*, Option_t *, Option_t *, Double_t, Double_t) for the fitting documentation and the possible [fitting options](\ref HFitOpt)
536
537 The FitPanel can also be used for fitting an histogram. See the [FitPanel documentation](https://root.cern/manual/fitting/#using-the-fit-panel).
538
539\anchor saving-histograms
540## Saving/reading histograms to/from a ROOT file
541
542 The following statements create a ROOT file and store a histogram
543 on the file. Because TH1 derives from TNamed, the key identifier on
544 the file is the histogram name:
545~~~ {.cpp}
546 TFile f("histos.root", "new");
547 TH1F h1("hgaus", "histo from a gaussian", 100, -3, 3);
548 h1.FillRandom("gaus", 10000);
549 h1->Write();
550~~~
551 To read this histogram in another Root session, do:
552~~~ {.cpp}
553 TFile f("histos.root");
554 TH1F *h = (TH1F*)f.Get("hgaus");
555~~~
556 One can save all histograms in memory to the file by:
557~~~ {.cpp}
558 file->Write();
559~~~
560
561
562\anchor misc
563## Miscellaneous operations
564
565~~~ {.cpp}
566 TH1::KolmogorovTest(): statistical test of compatibility in shape
567 between two histograms
568 TH1::Smooth() smooths the bin contents of a 1-d histogram
569 TH1::Integral() returns the integral of bin contents in a given bin range
570 TH1::GetMean(int axis) returns the mean value along axis
571 TH1::GetStdDev(int axis) returns the sigma distribution along axis
572 TH1::GetEntries() returns the number of entries
573 TH1::Reset() resets the bin contents and errors of a histogram
574~~~
575 IMPORTANT NOTE: The returned values for GetMean and GetStdDev depend on how the
576 histogram statistics are calculated. By default, if no range has been set, the
577 returned values are the (unbinned) ones calculated at fill time. If a range has been
578 set, however, the values are calculated using the bins in range; THIS IS TRUE EVEN
579 IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset the range.
580 To ensure that the returned values are always those of the binned data stored in the
581 histogram, call TH1::ResetStats. See TH1::GetStats.
582*/
583
584TF1 *gF1=nullptr; //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
585
590
591extern void H1InitGaus();
592extern void H1InitExpo();
593extern void H1InitPolynom();
594extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
597
599
600////////////////////////////////////////////////////////////////////////////////
601/// Histogram default constructor.
602
604{
605 fDirectory = nullptr;
606 fFunctions = new TList;
607 fNcells = 0;
608 fIntegral = nullptr;
609 fPainter = nullptr;
610 fEntries = 0;
611 fNormFactor = 0;
613 fMaximum = -1111;
614 fMinimum = -1111;
615 fBufferSize = 0;
616 fBuffer = nullptr;
619 fXaxis.SetName("xaxis");
620 fYaxis.SetName("yaxis");
621 fZaxis.SetName("zaxis");
622 fXaxis.SetParent(this);
623 fYaxis.SetParent(this);
624 fZaxis.SetParent(this);
626}
627
628////////////////////////////////////////////////////////////////////////////////
629/// Histogram default destructor.
630
632{
634 return;
635 }
636 delete[] fIntegral;
637 fIntegral = nullptr;
638 delete[] fBuffer;
639 fBuffer = nullptr;
640 if (fFunctions) {
642
644 TObject* obj = nullptr;
645 //special logic to support the case where the same object is
646 //added multiple times in fFunctions.
647 //This case happens when the same object is added with different
648 //drawing modes
649 //In the loop below we must be careful with objects (eg TCutG) that may
650 // have been added to the list of functions of several histograms
651 //and may have been already deleted.
652 while ((obj = fFunctions->First())) {
653 while(fFunctions->Remove(obj)) { }
655 break;
656 }
657 delete obj;
658 obj = nullptr;
659 }
660 delete fFunctions;
661 fFunctions = nullptr;
662 }
663 if (fDirectory) {
664 fDirectory->Remove(this);
665 fDirectory = nullptr;
666 }
667 delete fPainter;
668 fPainter = nullptr;
669}
670
671////////////////////////////////////////////////////////////////////////////////
672/// Constructor for fix bin size histograms.
673/// Creates the main histogram structure.
674///
675/// \param[in] name name of histogram (avoid blanks)
676/// \param[in] title histogram title.
677/// If title is of the form `stringt;stringx;stringy;stringz`,
678/// the histogram title is set to `stringt`,
679/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
680/// \param[in] nbins number of bins
681/// \param[in] xlow low edge of first bin
682/// \param[in] xup upper edge of last bin (not included in last bin)
683
684
685TH1::TH1(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
686 :TNamed(name,title)
687{
688 Build();
689 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
690 fXaxis.Set(nbins,xlow,xup);
691 fNcells = fXaxis.GetNbins()+2;
692}
693
694////////////////////////////////////////////////////////////////////////////////
695/// Constructor for variable bin size histograms using an input array of type float.
696/// Creates the main histogram structure.
697///
698/// \param[in] name name of histogram (avoid blanks)
699/// \param[in] title histogram title.
700/// If title is of the form `stringt;stringx;stringy;stringz`
701/// the histogram title is set to `stringt`,
702/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
703/// \param[in] nbins number of bins
704/// \param[in] xbins array of low-edges for each bin.
705/// This is an array of type float and size nbins+1
706
707TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
708 :TNamed(name,title)
709{
710 Build();
711 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
712 if (xbins) fXaxis.Set(nbins,xbins);
713 else fXaxis.Set(nbins,0,1);
714 fNcells = fXaxis.GetNbins()+2;
715}
716
717////////////////////////////////////////////////////////////////////////////////
718/// Constructor for variable bin size histograms using an input array of type double.
719///
720/// \param[in] name name of histogram (avoid blanks)
721/// \param[in] title histogram title.
722/// If title is of the form `stringt;stringx;stringy;stringz`
723/// the histogram title is set to `stringt`,
724/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
725/// \param[in] nbins number of bins
726/// \param[in] xbins array of low-edges for each bin.
727/// This is an array of type double and size nbins+1
728
729TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
730 :TNamed(name,title)
731{
732 Build();
733 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
734 if (xbins) fXaxis.Set(nbins,xbins);
735 else fXaxis.Set(nbins,0,1);
736 fNcells = fXaxis.GetNbins()+2;
737}
738
739////////////////////////////////////////////////////////////////////////////////
740/// Static function: cannot be inlined on Windows/NT.
741
746
747////////////////////////////////////////////////////////////////////////////////
748/// Browse the Histogram object.
749
751{
752 Draw(b ? b->GetDrawOption() : "");
753 gPad->Update();
754}
755
756////////////////////////////////////////////////////////////////////////////////
757/// Creates histogram basic data structure.
758
760{
761 fDirectory = nullptr;
762 fPainter = nullptr;
763 fIntegral = nullptr;
764 fEntries = 0;
765 fNormFactor = 0;
767 fMaximum = -1111;
768 fMinimum = -1111;
769 fBufferSize = 0;
770 fBuffer = nullptr;
773 fXaxis.SetName("xaxis");
774 fYaxis.SetName("yaxis");
775 fZaxis.SetName("zaxis");
776 fYaxis.Set(1,0.,1.);
777 fZaxis.Set(1,0.,1.);
778 fXaxis.SetParent(this);
779 fYaxis.SetParent(this);
780 fZaxis.SetParent(this);
781
783
784 fFunctions = new TList;
785
787
790 if (fDirectory) {
792 fDirectory->Append(this,kTRUE);
793 }
794 }
795}
796
797////////////////////////////////////////////////////////////////////////////////
798/// Performs the operation: `this = this + c1*f1`
799/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
800///
801/// By default, the function is computed at the centre of the bin.
802/// if option "I" is specified (1-d histogram only), the integral of the
803/// function in each bin is used instead of the value of the function at
804/// the centre of the bin.
805///
806/// Only bins inside the function range are recomputed.
807///
808/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
809/// you should call Sumw2 before making this operation.
810/// This is particularly important if you fit the histogram after TH1::Add
811///
812/// The function return kFALSE if the Add operation failed
813
815{
816 if (!f1) {
817 Error("Add","Attempt to add a non-existing function");
818 return kFALSE;
819 }
820
821 TString opt = option;
822 opt.ToLower();
823 Bool_t integral = kFALSE;
824 if (opt.Contains("i") && fDimension == 1) integral = kTRUE;
825
826 Int_t ncellsx = GetNbinsX() + 2; // cells = normal bins + underflow bin + overflow bin
827 Int_t ncellsy = GetNbinsY() + 2;
828 Int_t ncellsz = GetNbinsZ() + 2;
829 if (fDimension < 2) ncellsy = 1;
830 if (fDimension < 3) ncellsz = 1;
831
832 // delete buffer if it is there since it will become invalid
833 if (fBuffer) BufferEmpty(1);
834
835 // - Add statistics
836 Double_t s1[10];
837 for (Int_t i = 0; i < 10; ++i) s1[i] = 0;
838 PutStats(s1);
839 SetMinimum();
840 SetMaximum();
841
842 // - Loop on bins (including underflows/overflows)
843 Int_t bin, binx, biny, binz;
844 Double_t cu=0;
845 Double_t xx[3];
846 Double_t *params = nullptr;
847 f1->InitArgs(xx,params);
848 for (binz = 0; binz < ncellsz; ++binz) {
850 for (biny = 0; biny < ncellsy; ++biny) {
852 for (binx = 0; binx < ncellsx; ++binx) {
854 if (!f1->IsInside(xx)) continue;
856 bin = binx + ncellsx * (biny + ncellsy * binz);
857 if (integral) {
859 } else {
860 cu = c1*f1->EvalPar(xx);
861 }
862 if (TF1::RejectedPoint()) continue;
863 AddBinContent(bin,cu);
864 }
865 }
866 }
867
868 return kTRUE;
869}
870
871int TH1::LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge) const
872{
873 const auto inconsistency = CheckConsistency(h1, h2);
874
876 if (useMerge)
877 Info(name, "Histograms have different dimensions - trying to use TH1::Merge");
878 else {
879 Error(name, "Histograms have different dimensions");
880 }
882 if (useMerge)
883 Info(name, "Histograms have different number of bins - trying to use TH1::Merge");
884 else {
885 Error(name, "Histograms have different number of bins");
886 }
887 } else if (inconsistency & kDifferentAxisLimits) {
888 if (useMerge)
889 Info(name, "Histograms have different axis limits - trying to use TH1::Merge");
890 else
891 Warning(name, "Histograms have different axis limits");
892 } else if (inconsistency & kDifferentBinLimits) {
893 if (useMerge)
894 Info(name, "Histograms have different bin limits - trying to use TH1::Merge");
895 else
896 Warning(name, "Histograms have different bin limits");
897 } else if (inconsistency & kDifferentLabels) {
898 // in case of different labels -
899 if (useMerge)
900 Info(name, "Histograms have different labels - trying to use TH1::Merge");
901 else
902 Info(name, "Histograms have different labels");
903 }
904
905 return inconsistency;
906}
907
908////////////////////////////////////////////////////////////////////////////////
909/// Performs the operation: `this = this + c1*h1`
910/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
911///
912/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
913/// if not already set.
914///
915/// Note also that adding histogram with labels is not supported, histogram will be
916/// added merging them by bin number independently of the labels.
917/// For adding histogram with labels one should use TH1::Merge
918///
919/// SPECIAL CASE (Average/Efficiency histograms)
920/// For histograms representing averages or efficiencies, one should compute the average
921/// of the two histograms and not the sum. One can mark a histogram to be an average
922/// histogram by setting its bit kIsAverage with
923/// myhist.SetBit(TH1::kIsAverage);
924/// Note that the two histograms must have their kIsAverage bit set
925///
926/// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
927/// you should call Sumw2 before making this operation.
928/// This is particularly important if you fit the histogram after TH1::Add
929///
930/// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
931/// is used , ie this = this + c1*factor*h1
932/// Use the other TH1::Add function if you do not want this feature
933///
934/// IMPORTANT NOTE3: You should be careful about the statistics of the
935/// returned histogram, whose statistics may be binned or unbinned,
936/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
937/// and whether TH1::ResetStats has been called on either this or h1.
938/// See TH1::GetStats.
939///
940/// The function return kFALSE if the Add operation failed
941
943{
944 if (!h1) {
945 Error("Add","Attempt to add a non-existing histogram");
946 return kFALSE;
947 }
948
949 // delete buffer if it is there since it will become invalid
950 if (fBuffer) BufferEmpty(1);
951
952 bool useMerge = false;
953 const bool considerMerge = (c1 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
954 const auto inconsistency = LoggedInconsistency("Add", this, h1, considerMerge);
955 // If there is a bad inconsistency and we can't even consider merging, just give up
957 return false;
958 }
959 // If there is an inconsistency, we try to use merging
962 }
963
964 if (useMerge) {
965 TList l;
966 l.Add(const_cast<TH1*>(h1));
967 auto iret = Merge(&l);
968 return (iret >= 0);
969 }
970
971 // Create Sumw2 if h1 has Sumw2 set
972 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
973
974 // - Add statistics
975 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
976
977 // statistics can be preserved only in case of positive coefficients
978 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
979 Bool_t resetStats = (c1 < 0);
980 Double_t s1[kNstat] = {0};
981 Double_t s2[kNstat] = {0};
982 if (!resetStats) {
983 // need to initialize to zero s1 and s2 since
984 // GetStats fills only used elements depending on dimension and type
985 GetStats(s1);
986 h1->GetStats(s2);
987 }
988
989 SetMinimum();
990 SetMaximum();
991
992 // - Loop on bins (including underflows/overflows)
993 Double_t factor = 1;
994 if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();
995 Double_t c1sq = c1 * c1;
996 Double_t factsq = factor * factor;
997
998 for (Int_t bin = 0; bin < fNcells; ++bin) {
999 //special case where histograms have the kIsAverage bit set
1000 if (this->TestBit(kIsAverage) && h1->TestBit(kIsAverage)) {
1002 Double_t y2 = this->RetrieveBinContent(bin);
1005 Double_t w1 = 1., w2 = 1.;
1006
1007 // consider all special cases when bin errors are zero
1008 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1009 if (e1sq) w1 = 1. / e1sq;
1010 else if (h1->fSumw2.fN) {
1011 w1 = 1.E200; // use an arbitrary huge value
1012 if (y1 == 0) {
1013 // use an estimated error from the global histogram scale
1014 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1015 w1 = 1./(sf*sf);
1016 }
1017 }
1018 if (e2sq) w2 = 1. / e2sq;
1019 else if (fSumw2.fN) {
1020 w2 = 1.E200; // use an arbitrary huge value
1021 if (y2 == 0) {
1022 // use an estimated error from the global histogram scale
1023 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1024 w2 = 1./(sf*sf);
1025 }
1026 }
1027
1028 double y = (w1*y1 + w2*y2)/(w1 + w2);
1029 UpdateBinContent(bin, y);
1030 if (fSumw2.fN) {
1031 double err2 = 1./(w1 + w2);
1032 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1033 fSumw2.fArray[bin] = err2;
1034 }
1035 } else { // normal case of addition between histograms
1036 AddBinContent(bin, c1 * factor * h1->RetrieveBinContent(bin));
1037 if (fSumw2.fN) fSumw2.fArray[bin] += c1sq * factsq * h1->GetBinErrorSqUnchecked(bin);
1038 }
1039 }
1040
1041 // update statistics (do here to avoid changes by SetBinContent)
1042 if (resetStats) {
1043 // statistics need to be reset in case coefficient are negative
1044 ResetStats();
1045 }
1046 else {
1047 for (Int_t i=0;i<kNstat;i++) {
1048 if (i == 1) s1[i] += c1*c1*s2[i];
1049 else s1[i] += c1*s2[i];
1050 }
1051 PutStats(s1);
1052 SetEntries(entries);
1053 }
1054 return kTRUE;
1055}
1056
1057////////////////////////////////////////////////////////////////////////////////
1058/// Replace contents of this histogram by the addition of h1 and h2.
1059///
1060/// `this = c1*h1 + c2*h2`
1061/// if errors are defined (see TH1::Sumw2), errors are also recalculated
1062///
1063/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
1064/// if not already set.
1065///
1066/// Note also that adding histogram with labels is not supported, histogram will be
1067/// added merging them by bin number independently of the labels.
1068/// For adding histogram ith labels one should use TH1::Merge
1069///
1070/// SPECIAL CASE (Average/Efficiency histograms)
1071/// For histograms representing averages or efficiencies, one should compute the average
1072/// of the two histograms and not the sum. One can mark a histogram to be an average
1073/// histogram by setting its bit kIsAverage with
1074/// myhist.SetBit(TH1::kIsAverage);
1075/// Note that the two histograms must have their kIsAverage bit set
1076///
1077/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
1078/// you should call Sumw2 before making this operation.
1079/// This is particularly important if you fit the histogram after TH1::Add
1080///
1081/// IMPORTANT NOTE2: You should be careful about the statistics of the
1082/// returned histogram, whose statistics may be binned or unbinned,
1083/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
1084/// and whether TH1::ResetStats has been called on either this or h1.
1085/// See TH1::GetStats.
1086///
1087/// ANOTHER SPECIAL CASE : h1 = h2 and c2 < 0
1088/// do a scaling this = c1 * h1 / (bin Volume)
1089///
1090/// The function returns kFALSE if the Add operation failed
1091
1093{
1094
1095 if (!h1 || !h2) {
1096 Error("Add","Attempt to add a non-existing histogram");
1097 return kFALSE;
1098 }
1099
1100 // delete buffer if it is there since it will become invalid
1101 if (fBuffer) BufferEmpty(1);
1102
1104 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth = kTRUE;}
1105
1106 if (h1 != h2) {
1107 bool useMerge = false;
1108 const bool considerMerge = (c1 == 1. && c2 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
1109
1110 // We can combine inconsistencies like this, since they are ordered and a
1111 // higher inconsistency is worse
1112 auto const inconsistency = std::max(LoggedInconsistency("Add", this, h1, considerMerge),
1113 LoggedInconsistency("Add", h1, h2, considerMerge));
1114
1115 // If there is a bad inconsistency and we can't even consider merging, just give up
1117 return false;
1118 }
1119 // If there is an inconsistency, we try to use merging
1122 }
1123
1124 if (useMerge) {
1125 TList l;
1126 // why TList takes non-const pointers ????
1127 l.Add(const_cast<TH1*>(h1));
1128 l.Add(const_cast<TH1*>(h2));
1129 Reset("ICE");
1130 auto iret = Merge(&l);
1131 return (iret >= 0);
1132 }
1133 }
1134
1135 // Create Sumw2 if h1 or h2 have Sumw2 set
1136 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
1137
1138 // - Add statistics
1139 Double_t nEntries = TMath::Abs( c1*h1->GetEntries() + c2*h2->GetEntries() );
1140
1141 // TODO remove
1142 // statistics can be preserved only in case of positive coefficients
1143 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
1144 // also in case of scaling with the width we cannot preserve the statistics
1145 Double_t s1[kNstat] = {0};
1146 Double_t s2[kNstat] = {0};
1148
1149
1150 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1151 if (!resetStats) {
1152 // need to initialize to zero s1 and s2 since
1153 // GetStats fills only used elements depending on dimension and type
1154 h1->GetStats(s1);
1155 h2->GetStats(s2);
1156 for (Int_t i=0;i<kNstat;i++) {
1157 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1158 //else s3[i] = TMath::Abs(c1)*s1[i] + TMath::Abs(c2)*s2[i];
1159 else s3[i] = c1*s1[i] + c2*s2[i];
1160 }
1161 }
1162
1163 SetMinimum();
1164 SetMaximum();
1165
1166 if (normWidth) { // DEPRECATED CASE: belongs to fitting / drawing modules
1167
1168 Int_t nbinsx = GetNbinsX() + 2; // normal bins + underflow, overflow
1169 Int_t nbinsy = GetNbinsY() + 2;
1170 Int_t nbinsz = GetNbinsZ() + 2;
1171
1172 if (fDimension < 2) nbinsy = 1;
1173 if (fDimension < 3) nbinsz = 1;
1174
1175 Int_t bin, binx, biny, binz;
1176 for (binz = 0; binz < nbinsz; ++binz) {
1178 for (biny = 0; biny < nbinsy; ++biny) {
1180 for (binx = 0; binx < nbinsx; ++binx) {
1182 bin = GetBin(binx, biny, binz);
1183 Double_t w = wx*wy*wz;
1184 UpdateBinContent(bin, c1 * h1->RetrieveBinContent(bin) / w);
1185 if (fSumw2.fN) {
1186 Double_t e1 = h1->GetBinError(bin)/w;
1187 fSumw2.fArray[bin] = c1*c1*e1*e1;
1188 }
1189 }
1190 }
1191 }
1192 } else if (h1->TestBit(kIsAverage) && h2->TestBit(kIsAverage)) {
1193 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
1194 // special case where histograms have the kIsAverage bit set
1196 Double_t y2 = h2->RetrieveBinContent(i);
1198 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
1199 Double_t w1 = 1., w2 = 1.;
1200
1201 // consider all special cases when bin errors are zero
1202 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1203 if (e1sq) w1 = 1./ e1sq;
1204 else if (h1->fSumw2.fN) {
1205 w1 = 1.E200; // use an arbitrary huge value
1206 if (y1 == 0 ) { // use an estimated error from the global histogram scale
1207 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1208 w1 = 1./(sf*sf);
1209 }
1210 }
1211 if (e2sq) w2 = 1./ e2sq;
1212 else if (h2->fSumw2.fN) {
1213 w2 = 1.E200; // use an arbitrary huge value
1214 if (y2 == 0) { // use an estimated error from the global histogram scale
1215 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1216 w2 = 1./(sf*sf);
1217 }
1218 }
1219
1220 double y = (w1*y1 + w2*y2)/(w1 + w2);
1221 UpdateBinContent(i, y);
1222 if (fSumw2.fN) {
1223 double err2 = 1./(w1 + w2);
1224 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1225 fSumw2.fArray[i] = err2;
1226 }
1227 }
1228 } else { // case of simple histogram addition
1229 Double_t c1sq = c1 * c1;
1230 Double_t c2sq = c2 * c2;
1231 for (Int_t i = 0; i < fNcells; ++i) { // Loop on cells (bins including underflows/overflows)
1232 UpdateBinContent(i, c1 * h1->RetrieveBinContent(i) + c2 * h2->RetrieveBinContent(i));
1233 if (fSumw2.fN) {
1234 fSumw2.fArray[i] = c1sq * h1->GetBinErrorSqUnchecked(i) + c2sq * h2->GetBinErrorSqUnchecked(i);
1235 }
1236 }
1237 }
1238
1239 if (resetStats) {
1240 // statistics need to be reset in case coefficient are negative
1241 ResetStats();
1242 }
1243 else {
1244 // update statistics (do here to avoid changes by SetBinContent) FIXME remove???
1245 PutStats(s3);
1247 }
1248
1249 return kTRUE;
1250}
1251
1252////////////////////////////////////////////////////////////////////////////////
1253/// Sets the flag controlling the automatic add of histograms in memory
1254///
1255/// By default (fAddDirectory = kTRUE), histograms are automatically added
1256/// to the list of objects in memory.
1257/// Note that one histogram can be removed from its support directory
1258/// by calling h->SetDirectory(nullptr) or h->SetDirectory(dir) to add it
1259/// to the list of objects in the directory dir.
1260///
1261/// NOTE that this is a static function. To call it, use;
1262/// TH1::AddDirectory
1263
1265{
1266 fgAddDirectory = add;
1267}
1268
1269////////////////////////////////////////////////////////////////////////////////
1270/// Auxiliary function to get the power of 2 next (larger) or previous (smaller)
1271/// a given x
1272///
1273/// next = kTRUE : next larger
1274/// next = kFALSE : previous smaller
1275///
1276/// Used by the autobin power of 2 algorithm
1277
1279{
1280 Int_t nn;
1281 Double_t f2 = std::frexp(x, &nn);
1282 return ((next && x > 0.) || (!next && x <= 0.)) ? std::ldexp(std::copysign(1., f2), nn)
1283 : std::ldexp(std::copysign(1., f2), --nn);
1284}
1285
1286////////////////////////////////////////////////////////////////////////////////
1287/// Auxiliary function to get the next power of 2 integer value larger then n
1288///
1289/// Used by the autobin power of 2 algorithm
1290
1292{
1293 Int_t nn;
1294 Double_t f2 = std::frexp(n, &nn);
1295 if (TMath::Abs(f2 - .5) > 0.001)
1296 return (Int_t)std::ldexp(1., nn);
1297 return n;
1298}
1299
1300////////////////////////////////////////////////////////////////////////////////
1301/// Buffer-based estimate of the histogram range using the power of 2 algorithm.
1302///
1303/// Used by the autobin power of 2 algorithm.
1304///
1305/// Works on arguments (min and max from fBuffer) and internal inputs: fXmin,
1306/// fXmax, NBinsX (from fXaxis), ...
1307/// Result save internally in fXaxis.
1308///
1309/// Overloaded by TH2 and TH3.
1310///
1311/// Return -1 if internal inputs are inconsistent, 0 otherwise.
1312
1314{
1315 // We need meaningful raw limits
1316 if (xmi >= xma)
1317 return -1;
1318
1319 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmi, xma);
1322
1323 // Now adjust
1324 if (TMath::Abs(xhma) > TMath::Abs(xhmi)) {
1325 // Start from the upper limit
1328 } else {
1329 // Start from the lower limit
1332 }
1333
1334 // Round the bins to the next power of 2; take into account the possible inflation
1335 // of the range
1336 Double_t rr = (xhma - xhmi) / (xma - xmi);
1338
1339 // Adjust using the same bin width and offsets
1340 Double_t bw = (xhma - xhmi) / nb;
1341 // Bins to left free on each side
1342 Double_t autoside = gEnv->GetValue("Hist.Binning.Auto.Side", 0.05);
1343 Int_t nbside = (Int_t)(nb * autoside);
1344
1345 // Side up
1346 Int_t nbup = (xhma - xma) / bw;
1347 if (nbup % 2 != 0)
1348 nbup++; // Must be even
1349 if (nbup != nbside) {
1350 // Accounts also for both case: larger or smaller
1351 xhma -= bw * (nbup - nbside);
1352 nb -= (nbup - nbside);
1353 }
1354
1355 // Side low
1356 Int_t nblw = (xmi - xhmi) / bw;
1357 if (nblw % 2 != 0)
1358 nblw++; // Must be even
1359 if (nblw != nbside) {
1360 // Accounts also for both case: larger or smaller
1361 xhmi += bw * (nblw - nbside);
1362 nb -= (nblw - nbside);
1363 }
1364
1365 // Set everything and project
1366 SetBins(nb, xhmi, xhma);
1367
1368 // Done
1369 return 0;
1370}
1371
1372/// Fill histogram with all entries in the buffer.
1373///
1374/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
1375/// - action = 0 histogram is reset and filled from the buffer. When the histogram is filled from the
1376/// buffer the value fBuffer[0] is set to a negative number (= - number of entries)
1377/// When calling with action == 0 the histogram is NOT refilled when fBuffer[0] is < 0
1378/// While when calling with action = -1 the histogram is reset and ALWAYS refilled independently if
1379/// the histogram was filled before. This is needed when drawing the histogram
1380/// - action = 1 histogram is filled and buffer is deleted
1381/// The buffer is automatically deleted when filling the histogram and the entries is
1382/// larger than the buffer size
1383
1385{
1386 // do we need to compute the bin size?
1387 if (!fBuffer) return 0;
1389
1390 // nbentries correspond to the number of entries of histogram
1391
1392 if (nbentries == 0) {
1393 // if action is 1 we delete the buffer
1394 // this will avoid infinite recursion
1395 if (action > 0) {
1396 delete [] fBuffer;
1397 fBuffer = nullptr;
1398 fBufferSize = 0;
1399 }
1400 return 0;
1401 }
1402 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
1403
1404 Double_t *buffer = fBuffer;
1405 if (nbentries < 0) {
1407 // a reset might call BufferEmpty() giving an infinite recursion
1408 // Protect it by setting fBuffer = nullptr
1409 fBuffer = nullptr;
1410 //do not reset the list of functions
1411 Reset("ICES");
1412 fBuffer = buffer;
1413 }
1414 if (CanExtendAllAxes() || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
1415 //find min, max of entries in buffer
1418 for (Int_t i=0;i<nbentries;i++) {
1419 Double_t x = fBuffer[2*i+2];
1420 // skip infinity or NaN values
1421 if (!std::isfinite(x)) continue;
1422 if (x < xmin) xmin = x;
1423 if (x > xmax) xmax = x;
1424 }
1425 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
1426 Int_t rc = -1;
1428 if ((rc = AutoP2FindLimits(xmin, xmax)) < 0)
1429 Warning("BufferEmpty",
1430 "inconsistency found by power-of-2 autobin algorithm: fallback to standard method");
1431 }
1432 if (rc < 0)
1433 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmin, xmax);
1434 } else {
1435 fBuffer = nullptr;
1438 if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax, &fXaxis);
1439 fBuffer = buffer;
1440 fBufferSize = keep;
1441 }
1442 }
1443
1444 // call DoFillN which will not put entries in the buffer as FillN does
1445 // set fBuffer to zero to avoid re-emptying the buffer from functions called
1446 // by DoFillN (e.g Sumw2)
1447 buffer = fBuffer; fBuffer = nullptr;
1448 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1449 fBuffer = buffer;
1450
1451 // if action == 1 - delete the buffer
1452 if (action > 0) {
1453 delete [] fBuffer;
1454 fBuffer = nullptr;
1455 fBufferSize = 0;
1456 } else {
1457 // if number of entries is consistent with buffer - set it negative to avoid
1458 // refilling the histogram every time BufferEmpty(0) is called
1459 // In case it is not consistent, by setting fBuffer[0]=0 is like resetting the buffer
1460 // (it will not be used anymore the next time BufferEmpty is called)
1461 if (nbentries == (Int_t)fEntries)
1462 fBuffer[0] = -nbentries;
1463 else
1464 fBuffer[0] = 0;
1465 }
1466 return nbentries;
1467}
1468
1469////////////////////////////////////////////////////////////////////////////////
1470/// accumulate arguments in buffer. When buffer is full, empty the buffer
1471///
1472/// - `fBuffer[0]` = number of entries in buffer
1473/// - `fBuffer[1]` = w of first entry
1474/// - `fBuffer[2]` = x of first entry
1475
1477{
1478 if (!fBuffer) return -2;
1480
1481
1482 if (nbentries < 0) {
1483 // reset nbentries to a positive value so next time BufferEmpty() is called
1484 // the histogram will be refilled
1486 fBuffer[0] = nbentries;
1487 if (fEntries > 0) {
1488 // set fBuffer to zero to avoid calling BufferEmpty in Reset
1489 Double_t *buffer = fBuffer; fBuffer=nullptr;
1490 Reset("ICES"); // do not reset list of functions
1491 fBuffer = buffer;
1492 }
1493 }
1494 if (2*nbentries+2 >= fBufferSize) {
1495 BufferEmpty(1);
1496 if (!fBuffer)
1497 // to avoid infinite recursion Fill->BufferFill->Fill
1498 return Fill(x,w);
1499 // this cannot happen
1500 R__ASSERT(0);
1501 }
1502 fBuffer[2*nbentries+1] = w;
1503 fBuffer[2*nbentries+2] = x;
1504 fBuffer[0] += 1;
1505 return -2;
1506}
1507
1508////////////////////////////////////////////////////////////////////////////////
1509/// Check bin limits.
1510
1511bool TH1::CheckBinLimits(const TAxis* a1, const TAxis * a2)
1512{
1513 const TArrayD * h1Array = a1->GetXbins();
1514 const TArrayD * h2Array = a2->GetXbins();
1515 Int_t fN = h1Array->fN;
1516 if ( fN != 0 ) {
1517 if ( h2Array->fN != fN ) {
1518 return false;
1519 }
1520 else {
1521 for ( int i = 0; i < fN; ++i ) {
1522 // for i==fN (nbin+1) a->GetBinWidth() returns last bin width
1523 // we do not need to exclude that case
1524 double binWidth = a1->GetBinWidth(i);
1525 if ( ! TMath::AreEqualAbs( h1Array->GetAt(i), h2Array->GetAt(i), binWidth*1E-10 ) ) {
1526 return false;
1527 }
1528 }
1529 }
1530 }
1531
1532 return true;
1533}
1534
1535////////////////////////////////////////////////////////////////////////////////
1536/// Check that axis have same labels.
1537
1538bool TH1::CheckBinLabels(const TAxis* a1, const TAxis * a2)
1539{
1540 THashList *l1 = a1->GetLabels();
1541 THashList *l2 = a2->GetLabels();
1542
1543 if (!l1 && !l2 )
1544 return true;
1545 if (!l1 || !l2 ) {
1546 return false;
1547 }
1548 // check now labels sizes are the same
1549 if (l1->GetSize() != l2->GetSize() ) {
1550 return false;
1551 }
1552 for (int i = 1; i <= a1->GetNbins(); ++i) {
1553 TString label1 = a1->GetBinLabel(i);
1554 TString label2 = a2->GetBinLabel(i);
1555 if (label1 != label2) {
1556 return false;
1557 }
1558 }
1559
1560 return true;
1561}
1562
1563////////////////////////////////////////////////////////////////////////////////
1564/// Check that the axis limits of the histograms are the same.
1565/// If a first and last bin is passed the axis is compared between the given range
1566
1567bool TH1::CheckAxisLimits(const TAxis *a1, const TAxis *a2 )
1568{
1569 double firstBin = a1->GetBinWidth(1);
1570 double lastBin = a1->GetBinWidth( a1->GetNbins() );
1571 if ( ! TMath::AreEqualAbs(a1->GetXmin(), a2->GetXmin(), firstBin* 1.E-10) ||
1572 ! TMath::AreEqualAbs(a1->GetXmax(), a2->GetXmax(), lastBin*1.E-10) ) {
1573 return false;
1574 }
1575 return true;
1576}
1577
1578////////////////////////////////////////////////////////////////////////////////
1579/// Check that the axis are the same
1580
1581bool TH1::CheckEqualAxes(const TAxis *a1, const TAxis *a2 )
1582{
1583 if (a1->GetNbins() != a2->GetNbins() ) {
1584 ::Info("CheckEqualAxes","Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->GetNbins(),a2->GetNbins() );
1585 return false;
1586 }
1587 if(!CheckAxisLimits(a1,a2)) {
1588 ::Info("CheckEqualAxes","Axes have different limits");
1589 return false;
1590 }
1591 if(!CheckBinLimits(a1,a2)) {
1592 ::Info("CheckEqualAxes","Axes have different bin limits");
1593 return false;
1594 }
1595
1596 // check labels
1597 if(!CheckBinLabels(a1,a2)) {
1598 ::Info("CheckEqualAxes","Axes have different labels");
1599 return false;
1600 }
1601
1602 return true;
1603}
1604
1605////////////////////////////////////////////////////////////////////////////////
1606/// Check that two sub axis are the same.
1607/// The limits are defined by first bin and last bin
1608/// N.B. no check is done in this case for variable bins
1609
1611{
1612 // By default is assumed that no bins are given for the second axis
1614 Double_t xmin1 = a1->GetBinLowEdge(firstBin1);
1615 Double_t xmax1 = a1->GetBinUpEdge(lastBin1);
1616
1617 Int_t nbins2 = a2->GetNbins();
1618 Double_t xmin2 = a2->GetXmin();
1619 Double_t xmax2 = a2->GetXmax();
1620
1621 if (firstBin2 < lastBin2) {
1622 // in this case assume no bins are given for the second axis
1624 xmin2 = a1->GetBinLowEdge(firstBin1);
1625 xmax2 = a1->GetBinUpEdge(lastBin1);
1626 }
1627
1628 if (nbins1 != nbins2 ) {
1629 ::Info("CheckConsistentSubAxes","Axes have different number of bins");
1630 return false;
1631 }
1632
1633 Double_t firstBin = a1->GetBinWidth(firstBin1);
1634 Double_t lastBin = a1->GetBinWidth(lastBin1);
1635 if ( ! TMath::AreEqualAbs(xmin1,xmin2,1.E-10 * firstBin) ||
1636 ! TMath::AreEqualAbs(xmax1,xmax2,1.E-10 * lastBin) ) {
1637 ::Info("CheckConsistentSubAxes","Axes have different limits");
1638 return false;
1639 }
1640
1641 return true;
1642}
1643
1644////////////////////////////////////////////////////////////////////////////////
1645/// Check histogram compatibility.
1646/// The returned integer is part of EInconsistencyBits
1647/// The value 0 means that the histograms are compatible
1648
1650{
1651 if (h1 == h2) return kFullyConsistent;
1652
1653 if (h1->GetDimension() != h2->GetDimension() ) {
1654 return kDifferentDimensions;
1655 }
1656 Int_t dim = h1->GetDimension();
1657
1658 // returns kTRUE if number of bins and bin limits are identical
1659 Int_t nbinsx = h1->GetNbinsX();
1660 Int_t nbinsy = h1->GetNbinsY();
1661 Int_t nbinsz = h1->GetNbinsZ();
1662
1663 // Check whether the histograms have the same number of bins.
1664 if (nbinsx != h2->GetNbinsX() ||
1665 (dim > 1 && nbinsy != h2->GetNbinsY()) ||
1666 (dim > 2 && nbinsz != h2->GetNbinsZ()) ) {
1668 }
1669
1670 bool ret = true;
1671
1672 // check axis limits
1673 ret &= CheckAxisLimits(h1->GetXaxis(), h2->GetXaxis());
1674 if (dim > 1) ret &= CheckAxisLimits(h1->GetYaxis(), h2->GetYaxis());
1675 if (dim > 2) ret &= CheckAxisLimits(h1->GetZaxis(), h2->GetZaxis());
1676 if (!ret) return kDifferentAxisLimits;
1677
1678 // check bin limits
1679 ret &= CheckBinLimits(h1->GetXaxis(), h2->GetXaxis());
1680 if (dim > 1) ret &= CheckBinLimits(h1->GetYaxis(), h2->GetYaxis());
1681 if (dim > 2) ret &= CheckBinLimits(h1->GetZaxis(), h2->GetZaxis());
1682 if (!ret) return kDifferentBinLimits;
1683
1684 // check labels if histograms are both not empty
1685 if ( !h1->IsEmpty() && !h2->IsEmpty() ) {
1686 ret &= CheckBinLabels(h1->GetXaxis(), h2->GetXaxis());
1687 if (dim > 1) ret &= CheckBinLabels(h1->GetYaxis(), h2->GetYaxis());
1688 if (dim > 2) ret &= CheckBinLabels(h1->GetZaxis(), h2->GetZaxis());
1689 if (!ret) return kDifferentLabels;
1690 }
1691
1692 return kFullyConsistent;
1693}
1694
1695////////////////////////////////////////////////////////////////////////////////
1696/// \f$ \chi^{2} \f$ test for comparing weighted and unweighted histograms.
1697///
1698/// Compares the histograms' adjusted (normalized) residuals.
1699/// Function: Returns p-value. Other return values are specified by the 3rd parameter
1700///
1701/// \param[in] h2 the second histogram
1702/// \param[in] option
1703/// - "UU" = experiment experiment comparison (unweighted-unweighted)
1704/// - "UW" = experiment MC comparison (unweighted-weighted). Note that
1705/// the first histogram should be unweighted
1706/// - "WW" = MC MC comparison (weighted-weighted)
1707/// - "NORM" = to be used when one or both of the histograms is scaled
1708/// but the histogram originally was unweighted
1709/// - by default underflows and overflows are not included:
1710/// * "OF" = overflows included
1711/// * "UF" = underflows included
1712/// - "P" = print chi2, ndf, p_value, igood
1713/// - "CHI2" = returns chi2 instead of p-value
1714/// - "CHI2/NDF" = returns \f$ \chi^{2} \f$/ndf
1715/// \param[in] res not empty - computes normalized residuals and returns them in this array
1716///
1717/// The current implementation is based on the papers \f$ \chi^{2} \f$ test for comparison
1718/// of weighted and unweighted histograms" in Proceedings of PHYSTAT05 and
1719/// "Comparison weighted and unweighted histograms", arXiv:physics/0605123
1720/// by N.Gagunashvili. This function has been implemented by Daniel Haertl in August 2006.
1721///
1722/// #### Introduction:
1723///
1724/// A frequently used technique in data analysis is the comparison of
1725/// histograms. First suggested by Pearson [1] the \f$ \chi^{2} \f$ test of
1726/// homogeneity is used widely for comparing usual (unweighted) histograms.
1727/// This paper describes the implementation modified \f$ \chi^{2} \f$ tests
1728/// for comparison of weighted and unweighted histograms and two weighted
1729/// histograms [2] as well as usual Pearson's \f$ \chi^{2} \f$ test for
1730/// comparison two usual (unweighted) histograms.
1731///
1732/// #### Overview:
1733///
1734/// Comparison of two histograms expect hypotheses that two histograms
1735/// represent identical distributions. To make a decision p-value should
1736/// be calculated. The hypotheses of identity is rejected if the p-value is
1737/// lower then some significance level. Traditionally significance levels
1738/// 0.1, 0.05 and 0.01 are used. The comparison procedure should include an
1739/// analysis of the residuals which is often helpful in identifying the
1740/// bins of histograms responsible for a significant overall \f$ \chi^{2} \f$ value.
1741/// Residuals are the difference between bin contents and expected bin
1742/// contents. Most convenient for analysis are the normalized residuals. If
1743/// hypotheses of identity are valid then normalized residuals are
1744/// approximately independent and identically distributed random variables
1745/// having N(0,1) distribution. Analysis of residuals expect test of above
1746/// mentioned properties of residuals. Notice that indirectly the analysis
1747/// of residuals increase the power of \f$ \chi^{2} \f$ test.
1748///
1749/// #### Methods of comparison:
1750///
1751/// \f$ \chi^{2} \f$ test for comparison two (unweighted) histograms:
1752/// Let us consider two histograms with the same binning and the number
1753/// of bins equal to r. Let us denote the number of events in the ith bin
1754/// in the first histogram as ni and as mi in the second one. The total
1755/// number of events in the first histogram is equal to:
1756/// \f[
1757/// N = \sum_{i=1}^{r} n_{i}
1758/// \f]
1759/// and
1760/// \f[
1761/// M = \sum_{i=1}^{r} m_{i}
1762/// \f]
1763/// in the second histogram. The hypothesis of identity (homogeneity) [3]
1764/// is that the two histograms represent random values with identical
1765/// distributions. It is equivalent that there exist r constants p1,...,pr,
1766/// such that
1767/// \f[
1768///\sum_{i=1}^{r} p_{i}=1
1769/// \f]
1770/// and the probability of belonging to the ith bin for some measured value
1771/// in both experiments is equal to pi. The number of events in the ith
1772/// bin is a random variable with a distribution approximated by a Poisson
1773/// probability distribution
1774/// \f[
1775///\frac{e^{-Np_{i}}(Np_{i})^{n_{i}}}{n_{i}!}
1776/// \f]
1777///for the first histogram and with distribution
1778/// \f[
1779///\frac{e^{-Mp_{i}}(Mp_{i})^{m_{i}}}{m_{i}!}
1780/// \f]
1781/// for the second histogram. If the hypothesis of homogeneity is valid,
1782/// then the maximum likelihood estimator of pi, i=1,...,r, is
1783/// \f[
1784///\hat{p}_{i}= \frac{n_{i}+m_{i}}{N+M}
1785/// \f]
1786/// and then
1787/// \f[
1788/// X^{2} = \sum_{i=1}^{r}\frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r}\frac{(m_{i}-M\hat{p}_{i})^{2}}{M\hat{p}_{i}} =\frac{1}{MN} \sum_{i=1}^{r}\frac{(Mn_{i}-Nm_{i})^{2}}{n_{i}+m_{i}}
1789/// \f]
1790/// has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [3].
1791/// The comparison procedure can include an analysis of the residuals which
1792/// is often helpful in identifying the bins of histograms responsible for
1793/// a significant overall \f$ \chi^{2} \f$ value. Most convenient for
1794/// analysis are the adjusted (normalized) residuals [4]
1795/// \f[
1796/// r_{i} = \frac{n_{i}-N\hat{p}_{i}}{\sqrt{N\hat{p}_{i}}\sqrt{(1-N/(N+M))(1-(n_{i}+m_{i})/(N+M))}}
1797/// \f]
1798/// If hypotheses of homogeneity are valid then residuals ri are
1799/// approximately independent and identically distributed random variables
1800/// having N(0,1) distribution. The application of the \f$ \chi^{2} \f$ test has
1801/// restrictions related to the value of the expected frequencies Npi,
1802/// Mpi, i=1,...,r. A conservative rule formulated in [5] is that all the
1803/// expectations must be 1 or greater for both histograms. In practical
1804/// cases when expected frequencies are not known the estimated expected
1805/// frequencies \f$ M\hat{p}_{i}, N\hat{p}_{i}, i=1,...,r \f$ can be used.
1806///
1807/// #### Unweighted and weighted histograms comparison:
1808///
1809/// A simple modification of the ideas described above can be used for the
1810/// comparison of the usual (unweighted) and weighted histograms. Let us
1811/// denote the number of events in the ith bin in the unweighted
1812/// histogram as ni and the common weight of events in the ith bin of the
1813/// weighted histogram as wi. The total number of events in the
1814/// unweighted histogram is equal to
1815///\f[
1816/// N = \sum_{i=1}^{r} n_{i}
1817///\f]
1818/// and the total weight of events in the weighted histogram is equal to
1819///\f[
1820/// W = \sum_{i=1}^{r} w_{i}
1821///\f]
1822/// Let us formulate the hypothesis of identity of an unweighted histogram
1823/// to a weighted histogram so that there exist r constants p1,...,pr, such
1824/// that
1825///\f[
1826/// \sum_{i=1}^{r} p_{i} = 1
1827///\f]
1828/// for the unweighted histogram. The weight wi is a random variable with a
1829/// distribution approximated by the normal probability distribution
1830/// \f$ N(Wp_{i},\sigma_{i}^{2}) \f$ where \f$ \sigma_{i}^{2} \f$ is the variance of the weight wi.
1831/// If we replace the variance \f$ \sigma_{i}^{2} \f$
1832/// with estimate \f$ s_{i}^{2} \f$ (sum of squares of weights of
1833/// events in the ith bin) and the hypothesis of identity is valid, then the
1834/// maximum likelihood estimator of pi,i=1,...,r, is
1835///\f[
1836/// \hat{p}_{i} = \frac{Ww_{i}-Ns_{i}^{2}+\sqrt{(Ww_{i}-Ns_{i}^{2})^{2}+4W^{2}s_{i}^{2}n_{i}}}{2W^{2}}
1837///\f]
1838/// We may then use the test statistic
1839///\f[
1840/// X^{2} = \sum_{i=1}^{r} \frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r} \frac{(w_{i}-W\hat{p}_{i})^{2}}{s_{i}^{2}}
1841///\f]
1842/// and it has approximately a \f$ \sigma^{2}_{(r-1)} \f$ distribution [2]. This test, as well
1843/// as the original one [3], has a restriction on the expected frequencies. The
1844/// expected frequencies recommended for the weighted histogram is more than 25.
1845/// The value of the minimal expected frequency can be decreased down to 10 for
1846/// the case when the weights of the events are close to constant. In the case
1847/// of a weighted histogram if the number of events is unknown, then we can
1848/// apply this recommendation for the equivalent number of events as
1849///\f[
1850/// n_{i}^{equiv} = \frac{ w_{i}^{2} }{ s_{i}^{2} }
1851///\f]
1852/// The minimal expected frequency for an unweighted histogram must be 1. Notice
1853/// that any usual (unweighted) histogram can be considered as a weighted
1854/// histogram with events that have constant weights equal to 1.
1855/// The variance \f$ z_{i}^{2} \f$ of the difference between the weight wi
1856/// and the estimated expectation value of the weight is approximately equal to:
1857///\f[
1858/// z_{i}^{2} = Var(w_{i}-W\hat{p}_{i}) = N\hat{p}_{i}(1-N\hat{p}_{i})\left(\frac{Ws_{i}^{2}}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}+\frac{s_{i}^{2}}{4}\left(1+\frac{Ns_{i}^{2}-w_{i}W}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}
1859///\f]
1860/// The residuals
1861///\f[
1862/// r_{i} = \frac{w_{i}-W\hat{p}_{i}}{z_{i}}
1863///\f]
1864/// have approximately a normal distribution with mean equal to 0 and standard
1865/// deviation equal to 1.
1866///
1867/// #### Two weighted histograms comparison:
1868///
1869/// Let us denote the common weight of events of the ith bin in the first
1870/// histogram as w1i and as w2i in the second one. The total weight of events
1871/// in the first histogram is equal to
1872///\f[
1873/// W_{1} = \sum_{i=1}^{r} w_{1i}
1874///\f]
1875/// and
1876///\f[
1877/// W_{2} = \sum_{i=1}^{r} w_{2i}
1878///\f]
1879/// in the second histogram. Let us formulate the hypothesis of identity of
1880/// weighted histograms so that there exist r constants p1,...,pr, such that
1881///\f[
1882/// \sum_{i=1}^{r} p_{i} = 1
1883///\f]
1884/// and also expectation value of weight w1i equal to W1pi and expectation value
1885/// of weight w2i equal to W2pi. Weights in both the histograms are random
1886/// variables with distributions which can be approximated by a normal
1887/// probability distribution \f$ N(W_{1}p_{i},\sigma_{1i}^{2}) \f$ for the first histogram
1888/// and by a distribution \f$ N(W_{2}p_{i},\sigma_{2i}^{2}) \f$ for the second.
1889/// Here \f$ \sigma_{1i}^{2} \f$ and \f$ \sigma_{2i}^{2} \f$ are the variances
1890/// of w1i and w2i with estimators \f$ s_{1i}^{2} \f$ and \f$ s_{2i}^{2} \f$ respectively.
1891/// If the hypothesis of identity is valid, then the maximum likelihood and
1892/// Least Square Method estimator of pi,i=1,...,r, is
1893///\f[
1894/// \hat{p}_{i} = \frac{w_{1i}W_{1}/s_{1i}^{2}+w_{2i}W_{2} /s_{2i}^{2}}{W_{1}^{2}/s_{1i}^{2}+W_{2}^{2}/s_{2i}^{2}}
1895///\f]
1896/// We may then use the test statistic
1897///\f[
1898/// X^{2} = \sum_{i=1}^{r} \frac{(w_{1i}-W_{1}\hat{p}_{i})^{2}}{s_{1i}^{2}} + \sum_{i=1}^{r} \frac{(w_{2i}-W_{2}\hat{p}_{i})^{2}}{s_{2i}^{2}} = \sum_{i=1}^{r} \frac{(W_{1}w_{2i}-W_{2}w_{1i})^{2}}{W_{1}^{2}s_{2i}^{2}+W_{2}^{2}s_{1i}^{2}}
1899///\f]
1900/// and it has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [2].
1901/// The normalized or studentised residuals [6]
1902///\f[
1903/// r_{i} = \frac{w_{1i}-W_{1}\hat{p}_{i}}{s_{1i}\sqrt{1 - \frac{1}{(1+W_{2}^{2}s_{1i}^{2}/W_{1}^{2}s_{2i}^{2})}}}
1904///\f]
1905/// have approximately a normal distribution with mean equal to 0 and standard
1906/// deviation 1. A recommended minimal expected frequency is equal to 10 for
1907/// the proposed test.
1908///
1909/// #### Numerical examples:
1910///
1911/// The method described herein is now illustrated with an example.
1912/// We take a distribution
1913///\f[
1914/// \phi(x) = \frac{2}{(x-10)^{2}+1} + \frac{1}{(x-14)^{2}+1} (1)
1915///\f]
1916/// defined on the interval [4,16]. Events distributed according to the formula
1917/// (1) are simulated to create the unweighted histogram. Uniformly distributed
1918/// events are simulated for the weighted histogram with weights calculated by
1919/// formula (1). Each histogram has the same number of bins: 20. Fig.1 shows
1920/// the result of comparison of the unweighted histogram with 200 events
1921/// (minimal expected frequency equal to one) and the weighted histogram with
1922/// 500 events (minimal expected frequency equal to 25)
1923/// Begin_Macro
1924/// ../../../tutorials/math/chi2test.C
1925/// End_Macro
1926/// Fig 1. An example of comparison of the unweighted histogram with 200 events
1927/// and the weighted histogram with 500 events:
1928/// 1. unweighted histogram;
1929/// 2. weighted histogram;
1930/// 3. normalized residuals plot;
1931/// 4. normal Q-Q plot of residuals.
1932///
1933/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1934/// 21.09 with p-value equal to 0.33, therefore the hypothesis of identity of
1935/// the two histograms can be accepted for 0.05 significant level. The behavior
1936/// of the normalized residuals plot (see Fig. 1c) and the normal Q-Q plot
1937/// (see Fig. 1d) of residuals are regular and we cannot identify the outliers
1938/// or bins with a big influence on \f$ \chi^{2} \f$.
1939///
1940/// The second example presents the same two histograms but 17 events was added
1941/// to content of bin number 15 in unweighted histogram. Fig.2 shows the result
1942/// of comparison of the unweighted histogram with 217 events (minimal expected
1943/// frequency equal to one) and the weighted histogram with 500 events (minimal
1944/// expected frequency equal to 25)
1945/// Begin_Macro
1946/// ../../../tutorials/math/chi2test.C(17)
1947/// End_Macro
1948/// Fig 2. An example of comparison of the unweighted histogram with 217 events
1949/// and the weighted histogram with 500 events:
1950/// 1. unweighted histogram;
1951/// 2. weighted histogram;
1952/// 3. normalized residuals plot;
1953/// 4. normal Q-Q plot of residuals.
1954///
1955/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1956/// 32.33 with p-value equal to 0.029, therefore the hypothesis of identity of
1957/// the two histograms is rejected for 0.05 significant level. The behavior of
1958/// the normalized residuals plot (see Fig. 2c) and the normal Q-Q plot (see
1959/// Fig. 2d) of residuals are not regular and we can identify the outlier or
1960/// bin with a big influence on \f$ \chi^{2} \f$.
1961///
1962/// #### References:
1963///
1964/// - [1] Pearson, K., 1904. On the Theory of Contingency and Its Relation to
1965/// Association and Normal Correlation. Drapers' Co. Memoirs, Biometric
1966/// Series No. 1, London.
1967/// - [2] Gagunashvili, N., 2006. \f$ \sigma^{2} \f$ test for comparison
1968/// of weighted and unweighted histograms. Statistical Problems in Particle
1969/// Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05,
1970/// Oxford, UK, 12-15 September 2005, Imperial College Press, London, 43-44.
1971/// Gagunashvili,N., Comparison of weighted and unweighted histograms,
1972/// arXiv:physics/0605123, 2006.
1973/// - [3] Cramer, H., 1946. Mathematical methods of statistics.
1974/// Princeton University Press, Princeton.
1975/// - [4] Haberman, S.J., 1973. The analysis of residuals in cross-classified tables.
1976/// Biometrics 29, 205-220.
1977/// - [5] Lewontin, R.C. and Felsenstein, J., 1965. The robustness of homogeneity
1978/// test in 2xN tables. Biometrics 21, 19-33.
1979/// - [6] Seber, G.A.F., Lee, A.J., 2003, Linear Regression Analysis.
1980/// John Wiley & Sons Inc., New York.
1981
1982Double_t TH1::Chi2Test(const TH1* h2, Option_t *option, Double_t *res) const
1983{
1984 Double_t chi2 = 0;
1985 Int_t ndf = 0, igood = 0;
1986
1987 TString opt = option;
1988 opt.ToUpper();
1989
1991
1992 if(opt.Contains("P")) {
1993 printf("Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
1994 }
1995 if(opt.Contains("CHI2/NDF")) {
1996 if (ndf == 0) return 0;
1997 return chi2/ndf;
1998 }
1999 if(opt.Contains("CHI2")) {
2000 return chi2;
2001 }
2002
2003 return prob;
2004}
2005
2006////////////////////////////////////////////////////////////////////////////////
2007/// The computation routine of the Chisquare test. For the method description,
2008/// see Chi2Test() function.
2009///
2010/// \return p-value
2011/// \param[in] h2 the second histogram
2012/// \param[in] option
2013/// - "UU" = experiment experiment comparison (unweighted-unweighted)
2014/// - "UW" = experiment MC comparison (unweighted-weighted). Note that the first
2015/// histogram should be unweighted
2016/// - "WW" = MC MC comparison (weighted-weighted)
2017/// - "NORM" = if one or both histograms is scaled
2018/// - "OF" = overflows included
2019/// - "UF" = underflows included
2020/// by default underflows and overflows are not included
2021/// \param[out] igood test output
2022/// - igood=0 - no problems
2023/// - For unweighted unweighted comparison
2024/// - igood=1'There is a bin in the 1st histogram with less than 1 event'
2025/// - igood=2'There is a bin in the 2nd histogram with less than 1 event'
2026/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2027/// - For unweighted weighted comparison
2028/// - igood=1'There is a bin in the 1st histogram with less then 1 event'
2029/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective number of events'
2030/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2031/// - For weighted weighted comparison
2032/// - igood=1'There is a bin in the 1st histogram with less then 10 effective
2033/// number of events'
2034/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective
2035/// number of events'
2036/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2037/// \param[out] chi2 chisquare of the test
2038/// \param[out] ndf number of degrees of freedom (important, when both histograms have the same empty bins)
2039/// \param[out] res normalized residuals for further analysis
2040
2042{
2043
2047
2048 Double_t sum1 = 0.0, sumw1 = 0.0;
2049 Double_t sum2 = 0.0, sumw2 = 0.0;
2050
2051 chi2 = 0.0;
2052 ndf = 0;
2053
2054 TString opt = option;
2055 opt.ToUpper();
2056
2057 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
2058
2059 const TAxis *xaxis1 = GetXaxis();
2060 const TAxis *xaxis2 = h2->GetXaxis();
2061 const TAxis *yaxis1 = GetYaxis();
2062 const TAxis *yaxis2 = h2->GetYaxis();
2063 const TAxis *zaxis1 = GetZaxis();
2064 const TAxis *zaxis2 = h2->GetZaxis();
2065
2066 Int_t nbinx1 = xaxis1->GetNbins();
2067 Int_t nbinx2 = xaxis2->GetNbins();
2068 Int_t nbiny1 = yaxis1->GetNbins();
2069 Int_t nbiny2 = yaxis2->GetNbins();
2070 Int_t nbinz1 = zaxis1->GetNbins();
2071 Int_t nbinz2 = zaxis2->GetNbins();
2072
2073 //check dimensions
2074 if (this->GetDimension() != h2->GetDimension() ){
2075 Error("Chi2TestX","Histograms have different dimensions.");
2076 return 0.0;
2077 }
2078
2079 //check number of channels
2080 if (nbinx1 != nbinx2) {
2081 Error("Chi2TestX","different number of x channels");
2082 }
2083 if (nbiny1 != nbiny2) {
2084 Error("Chi2TestX","different number of y channels");
2085 }
2086 if (nbinz1 != nbinz2) {
2087 Error("Chi2TestX","different number of z channels");
2088 }
2089
2090 //check for ranges
2091 i_start = j_start = k_start = 1;
2092 i_end = nbinx1;
2093 j_end = nbiny1;
2094 k_end = nbinz1;
2095
2096 if (xaxis1->TestBit(TAxis::kAxisRange)) {
2097 i_start = xaxis1->GetFirst();
2098 i_end = xaxis1->GetLast();
2099 }
2100 if (yaxis1->TestBit(TAxis::kAxisRange)) {
2101 j_start = yaxis1->GetFirst();
2102 j_end = yaxis1->GetLast();
2103 }
2104 if (zaxis1->TestBit(TAxis::kAxisRange)) {
2105 k_start = zaxis1->GetFirst();
2106 k_end = zaxis1->GetLast();
2107 }
2108
2109
2110 if (opt.Contains("OF")) {
2111 if (GetDimension() == 3) k_end = ++nbinz1;
2112 if (GetDimension() >= 2) j_end = ++nbiny1;
2113 if (GetDimension() >= 1) i_end = ++nbinx1;
2114 }
2115
2116 if (opt.Contains("UF")) {
2117 if (GetDimension() == 3) k_start = 0;
2118 if (GetDimension() >= 2) j_start = 0;
2119 if (GetDimension() >= 1) i_start = 0;
2120 }
2121
2122 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2123
2124 Bool_t comparisonUU = opt.Contains("UU");
2125 Bool_t comparisonUW = opt.Contains("UW");
2126 Bool_t comparisonWW = opt.Contains("WW");
2127 Bool_t scaledHistogram = opt.Contains("NORM");
2128
2129 if (scaledHistogram && !comparisonUU) {
2130 Info("Chi2TestX", "NORM option should be used together with UU option. It is ignored");
2131 }
2132
2133 // look at histo global bin content and effective entries
2134 Stat_t s[kNstat];
2135 GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2136 Double_t sumBinContent1 = s[0];
2137 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2138
2139 h2->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2140 Double_t sumBinContent2 = s[0];
2141 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2142
2143 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2144 // deduce automatically from type of histogram
2147 else comparisonUW = true;
2148 }
2149 else comparisonWW = true;
2150 }
2151 // check unweighted histogram
2152 if (comparisonUW) {
2154 Warning("Chi2TestX","First histogram is not unweighted and option UW has been requested");
2155 }
2156 }
2157 if ( (!scaledHistogram && comparisonUU) ) {
2159 Warning("Chi2TestX","Both histograms are not unweighted and option UU has been requested");
2160 }
2161 }
2162
2163
2164 //get number of events in histogram
2166 for (Int_t i = i_start; i <= i_end; ++i) {
2167 for (Int_t j = j_start; j <= j_end; ++j) {
2168 for (Int_t k = k_start; k <= k_end; ++k) {
2169
2170 Int_t bin = GetBin(i, j, k);
2171
2173 Double_t cnt2 = h2->RetrieveBinContent(bin);
2175 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2176
2177 if (e1sq > 0.0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2178 else cnt1 = 0.0;
2179
2180 if (e2sq > 0.0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2181 else cnt2 = 0.0;
2182
2183 // sum contents
2184 sum1 += cnt1;
2185 sum2 += cnt2;
2186 sumw1 += e1sq;
2187 sumw2 += e2sq;
2188 }
2189 }
2190 }
2191 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2192 Error("Chi2TestX", "Cannot use option NORM when one histogram has all zero errors");
2193 return 0.0;
2194 }
2195
2196 } else {
2197 for (Int_t i = i_start; i <= i_end; ++i) {
2198 for (Int_t j = j_start; j <= j_end; ++j) {
2199 for (Int_t k = k_start; k <= k_end; ++k) {
2200
2201 Int_t bin = GetBin(i, j, k);
2202
2203 sum1 += RetrieveBinContent(bin);
2204 sum2 += h2->RetrieveBinContent(bin);
2205
2207 if ( comparisonUW || comparisonWW ) sumw2 += h2->GetBinErrorSqUnchecked(bin);
2208 }
2209 }
2210 }
2211 }
2212 //checks that the histograms are not empty
2213 if (sum1 == 0.0 || sum2 == 0.0) {
2214 Error("Chi2TestX","one histogram is empty");
2215 return 0.0;
2216 }
2217
2218 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2219 Error("Chi2TestX","Hist1 and Hist2 have both all zero errors\n");
2220 return 0.0;
2221 }
2222
2223 //THE TEST
2224 Int_t m = 0, n = 0;
2225 //Experiment - experiment comparison
2226 if (comparisonUU) {
2227 Int_t resIndex = 0;
2228 Double_t sum = sum1 + sum2;
2229 for (Int_t i = i_start; i <= i_end; ++i) {
2230 for (Int_t j = j_start; j <= j_end; ++j) {
2231 for (Int_t k = k_start; k <= k_end; ++k) {
2232
2233 Int_t bin = GetBin(i, j, k);
2234
2236 Double_t cnt2 = h2->RetrieveBinContent(bin);
2237
2238 if (scaledHistogram) {
2239 // scale bin value to effective bin entries
2241 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2242
2243 if (e1sq > 0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2244 else cnt1 = 0;
2245
2246 if (e2sq > 0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2247 else cnt2 = 0;
2248 }
2249
2250 if (Int_t(cnt1) == 0 && Int_t(cnt2) == 0) --ndf; // no data means one degree of freedom less
2251 else {
2252
2255 //Double_t nexp2 = binsum*sum2/sum;
2256
2257 if (res) res[resIndex] = (cnt1 - nexp1) / TMath::Sqrt(nexp1);
2258
2259 if (cnt1 < 1) ++m;
2260 if (cnt2 < 1) ++n;
2261
2262 //Habermann correction for residuals
2263 Double_t correc = (1. - sum1 / sum) * (1. - cntsum / sum);
2264 if (res) res[resIndex] /= TMath::Sqrt(correc);
2265 if (res) resIndex++;
2266 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2267 chi2 += delta * delta / cntsum;
2268 }
2269 }
2270 }
2271 }
2272 chi2 /= sum1 * sum2;
2273
2274 // flag error only when of the two histogram is zero
2275 if (m) {
2276 igood += 1;
2277 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2278 }
2279 if (n) {
2280 igood += 2;
2281 Info("Chi2TestX","There is a bin in h2 with less than 1 event.\n");
2282 }
2283
2285 return prob;
2286
2287 }
2288
2289 // unweighted - weighted comparison
2290 // case of error = 0 and content not zero is treated without problems by excluding second chi2 sum
2291 // and can be considered as a data-theory comparison
2292 if ( comparisonUW ) {
2293 Int_t resIndex = 0;
2294 for (Int_t i = i_start; i <= i_end; ++i) {
2295 for (Int_t j = j_start; j <= j_end; ++j) {
2296 for (Int_t k = k_start; k <= k_end; ++k) {
2297
2298 Int_t bin = GetBin(i, j, k);
2299
2301 Double_t cnt2 = h2->RetrieveBinContent(bin);
2302 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2303
2304 // case both histogram have zero bin contents
2305 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2306 --ndf; //no data means one degree of freedom less
2307 continue;
2308 }
2309
2310 // case weighted histogram has zero bin content and error
2311 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2312 if (sumw2 > 0) {
2313 // use as approximated error as 1 scaled by a scaling ratio
2314 // estimated from the total sum weight and sum weight squared
2315 e2sq = sumw2 / sum2;
2316 }
2317 else {
2318 // return error because infinite discrepancy here:
2319 // bin1 != 0 and bin2 =0 in a histogram with all errors zero
2320 Error("Chi2TestX","Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2321 chi2 = 0; return 0;
2322 }
2323 }
2324
2325 if (cnt1 < 1) m++;
2326 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2327
2328 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2329 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2330
2331 // if cnt1 is zero and cnt2 = 1 and sum1 = sum2 var1 = 0 && var2 == 0
2332 // approximate by incrementing cnt1
2333 // LM (this need to be fixed for numerical errors)
2334 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2335 sum1++;
2336 cnt1++;
2337 var1 = sum2 * cnt2 - sum1 * e2sq;
2338 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2339 }
2341
2342 while (var1 + var2 == 0) {
2343 sum1++;
2344 cnt1++;
2345 var1 = sum2 * cnt2 - sum1 * e2sq;
2346 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2347 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2348 sum1++;
2349 cnt1++;
2350 var1 = sum2 * cnt2 - sum1 * e2sq;
2351 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2352 }
2354 }
2355
2356 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2357
2360
2363
2364 chi2 += delta1 * delta1 / nexp1;
2365
2366 if (e2sq > 0) {
2367 chi2 += delta2 * delta2 / e2sq;
2368 }
2369
2370 if (res) {
2371 if (e2sq > 0) {
2372 Double_t temp1 = sum2 * e2sq / var2;
2373 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2374 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2375 // invert sign here
2376 res[resIndex] = - delta2 / TMath::Sqrt(temp2);
2377 }
2378 else
2379 res[resIndex] = delta1 / TMath::Sqrt(nexp1);
2380 resIndex++;
2381 }
2382 }
2383 }
2384 }
2385
2386 if (m) {
2387 igood += 1;
2388 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2389 }
2390 if (n) {
2391 igood += 2;
2392 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2393 }
2394
2396
2397 return prob;
2398 }
2399
2400 // weighted - weighted comparison
2401 if (comparisonWW) {
2402 Int_t resIndex = 0;
2403 for (Int_t i = i_start; i <= i_end; ++i) {
2404 for (Int_t j = j_start; j <= j_end; ++j) {
2405 for (Int_t k = k_start; k <= k_end; ++k) {
2406
2407 Int_t bin = GetBin(i, j, k);
2409 Double_t cnt2 = h2->RetrieveBinContent(bin);
2411 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2412
2413 // case both histogram have zero bin contents
2414 // (use square of content to avoid numerical errors)
2415 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2416 --ndf; //no data means one degree of freedom less
2417 continue;
2418 }
2419
2420 if (e1sq == 0 && e2sq == 0) {
2421 // cannot treat case of booth histogram have zero zero errors
2422 Error("Chi2TestX","h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2423 chi2 = 0; return 0;
2424 }
2425
2426 Double_t sigma = sum1 * sum1 * e2sq + sum2 * sum2 * e1sq;
2427 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2428 chi2 += delta * delta / sigma;
2429
2430 if (res) {
2431 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2432 Double_t probb = temp / sigma;
2433 Double_t z = 0;
2434 if (e1sq > e2sq) {
2435 Double_t d1 = cnt1 - sum1 * probb;
2436 Double_t s1 = e1sq * ( 1. - e2sq * sum1 * sum1 / sigma );
2437 z = d1 / TMath::Sqrt(s1);
2438 }
2439 else {
2440 Double_t d2 = cnt2 - sum2 * probb;
2441 Double_t s2 = e2sq * ( 1. - e1sq * sum2 * sum2 / sigma );
2442 z = -d2 / TMath::Sqrt(s2);
2443 }
2444 res[resIndex] = z;
2445 resIndex++;
2446 }
2447
2448 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2449 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2450 }
2451 }
2452 }
2453 if (m) {
2454 igood += 1;
2455 Info("Chi2TestX","There is a bin in h1 with less than 10 effective events.\n");
2456 }
2457 if (n) {
2458 igood += 2;
2459 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2460 }
2462 return prob;
2463 }
2464 return 0;
2465}
2466////////////////////////////////////////////////////////////////////////////////
2467/// Compute and return the chisquare of this histogram with respect to a function
2468/// The chisquare is computed by weighting each histogram point by the bin error
2469/// By default the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before.
2470/// Use option "R" for restricting the chisquare calculation to the given range of the function
2471/// Use option "L" for using the chisquare based on the poisson likelihood (Baker-Cousins Chisquare)
2472/// Use option "P" for using the Pearson chisquare based on the expected bin errors
2473
2475{
2476 if (!func) {
2477 Error("Chisquare","Function pointer is Null - return -1");
2478 return -1;
2479 }
2480
2481 TString opt(option); opt.ToUpper();
2482 bool useRange = opt.Contains("R");
2483 ROOT::Fit::EChisquareType type = ROOT::Fit::EChisquareType::kNeyman; // default chi2 with observed error
2486
2487 return ROOT::Fit::Chisquare(*this, *func, useRange, type);
2488}
2489
2490////////////////////////////////////////////////////////////////////////////////
2491/// Remove all the content from the underflow and overflow bins, without changing the number of entries
2492/// After calling this method, every undeflow and overflow bins will have content 0.0
2493/// The Sumw2 is also cleared, since there is no more content in the bins
2494
2496{
2497 for (Int_t bin = 0; bin < fNcells; ++bin)
2498 if (IsBinUnderflow(bin) || IsBinOverflow(bin)) {
2499 UpdateBinContent(bin, 0.0);
2500 if (fSumw2.fN) fSumw2.fArray[bin] = 0.0;
2501 }
2502}
2503
2504////////////////////////////////////////////////////////////////////////////////
2505/// Compute integral (normalized cumulative sum of bins) w/o under/overflows
2506/// The result is stored in fIntegral and used by the GetRandom functions.
2507/// This function is automatically called by GetRandom when the fIntegral
2508/// array does not exist or when the number of entries in the histogram
2509/// has changed since the previous call to GetRandom.
2510/// The resulting integral is normalized to 1.
2511/// If the routine is called with the onlyPositive flag set an error will
2512/// be produced in case of negative bin content and a NaN value returned
2513/// \return 1 if success, 0 if integral is zero, NAN if onlyPositive-test fails
2514
2516{
2517 if (fBuffer) BufferEmpty();
2518
2519 // delete previously computed integral (if any)
2520 if (fIntegral) delete [] fIntegral;
2521
2522 // - Allocate space to store the integral and compute integral
2526 Int_t nbins = nbinsx * nbinsy * nbinsz;
2527
2528 fIntegral = new Double_t[nbins + 2];
2529 Int_t ibin = 0; fIntegral[ibin] = 0;
2530
2531 for (Int_t binz=1; binz <= nbinsz; ++binz) {
2532 for (Int_t biny=1; biny <= nbinsy; ++biny) {
2533 for (Int_t binx=1; binx <= nbinsx; ++binx) {
2534 ++ibin;
2536 if (onlyPositive && y < 0) {
2537 Error("ComputeIntegral","Bin content is negative - return a NaN value");
2538 fIntegral[nbins] = TMath::QuietNaN();
2539 break;
2540 }
2541 fIntegral[ibin] = fIntegral[ibin - 1] + y;
2542 }
2543 }
2544 }
2545
2546 // - Normalize integral to 1
2547 if (fIntegral[nbins] == 0 ) {
2548 Error("ComputeIntegral", "Integral = 0, no hits in histogram bins (excluding over/underflow).");
2549 return 0;
2550 }
2551 for (Int_t bin=1; bin <= nbins; ++bin) fIntegral[bin] /= fIntegral[nbins];
2552 fIntegral[nbins+1] = fEntries;
2553 return fIntegral[nbins];
2554}
2555
2556////////////////////////////////////////////////////////////////////////////////
2557/// Return a pointer to the array of bins integral.
2558/// if the pointer fIntegral is null, TH1::ComputeIntegral is called
2559/// The array dimension is the number of bins in the histograms
2560/// including underflow and overflow (fNCells)
2561/// the last value integral[fNCells] is set to the number of entries of
2562/// the histogram
2563
2565{
2566 if (!fIntegral) ComputeIntegral();
2567 return fIntegral;
2568}
2569
2570////////////////////////////////////////////////////////////////////////////////
2571/// Return a pointer to a histogram containing the cumulative content.
2572/// The cumulative can be computed both in the forward (default) or backward
2573/// direction; the name of the new histogram is constructed from
2574/// the name of this histogram with the suffix "suffix" appended provided
2575/// by the user. If not provided a default suffix="_cumulative" is used.
2576///
2577/// The cumulative distribution is formed by filling each bin of the
2578/// resulting histogram with the sum of that bin and all previous
2579/// (forward == kTRUE) or following (forward = kFALSE) bins.
2580///
2581/// Note: while cumulative distributions make sense in one dimension, you
2582/// may not be getting what you expect in more than 1D because the concept
2583/// of a cumulative distribution is much trickier to define; make sure you
2584/// understand the order of summation before you use this method with
2585/// histograms of dimension >= 2.
2586///
2587/// Note 2: By default the cumulative is computed from bin 1 to Nbins
2588/// If an axis range is set, values between the minimum and maximum of the range
2589/// are set.
2590/// Setting an axis range can also be used for including underflow and overflow in
2591/// the cumulative (e.g. by setting h->GetXaxis()->SetRange(0, h->GetNbinsX()+1); )
2593
2594TH1 *TH1::GetCumulative(Bool_t forward, const char* suffix) const
2595{
2596 const Int_t firstX = fXaxis.GetFirst();
2597 const Int_t lastX = fXaxis.GetLast();
2598 const Int_t firstY = (fDimension > 1) ? fYaxis.GetFirst() : 1;
2599 const Int_t lastY = (fDimension > 1) ? fYaxis.GetLast() : 1;
2600 const Int_t firstZ = (fDimension > 1) ? fZaxis.GetFirst() : 1;
2601 const Int_t lastZ = (fDimension > 1) ? fZaxis.GetLast() : 1;
2602
2604 hintegrated->Reset();
2605 Double_t sum = 0.;
2606 Double_t esum = 0;
2607 if (forward) { // Forward computation
2608 for (Int_t binz = firstZ; binz <= lastZ; ++binz) {
2609 for (Int_t biny = firstY; biny <= lastY; ++biny) {
2610 for (Int_t binx = firstX; binx <= lastX; ++binx) {
2611 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2612 sum += RetrieveBinContent(bin);
2613 hintegrated->AddBinContent(bin, sum);
2614 if (fSumw2.fN) {
2616 hintegrated->fSumw2.fArray[bin] = esum;
2617 }
2618 }
2619 }
2620 }
2621 } else { // Backward computation
2622 for (Int_t binz = lastZ; binz >= firstZ; --binz) {
2623 for (Int_t biny = lastY; biny >= firstY; --biny) {
2624 for (Int_t binx = lastX; binx >= firstX; --binx) {
2625 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2626 sum += RetrieveBinContent(bin);
2627 hintegrated->AddBinContent(bin, sum);
2628 if (fSumw2.fN) {
2630 hintegrated->fSumw2.fArray[bin] = esum;
2631 }
2632 }
2633 }
2634 }
2635 }
2636 return hintegrated;
2637}
2638
2639////////////////////////////////////////////////////////////////////////////////
2640/// Copy this histogram structure to newth1.
2641///
2642/// Note that this function does not copy the list of associated functions.
2643/// Use TObject::Clone to make a full copy of a histogram.
2644///
2645/// Note also that the histogram it will be created in gDirectory (if AddDirectoryStatus()=true)
2646/// or will not be added to any directory if AddDirectoryStatus()=false
2647/// independently of the current directory stored in the original histogram
2648
2649void TH1::Copy(TObject &obj) const
2650{
2651 if (((TH1&)obj).fDirectory) {
2652 // We are likely to change the hash value of this object
2653 // with TNamed::Copy, to keep things correct, we need to
2654 // clean up its existing entries.
2655 ((TH1&)obj).fDirectory->Remove(&obj);
2656 ((TH1&)obj).fDirectory = nullptr;
2657 }
2658 TNamed::Copy(obj);
2659 ((TH1&)obj).fDimension = fDimension;
2660 ((TH1&)obj).fNormFactor= fNormFactor;
2661 ((TH1&)obj).fNcells = fNcells;
2662 ((TH1&)obj).fBarOffset = fBarOffset;
2663 ((TH1&)obj).fBarWidth = fBarWidth;
2664 ((TH1&)obj).fOption = fOption;
2665 ((TH1&)obj).fBinStatErrOpt = fBinStatErrOpt;
2666 ((TH1&)obj).fBufferSize= fBufferSize;
2667 // copy the Buffer
2668 // delete first a previously existing buffer
2669 if (((TH1&)obj).fBuffer != nullptr) {
2670 delete [] ((TH1&)obj).fBuffer;
2671 ((TH1&)obj).fBuffer = nullptr;
2672 }
2673 if (fBuffer) {
2674 Double_t *buf = new Double_t[fBufferSize];
2675 for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
2676 // obj.fBuffer has been deleted before
2677 ((TH1&)obj).fBuffer = buf;
2678 }
2679
2680 // copy bin contents (this should be done by the derived classes, since TH1 does not store the bin content)
2681 // Do this in case derived from TArray
2682 TArray* a = dynamic_cast<TArray*>(&obj);
2683 if (a) {
2684 a->Set(fNcells);
2685 for (Int_t i = 0; i < fNcells; i++)
2687 }
2688
2689 ((TH1&)obj).fEntries = fEntries;
2690
2691 // which will call BufferEmpty(0) and set fBuffer[0] to a Maybe one should call
2692 // assignment operator on the TArrayD
2693
2694 ((TH1&)obj).fTsumw = fTsumw;
2695 ((TH1&)obj).fTsumw2 = fTsumw2;
2696 ((TH1&)obj).fTsumwx = fTsumwx;
2697 ((TH1&)obj).fTsumwx2 = fTsumwx2;
2698 ((TH1&)obj).fMaximum = fMaximum;
2699 ((TH1&)obj).fMinimum = fMinimum;
2700
2701 TAttLine::Copy(((TH1&)obj));
2702 TAttFill::Copy(((TH1&)obj));
2703 TAttMarker::Copy(((TH1&)obj));
2704 fXaxis.Copy(((TH1&)obj).fXaxis);
2705 fYaxis.Copy(((TH1&)obj).fYaxis);
2706 fZaxis.Copy(((TH1&)obj).fZaxis);
2707 ((TH1&)obj).fXaxis.SetParent(&obj);
2708 ((TH1&)obj).fYaxis.SetParent(&obj);
2709 ((TH1&)obj).fZaxis.SetParent(&obj);
2710 fContour.Copy(((TH1&)obj).fContour);
2711 fSumw2.Copy(((TH1&)obj).fSumw2);
2712 // fFunctions->Copy(((TH1&)obj).fFunctions);
2713 // when copying an histogram if the AddDirectoryStatus() is true it
2714 // will be added to gDirectory independently of the fDirectory stored.
2715 // and if the AddDirectoryStatus() is false it will not be added to
2716 // any directory (fDirectory = nullptr)
2717 if (fgAddDirectory && gDirectory) {
2718 gDirectory->Append(&obj);
2719 ((TH1&)obj).fFunctions->UseRWLock();
2720 ((TH1&)obj).fDirectory = gDirectory;
2721 } else
2722 ((TH1&)obj).fDirectory = nullptr;
2723
2724}
2725
2726////////////////////////////////////////////////////////////////////////////////
2727/// Make a complete copy of the underlying object. If 'newname' is set,
2728/// the copy's name will be set to that name.
2729
2730TObject* TH1::Clone(const char* newname) const
2731{
2732 TH1* obj = (TH1*)IsA()->GetNew()(nullptr);
2733 Copy(*obj);
2734
2735 // Now handle the parts that Copy doesn't do
2736 if(fFunctions) {
2737 // The Copy above might have published 'obj' to the ListOfCleanups.
2738 // Clone can call RecursiveRemove, for example via TCheckHashRecursiveRemoveConsistency
2739 // when dictionary information is initialized, so we need to
2740 // keep obj->fFunction valid during its execution and
2741 // protect the update with the write lock.
2742
2743 // Reset stats parent - else cloning the stats will clone this histogram, too.
2744 auto oldstats = dynamic_cast<TVirtualPaveStats*>(fFunctions->FindObject("stats"));
2745 TObject *oldparent = nullptr;
2746 if (oldstats) {
2747 oldparent = oldstats->GetParent();
2748 oldstats->SetParent(nullptr);
2749 }
2750
2751 auto newlist = (TList*)fFunctions->Clone();
2752
2753 if (oldstats)
2754 oldstats->SetParent(oldparent);
2755 auto newstats = dynamic_cast<TVirtualPaveStats*>(obj->fFunctions->FindObject("stats"));
2756 if (newstats)
2757 newstats->SetParent(obj);
2758
2759 auto oldlist = obj->fFunctions;
2760 {
2762 obj->fFunctions = newlist;
2763 }
2764 delete oldlist;
2765 }
2766 if(newname && strlen(newname) ) {
2767 obj->SetName(newname);
2768 }
2769 return obj;
2770}
2771
2772////////////////////////////////////////////////////////////////////////////////
2773/// Perform the automatic addition of the histogram to the given directory
2774///
2775/// Note this function is called in place when the semantic requires
2776/// this object to be added to a directory (I.e. when being read from
2777/// a TKey or being Cloned)
2778
2780{
2782 if (addStatus) {
2783 SetDirectory(dir);
2784 if (dir) {
2786 }
2787 }
2788}
2789
2790////////////////////////////////////////////////////////////////////////////////
2791/// Compute distance from point px,py to a line.
2792///
2793/// Compute the closest distance of approach from point px,py to elements
2794/// of a histogram.
2795/// The distance is computed in pixels units.
2796///
2797/// #### Algorithm:
2798/// Currently, this simple model computes the distance from the mouse
2799/// to the histogram contour only.
2800
2802{
2803 if (!fPainter) return 9999;
2804 return fPainter->DistancetoPrimitive(px,py);
2805}
2806
2807////////////////////////////////////////////////////////////////////////////////
2808/// Performs the operation: `this = this/(c1*f1)`
2809/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2810///
2811/// Only bins inside the function range are recomputed.
2812/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2813/// you should call Sumw2 before making this operation.
2814/// This is particularly important if you fit the histogram after TH1::Divide
2815///
2816/// The function return kFALSE if the divide operation failed
2817
2819{
2820 if (!f1) {
2821 Error("Divide","Attempt to divide by a non-existing function");
2822 return kFALSE;
2823 }
2824
2825 // delete buffer if it is there since it will become invalid
2826 if (fBuffer) BufferEmpty(1);
2827
2828 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of
2829 Int_t ny = GetNbinsY() + 2;
2830 Int_t nz = GetNbinsZ() + 2;
2831 if (fDimension < 2) ny = 1;
2832 if (fDimension < 3) nz = 1;
2833
2834
2835 SetMinimum();
2836 SetMaximum();
2837
2838 // - Loop on bins (including underflows/overflows)
2839 Int_t bin, binx, biny, binz;
2840 Double_t cu, w;
2841 Double_t xx[3];
2842 Double_t *params = nullptr;
2843 f1->InitArgs(xx,params);
2844 for (binz = 0; binz < nz; ++binz) {
2845 xx[2] = fZaxis.GetBinCenter(binz);
2846 for (biny = 0; biny < ny; ++biny) {
2847 xx[1] = fYaxis.GetBinCenter(biny);
2848 for (binx = 0; binx < nx; ++binx) {
2849 xx[0] = fXaxis.GetBinCenter(binx);
2850 if (!f1->IsInside(xx)) continue;
2852 bin = binx + nx * (biny + ny * binz);
2853 cu = c1 * f1->EvalPar(xx);
2854 if (TF1::RejectedPoint()) continue;
2855 if (cu) w = RetrieveBinContent(bin) / cu;
2856 else w = 0;
2857 UpdateBinContent(bin, w);
2858 if (fSumw2.fN) {
2859 if (cu != 0) fSumw2.fArray[bin] = GetBinErrorSqUnchecked(bin) / (cu * cu);
2860 else fSumw2.fArray[bin] = 0;
2861 }
2862 }
2863 }
2864 }
2865 ResetStats();
2866 return kTRUE;
2867}
2868
2869////////////////////////////////////////////////////////////////////////////////
2870/// Divide this histogram by h1.
2871///
2872/// `this = this/h1`
2873/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2874/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
2875/// if not already set.
2876/// The resulting errors are calculated assuming uncorrelated histograms.
2877/// See the other TH1::Divide that gives the possibility to optionally
2878/// compute binomial errors.
2879///
2880/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2881/// you should call Sumw2 before making this operation.
2882/// This is particularly important if you fit the histogram after TH1::Scale
2883///
2884/// The function return kFALSE if the divide operation failed
2885
2886Bool_t TH1::Divide(const TH1 *h1)
2887{
2888 if (!h1) {
2889 Error("Divide", "Input histogram passed does not exist (NULL).");
2890 return kFALSE;
2891 }
2892
2893 // delete buffer if it is there since it will become invalid
2894 if (fBuffer) BufferEmpty(1);
2895
2896 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins) {
2897 return false;
2898 }
2899
2900 // Create Sumw2 if h1 has Sumw2 set
2901 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
2902
2903 // - Loop on bins (including underflows/overflows)
2904 for (Int_t i = 0; i < fNcells; ++i) {
2907 if (c1) UpdateBinContent(i, c0 / c1);
2908 else UpdateBinContent(i, 0);
2909
2910 if(fSumw2.fN) {
2911 if (c1 == 0) { fSumw2.fArray[i] = 0; continue; }
2912 Double_t c1sq = c1 * c1;
2913 fSumw2.fArray[i] = (GetBinErrorSqUnchecked(i) * c1sq + h1->GetBinErrorSqUnchecked(i) * c0 * c0) / (c1sq * c1sq);
2914 }
2915 }
2916 ResetStats();
2917 return kTRUE;
2918}
2919
2920////////////////////////////////////////////////////////////////////////////////
2921/// Replace contents of this histogram by the division of h1 by h2.
2922///
2923/// `this = c1*h1/(c2*h2)`
2924///
2925/// If errors are defined (see TH1::Sumw2), errors are also recalculated
2926/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
2927/// if not already set.
2928/// The resulting errors are calculated assuming uncorrelated histograms.
2929/// However, if option ="B" is specified, Binomial errors are computed.
2930/// In this case c1 and c2 do not make real sense and they are ignored.
2931///
2932/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2933/// you should call Sumw2 before making this operation.
2934/// This is particularly important if you fit the histogram after TH1::Divide
2935///
2936/// Please note also that in the binomial case errors are calculated using standard
2937/// binomial statistics, which means when b1 = b2, the error is zero.
2938/// If you prefer to have efficiency errors not going to zero when the efficiency is 1, you must
2939/// use the function TGraphAsymmErrors::BayesDivide, which will return an asymmetric and non-zero lower
2940/// error for the case b1=b2.
2941///
2942/// The function return kFALSE if the divide operation failed
2943
2945{
2946
2947 TString opt = option;
2948 opt.ToLower();
2949 Bool_t binomial = kFALSE;
2950 if (opt.Contains("b")) binomial = kTRUE;
2951 if (!h1 || !h2) {
2952 Error("Divide", "At least one of the input histograms passed does not exist (NULL).");
2953 return kFALSE;
2954 }
2955
2956 // delete buffer if it is there since it will become invalid
2957 if (fBuffer) BufferEmpty(1);
2958
2959 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins ||
2960 LoggedInconsistency("Divide", h1, h2) >= kDifferentNumberOfBins) {
2961 return false;
2962 }
2963
2964 if (!c2) {
2965 Error("Divide","Coefficient of dividing histogram cannot be zero");
2966 return kFALSE;
2967 }
2968
2969 // Create Sumw2 if h1 or h2 have Sumw2 set, or if binomial errors are explicitly requested
2970 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0 || binomial)) Sumw2();
2971
2972 SetMinimum();
2973 SetMaximum();
2974
2975 // - Loop on bins (including underflows/overflows)
2976 for (Int_t i = 0; i < fNcells; ++i) {
2978 Double_t b2 = h2->RetrieveBinContent(i);
2979 if (b2) UpdateBinContent(i, c1 * b1 / (c2 * b2));
2980 else UpdateBinContent(i, 0);
2981
2982 if (fSumw2.fN) {
2983 if (b2 == 0) { fSumw2.fArray[i] = 0; continue; }
2984 Double_t b1sq = b1 * b1; Double_t b2sq = b2 * b2;
2985 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
2987 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
2988 if (binomial) {
2989 if (b1 != b2) {
2990 // in the case of binomial statistics c1 and c2 must be 1 otherwise it does not make sense
2991 // c1 and c2 are ignored
2992 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
2993 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); // old formula from G. Flucke
2994 // formula which works also for weighted histogram (see http://root-forum.cern.ch/viewtopic.php?t=3753 )
2995 fSumw2.fArray[i] = TMath::Abs( ( (1. - 2.* b1 / b2) * e1sq + b1sq * e2sq / b2sq ) / b2sq );
2996 } else {
2997 //in case b1=b2 error is zero
2998 //use TGraphAsymmErrors::BayesDivide for getting the asymmetric error not equal to zero
2999 fSumw2.fArray[i] = 0;
3000 }
3001 } else {
3002 fSumw2.fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
3003 }
3004 }
3005 }
3006 ResetStats();
3007 if (binomial)
3008 // in case of binomial division use denominator for number of entries
3009 SetEntries ( h2->GetEntries() );
3010
3011 return kTRUE;
3012}
3013
3014////////////////////////////////////////////////////////////////////////////////
3015/// Draw this histogram with options.
3016///
3017/// Histograms are drawn via the THistPainter class. Each histogram has
3018/// a pointer to its own painter (to be usable in a multithreaded program).
3019/// The same histogram can be drawn with different options in different pads.
3020/// When a histogram drawn in a pad is deleted, the histogram is
3021/// automatically removed from the pad or pads where it was drawn.
3022/// If a histogram is drawn in a pad, then filled again, the new status
3023/// of the histogram will be automatically shown in the pad next time
3024/// the pad is updated. One does not need to redraw the histogram.
3025/// To draw the current version of a histogram in a pad, one can use
3026/// `h->DrawCopy();`
3027/// This makes a clone of the histogram. Once the clone is drawn, the original
3028/// histogram may be modified or deleted without affecting the aspect of the
3029/// clone.
3030/// By default, TH1::Draw clears the current pad.
3031///
3032/// One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
3033/// value for the maximum or the minimum scale on the plot.
3034///
3035/// TH1::UseCurrentStyle can be used to change all histogram graphics
3036/// attributes to correspond to the current selected style.
3037/// This function must be called for each histogram.
3038/// In case one reads and draws many histograms from a file, one can force
3039/// the histograms to inherit automatically the current graphics style
3040/// by calling before gROOT->ForceStyle();
3041///
3042/// See the THistPainter class for a description of all the drawing options.
3043
3045{
3046 TString opt1 = option; opt1.ToLower();
3048 Int_t index = opt1.Index("same");
3049
3050 // Check if the string "same" is part of a TCutg name.
3051 if (index>=0) {
3052 Int_t indb = opt1.Index("[");
3053 if (indb>=0) {
3054 Int_t indk = opt1.Index("]");
3055 if (index>indb && index<indk) index = -1;
3056 }
3057 }
3058
3059 // If there is no pad or an empty pad the "same" option is ignored.
3060 if (gPad) {
3061 if (!gPad->IsEditable()) gROOT->MakeDefCanvas();
3062 if (index>=0) {
3063 if (gPad->GetX1() == 0 && gPad->GetX2() == 1 &&
3064 gPad->GetY1() == 0 && gPad->GetY2() == 1 &&
3065 gPad->GetListOfPrimitives()->GetSize()==0) opt2.Remove(index,4);
3066 } else {
3067 //the following statement is necessary in case one attempts to draw
3068 //a temporary histogram already in the current pad
3069 if (TestBit(kCanDelete)) gPad->Remove(this);
3070 gPad->Clear();
3071 }
3072 gPad->IncrementPaletteColor(1, opt1);
3073 } else {
3074 if (index>=0) opt2.Remove(index,4);
3075 }
3076
3077 AppendPad(opt2.Data());
3078}
3079
3080////////////////////////////////////////////////////////////////////////////////
3081/// Copy this histogram and Draw in the current pad.
3082///
3083/// Once the histogram is drawn into the pad, any further modification
3084/// using graphics input will be made on the copy of the histogram,
3085/// and not to the original object.
3086/// By default a postfix "_copy" is added to the histogram name. Pass an empty postfix in case
3087/// you want to draw a histogram with the same name
3088///
3089/// See Draw for the list of options
3090
3091TH1 *TH1::DrawCopy(Option_t *option, const char * name_postfix) const
3092{
3093 TString opt = option;
3094 opt.ToLower();
3095 if (gPad && !opt.Contains("same")) gPad->Clear();
3097 if (name_postfix) newName.Form("%s%s", GetName(), name_postfix);
3098 TH1 *newth1 = (TH1 *)Clone(newName.Data());
3099 newth1->SetDirectory(nullptr);
3100 newth1->SetBit(kCanDelete);
3101 if (gPad) gPad->IncrementPaletteColor(1, opt);
3102
3103 newth1->AppendPad(option);
3104 return newth1;
3105}
3106
3107////////////////////////////////////////////////////////////////////////////////
3108/// Draw a normalized copy of this histogram.
3109///
3110/// A clone of this histogram is normalized to norm and drawn with option.
3111/// A pointer to the normalized histogram is returned.
3112/// The contents of the histogram copy are scaled such that the new
3113/// sum of weights (excluding under and overflow) is equal to norm.
3114/// Note that the returned normalized histogram is not added to the list
3115/// of histograms in the current directory in memory.
3116/// It is the user's responsibility to delete this histogram.
3117/// The kCanDelete bit is set for the returned object. If a pad containing
3118/// this copy is cleared, the histogram will be automatically deleted.
3119///
3120/// See Draw for the list of options
3121
3123{
3125 if (sum == 0) {
3126 Error("DrawNormalized","Sum of weights is null. Cannot normalize histogram: %s",GetName());
3127 return nullptr;
3128 }
3131 TH1 *h = (TH1*)Clone();
3133 // in case of drawing with error options - scale correctly the error
3134 TString opt(option); opt.ToUpper();
3135 if (fSumw2.fN == 0) {
3136 h->Sumw2();
3137 // do not use in this case the "Error option " for drawing which is enabled by default since the normalized histogram has now errors
3138 if (opt.IsNull() || opt == "SAME") opt += "HIST";
3139 }
3140 h->Scale(norm/sum);
3141 if (TMath::Abs(fMaximum+1111) > 1e-3) h->SetMaximum(fMaximum*norm/sum);
3142 if (TMath::Abs(fMinimum+1111) > 1e-3) h->SetMinimum(fMinimum*norm/sum);
3143 h->Draw(opt);
3145 return h;
3146}
3147
3148////////////////////////////////////////////////////////////////////////////////
3149/// Display a panel with all histogram drawing options.
3150///
3151/// See class TDrawPanelHist for example
3152
3153void TH1::DrawPanel()
3154{
3155 if (!fPainter) {Draw(); if (gPad) gPad->Update();}
3156 if (fPainter) fPainter->DrawPanel();
3157}
3158
3159////////////////////////////////////////////////////////////////////////////////
3160/// Evaluate function f1 at the center of bins of this histogram.
3161///
3162/// - If option "R" is specified, the function is evaluated only
3163/// for the bins included in the function range.
3164/// - If option "A" is specified, the value of the function is added to the
3165/// existing bin contents
3166/// - If option "S" is specified, the value of the function is used to
3167/// generate a value, distributed according to the Poisson
3168/// distribution, with f1 as the mean.
3169
3171{
3172 Double_t x[3];
3173 Int_t range, stat, add;
3174 if (!f1) return;
3175
3176 TString opt = option;
3177 opt.ToLower();
3178 if (opt.Contains("a")) add = 1;
3179 else add = 0;
3180 if (opt.Contains("s")) stat = 1;
3181 else stat = 0;
3182 if (opt.Contains("r")) range = 1;
3183 else range = 0;
3184
3185 // delete buffer if it is there since it will become invalid
3186 if (fBuffer) BufferEmpty(1);
3187
3191 if (!add) Reset();
3192
3193 for (Int_t binz = 1; binz <= nbinsz; ++binz) {
3194 x[2] = fZaxis.GetBinCenter(binz);
3195 for (Int_t biny = 1; biny <= nbinsy; ++biny) {
3196 x[1] = fYaxis.GetBinCenter(biny);
3197 for (Int_t binx = 1; binx <= nbinsx; ++binx) {
3198 Int_t bin = GetBin(binx,biny,binz);
3199 x[0] = fXaxis.GetBinCenter(binx);
3200 if (range && !f1->IsInside(x)) continue;
3201 Double_t fu = f1->Eval(x[0], x[1], x[2]);
3202 if (stat) fu = gRandom->PoissonD(fu);
3203 AddBinContent(bin, fu);
3204 if (fSumw2.fN) fSumw2.fArray[bin] += TMath::Abs(fu);
3205 }
3206 }
3207 }
3208}
3209
3210////////////////////////////////////////////////////////////////////////////////
3211/// Execute action corresponding to one event.
3212///
3213/// This member function is called when a histogram is clicked with the locator
3214///
3215/// If Left button clicked on the bin top value, then the content of this bin
3216/// is modified according to the new position of the mouse when it is released.
3217
3218void TH1::ExecuteEvent(Int_t event, Int_t px, Int_t py)
3219{
3220 if (fPainter) fPainter->ExecuteEvent(event, px, py);
3221}
3222
3223////////////////////////////////////////////////////////////////////////////////
3224/// This function allows to do discrete Fourier transforms of TH1 and TH2.
3225/// Available transform types and flags are described below.
3226///
3227/// To extract more information about the transform, use the function
3228/// TVirtualFFT::GetCurrentTransform() to get a pointer to the current
3229/// transform object.
3230///
3231/// \param[out] h_output histogram for the output. If a null pointer is passed, a new histogram is created
3232/// and returned, otherwise, the provided histogram is used and should be big enough
3233/// \param[in] option option parameters consists of 3 parts:
3234/// - option on what to return
3235/// - "RE" - returns a histogram of the real part of the output
3236/// - "IM" - returns a histogram of the imaginary part of the output
3237/// - "MAG"- returns a histogram of the magnitude of the output
3238/// - "PH" - returns a histogram of the phase of the output
3239/// - option of transform type
3240/// - "R2C" - real to complex transforms - default
3241/// - "R2HC" - real to halfcomplex (special format of storing output data,
3242/// results the same as for R2C)
3243/// - "DHT" - discrete Hartley transform
3244/// real to real transforms (sine and cosine):
3245/// - "R2R_0", "R2R_1", "R2R_2", "R2R_3" - discrete cosine transforms of types I-IV
3246/// - "R2R_4", "R2R_5", "R2R_6", "R2R_7" - discrete sine transforms of types I-IV
3247/// To specify the type of each dimension of a 2-dimensional real to real
3248/// transform, use options of form "R2R_XX", for example, "R2R_02" for a transform,
3249/// which is of type "R2R_0" in 1st dimension and "R2R_2" in the 2nd.
3250/// - option of transform flag
3251/// - "ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
3252/// performance
3253/// - "M" (from "measure") - some time spend in finding the optimal way to do the transform
3254/// - "P" (from "patient") - more time spend in finding the optimal way to do the transform
3255/// - "EX" (from "exhaustive") - the most optimal way is found
3256/// This option should be chosen depending on how many transforms of the same size and
3257/// type are going to be done. Planning is only done once, for the first transform of this
3258/// size and type. Default is "ES".
3259///
3260/// Examples of valid options: "Mag R2C M" "Re R2R_11" "Im R2C ES" "PH R2HC EX"
3261
3263{
3264
3265 Int_t ndim[3];
3266 ndim[0] = this->GetNbinsX();
3267 ndim[1] = this->GetNbinsY();
3268 ndim[2] = this->GetNbinsZ();
3269
3271 TString opt = option;
3272 opt.ToUpper();
3273 if (!opt.Contains("2R")){
3274 if (!opt.Contains("2C") && !opt.Contains("2HC") && !opt.Contains("DHT")) {
3275 //no type specified, "R2C" by default
3276 opt.Append("R2C");
3277 }
3278 fft = TVirtualFFT::FFT(this->GetDimension(), ndim, opt.Data());
3279 }
3280 else {
3281 //find the kind of transform
3282 Int_t ind = opt.Index("R2R", 3);
3283 Int_t *kind = new Int_t[2];
3284 char t;
3285 t = opt[ind+4];
3286 kind[0] = atoi(&t);
3287 if (h_output->GetDimension()>1) {
3288 t = opt[ind+5];
3289 kind[1] = atoi(&t);
3290 }
3291 fft = TVirtualFFT::SineCosine(this->GetDimension(), ndim, kind, option);
3292 delete [] kind;
3293 }
3294
3295 if (!fft) return nullptr;
3296 Int_t in=0;
3297 for (Int_t binx = 1; binx<=ndim[0]; binx++) {
3298 for (Int_t biny=1; biny<=ndim[1]; biny++) {
3299 for (Int_t binz=1; binz<=ndim[2]; binz++) {
3300 fft->SetPoint(in, this->GetBinContent(binx, biny, binz));
3301 in++;
3302 }
3303 }
3304 }
3305 fft->Transform();
3307 return h_output;
3308}
3309
3310////////////////////////////////////////////////////////////////////////////////
3311/// Increment bin with abscissa X by 1.
3312///
3313/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3314/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3315///
3316/// If the storage of the sum of squares of weights has been triggered,
3317/// via the function Sumw2, then the sum of the squares of weights is incremented
3318/// by 1 in the bin corresponding to x.
3319///
3320/// The function returns the corresponding bin number which has its content incremented by 1
3321
3323{
3324 if (fBuffer) return BufferFill(x,1);
3325
3326 Int_t bin;
3327 fEntries++;
3328 bin =fXaxis.FindBin(x);
3329 if (bin <0) return -1;
3330 AddBinContent(bin);
3331 if (fSumw2.fN) ++fSumw2.fArray[bin];
3332 if (bin == 0 || bin > fXaxis.GetNbins()) {
3333 if (!GetStatOverflowsBehaviour()) return -1;
3334 }
3335 ++fTsumw;
3336 ++fTsumw2;
3337 fTsumwx += x;
3338 fTsumwx2 += x*x;
3339 return bin;
3340}
3341
3342////////////////////////////////////////////////////////////////////////////////
3343/// Increment bin with abscissa X with a weight w.
3344///
3345/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3346/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3347///
3348/// If the weight is not equal to 1, the storage of the sum of squares of
3349/// weights is automatically triggered and the sum of the squares of weights is incremented
3350/// by \f$ w^2 \f$ in the bin corresponding to x.
3351///
3352/// The function returns the corresponding bin number which has its content incremented by w
3353
3355{
3356
3357 if (fBuffer) return BufferFill(x,w);
3358
3359 Int_t bin;
3360 fEntries++;
3361 bin =fXaxis.FindBin(x);
3362 if (bin <0) return -1;
3363 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2(); // must be called before AddBinContent
3364 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3365 AddBinContent(bin, w);
3366 if (bin == 0 || bin > fXaxis.GetNbins()) {
3367 if (!GetStatOverflowsBehaviour()) return -1;
3368 }
3369 Double_t z= w;
3370 fTsumw += z;
3371 fTsumw2 += z*z;
3372 fTsumwx += z*x;
3373 fTsumwx2 += z*x*x;
3374 return bin;
3375}
3376
3377////////////////////////////////////////////////////////////////////////////////
3378/// Increment bin with namex with a weight w
3379///
3380/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3381/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3382///
3383/// If the weight is not equal to 1, the storage of the sum of squares of
3384/// weights is automatically triggered and the sum of the squares of weights is incremented
3385/// by \f$ w^2 \f$ in the bin corresponding to x.
3386///
3387/// The function returns the corresponding bin number which has its content
3388/// incremented by w.
3389
3390Int_t TH1::Fill(const char *namex, Double_t w)
3391{
3392 Int_t bin;
3393 fEntries++;
3394 bin =fXaxis.FindBin(namex);
3395 if (bin <0) return -1;
3396 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3397 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3398 AddBinContent(bin, w);
3399 if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
3400 Double_t z= w;
3401 fTsumw += z;
3402 fTsumw2 += z*z;
3403 // this make sense if the histogram is not expanding (the x axis cannot be extended)
3404 if (!fXaxis.CanExtend() || !fXaxis.IsAlphanumeric()) {
3406 fTsumwx += z*x;
3407 fTsumwx2 += z*x*x;
3408 }
3409 return bin;
3410}
3411
3412////////////////////////////////////////////////////////////////////////////////
3413/// Fill this histogram with an array x and weights w.
3414///
3415/// \param[in] ntimes number of entries in arrays x and w (array size must be ntimes*stride)
3416/// \param[in] x array of values to be histogrammed
3417/// \param[in] w array of weighs
3418/// \param[in] stride step size through arrays x and w
3419///
3420/// If the weight is not equal to 1, the storage of the sum of squares of
3421/// weights is automatically triggered and the sum of the squares of weights is incremented
3422/// by \f$ w^2 \f$ in the bin corresponding to x.
3423/// if w is NULL each entry is assumed a weight=1
3424
3425void TH1::FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3426{
3427 //If a buffer is activated, fill buffer
3428 if (fBuffer) {
3429 ntimes *= stride;
3430 Int_t i = 0;
3431 for (i=0;i<ntimes;i+=stride) {
3432 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
3433 if (w) BufferFill(x[i],w[i]);
3434 else BufferFill(x[i], 1.);
3435 }
3436 // fill the remaining entries if the buffer has been deleted
3437 if (i < ntimes && !fBuffer) {
3438 auto weights = w ? &w[i] : nullptr;
3439 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3440 }
3441 return;
3442 }
3443 // call internal method
3444 DoFillN(ntimes, x, w, stride);
3445}
3446
3447////////////////////////////////////////////////////////////////////////////////
3448/// Internal method to fill histogram content from a vector
3449/// called directly by TH1::BufferEmpty
3450
3451void TH1::DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3452{
3453 Int_t bin,i;
3454
3455 fEntries += ntimes;
3456 Double_t ww = 1;
3457 Int_t nbins = fXaxis.GetNbins();
3458 ntimes *= stride;
3459 for (i=0;i<ntimes;i+=stride) {
3460 bin =fXaxis.FindBin(x[i]);
3461 if (bin <0) continue;
3462 if (w) ww = w[i];
3463 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3464 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
3465 AddBinContent(bin, ww);
3466 if (bin == 0 || bin > nbins) {
3467 if (!GetStatOverflowsBehaviour()) continue;
3468 }
3469 Double_t z= ww;
3470 fTsumw += z;
3471 fTsumw2 += z*z;
3472 fTsumwx += z*x[i];
3473 fTsumwx2 += z*x[i]*x[i];
3474 }
3475}
3476
3477////////////////////////////////////////////////////////////////////////////////
3478/// Fill histogram following distribution in function fname.
3479///
3480/// @param fname : Function name used for filling the histogram
3481/// @param ntimes : number of times the histogram is filled
3482/// @param rng : (optional) Random number generator used to sample
3483///
3484///
3485/// The distribution contained in the function fname (TF1) is integrated
3486/// over the channel contents for the bin range of this histogram.
3487/// It is normalized to 1.
3488///
3489/// Getting one random number implies:
3490/// - Generating a random number between 0 and 1 (say r1)
3491/// - Look in which bin in the normalized integral r1 corresponds to
3492/// - Fill histogram channel
3493/// ntimes random numbers are generated
3494///
3495/// One can also call TF1::GetRandom to get a random variate from a function.
3496
3497void TH1::FillRandom(const char *fname, Int_t ntimes, TRandom * rng)
3498{
3499 // - Search for fname in the list of ROOT defined functions
3500 TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
3501 if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
3502
3505
3507{
3508 Int_t bin, binx, ibin, loop;
3509 Double_t r1, x;
3510
3511 // - Allocate temporary space to store the integral and compute integral
3512
3513 TAxis * xAxis = &fXaxis;
3514
3515 // in case axis of histogram is not defined use the function axis
3516 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
3518 f1->GetRange(xmin,xmax);
3519 Info("FillRandom","Using function axis and range [%g,%g]",xmin, xmax);
3520 xAxis = f1->GetHistogram()->GetXaxis();
3521 }
3522
3523 Int_t first = xAxis->GetFirst();
3524 Int_t last = xAxis->GetLast();
3525 Int_t nbinsx = last-first+1;
3526
3527 Double_t *integral = new Double_t[nbinsx+1];
3528 integral[0] = 0;
3529 for (binx=1;binx<=nbinsx;binx++) {
3530 Double_t fint = f1->Integral(xAxis->GetBinLowEdge(binx+first-1),xAxis->GetBinUpEdge(binx+first-1), 0.);
3531 integral[binx] = integral[binx-1] + fint;
3532 }
3533
3534 // - Normalize integral to 1
3535 if (integral[nbinsx] == 0 ) {
3536 delete [] integral;
3537 Error("FillRandom", "Integral = zero"); return;
3538 }
3539 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3540
3541 // --------------Start main loop ntimes
3542 for (loop=0;loop<ntimes;loop++) {
3543 r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
3544 ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
3545 //binx = 1 + ibin;
3546 //x = xAxis->GetBinCenter(binx); //this is not OK when SetBuffer is used
3547 x = xAxis->GetBinLowEdge(ibin+first)
3548 +xAxis->GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3549 Fill(x);
3550 }
3551 delete [] integral;
3552}
3553
3554////////////////////////////////////////////////////////////////////////////////
3555/// Fill histogram following distribution in histogram h.
3556///
3557/// @param h : Histogram pointer used for sampling random number
3558/// @param ntimes : number of times the histogram is filled
3559/// @param rng : (optional) Random number generator used for sampling
3560///
3561/// The distribution contained in the histogram h (TH1) is integrated
3562/// over the channel contents for the bin range of this histogram.
3563/// It is normalized to 1.
3564///
3565/// Getting one random number implies:
3566/// - Generating a random number between 0 and 1 (say r1)
3567/// - Look in which bin in the normalized integral r1 corresponds to
3568/// - Fill histogram channel ntimes random numbers are generated
3569///
3570/// SPECIAL CASE when the target histogram has the same binning as the source.
3571/// in this case we simply use a poisson distribution where
3572/// the mean value per bin = bincontent/integral.
3573
3575{
3576 if (!h) { Error("FillRandom", "Null histogram"); return; }
3577 if (fDimension != h->GetDimension()) {
3578 Error("FillRandom", "Histograms with different dimensions"); return;
3579 }
3580 if (std::isnan(h->ComputeIntegral(true))) {
3581 Error("FillRandom", "Histograms contains negative bins, does not represent probabilities");
3582 return;
3583 }
3584
3585 //in case the target histogram has the same binning and ntimes much greater
3586 //than the number of bins we can use a fast method
3587 Int_t first = fXaxis.GetFirst();
3588 Int_t last = fXaxis.GetLast();
3589 Int_t nbins = last-first+1;
3590 if (ntimes > 10*nbins) {
3591 auto inconsistency = CheckConsistency(this,h);
3592 if (inconsistency != kFullyConsistent) return; // do nothing
3593 Double_t sumw = h->Integral(first,last);
3594 if (sumw == 0) return;
3595 Double_t sumgen = 0;
3596 for (Int_t bin=first;bin<=last;bin++) {
3597 Double_t mean = h->RetrieveBinContent(bin)*ntimes/sumw;
3598 Double_t cont = (rng) ? rng->Poisson(mean) : gRandom->Poisson(mean);
3599 sumgen += cont;
3600 AddBinContent(bin,cont);
3601 if (fSumw2.fN) fSumw2.fArray[bin] += cont;
3602 }
3603
3604 // fix for the fluctuations in the total number n
3605 // since we use Poisson instead of multinomial
3606 // add a correction to have ntimes as generated entries
3607 Int_t i;
3608 if (sumgen < ntimes) {
3609 // add missing entries
3610 for (i = Int_t(sumgen+0.5); i < ntimes; ++i)
3611 {
3612 Double_t x = h->GetRandom();
3613 Fill(x);
3614 }
3615 }
3616 else if (sumgen > ntimes) {
3617 // remove extra entries
3618 i = Int_t(sumgen+0.5);
3619 while( i > ntimes) {
3620 Double_t x = h->GetRandom(rng);
3623 // skip in case bin is empty
3624 if (y > 0) {
3625 SetBinContent(ibin, y-1.);
3626 i--;
3627 }
3628 }
3629 }
3630
3631 ResetStats();
3632 return;
3633 }
3634 // case of different axis and not too large ntimes
3635
3636 if (h->ComputeIntegral() ==0) return;
3637 Int_t loop;
3638 Double_t x;
3639 for (loop=0;loop<ntimes;loop++) {
3640 x = h->GetRandom();
3641 Fill(x);
3642 }
3643}
3644
3645////////////////////////////////////////////////////////////////////////////////
3646/// Return Global bin number corresponding to x,y,z
3647///
3648/// 2-D and 3-D histograms are represented with a one dimensional
3649/// structure. This has the advantage that all existing functions, such as
3650/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3651/// This function tries to extend the axis if the given point belongs to an
3652/// under-/overflow bin AND if CanExtendAllAxes() is true.
3653///
3654/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3655
3657{
3658 if (GetDimension() < 2) {
3659 return fXaxis.FindBin(x);
3660 }
3661 if (GetDimension() < 3) {
3662 Int_t nx = fXaxis.GetNbins()+2;
3665 return binx + nx*biny;
3666 }
3667 if (GetDimension() < 4) {
3668 Int_t nx = fXaxis.GetNbins()+2;
3669 Int_t ny = fYaxis.GetNbins()+2;
3672 Int_t binz = fZaxis.FindBin(z);
3673 return binx + nx*(biny +ny*binz);
3674 }
3675 return -1;
3676}
3677
3678////////////////////////////////////////////////////////////////////////////////
3679/// Return Global bin number corresponding to x,y,z.
3680///
3681/// 2-D and 3-D histograms are represented with a one dimensional
3682/// structure. This has the advantage that all existing functions, such as
3683/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3684/// This function DOES NOT try to extend the axis if the given point belongs
3685/// to an under-/overflow bin.
3686///
3687/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3688
3690{
3691 if (GetDimension() < 2) {
3692 return fXaxis.FindFixBin(x);
3693 }
3694 if (GetDimension() < 3) {
3695 Int_t nx = fXaxis.GetNbins()+2;
3698 return binx + nx*biny;
3699 }
3700 if (GetDimension() < 4) {
3701 Int_t nx = fXaxis.GetNbins()+2;
3702 Int_t ny = fYaxis.GetNbins()+2;
3706 return binx + nx*(biny +ny*binz);
3707 }
3708 return -1;
3709}
3710
3711////////////////////////////////////////////////////////////////////////////////
3712/// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
3713/// if no bins with content > threshold is found the function returns -1.
3714/// The search will occur between the specified first and last bin. Specifying
3715/// the value of the last bin to search to less than zero will search until the
3716/// last defined bin.
3717
3719{
3720 if (fBuffer) ((TH1*)this)->BufferEmpty();
3721
3722 if (axis < 1 || (axis > 1 && GetDimension() == 1 ) ||
3723 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3 ) ) {
3724 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3725 axis = 1;
3726 }
3727 if (firstBin < 1) {
3728 firstBin = 1;
3729 }
3731 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3732 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3733
3734 if (axis == 1) {
3737 }
3738 for (Int_t binx = firstBin; binx <= lastBin; binx++) {
3739 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3740 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3742 }
3743 }
3744 }
3745 }
3746 else if (axis == 2) {
3749 }
3750 for (Int_t biny = firstBin; biny <= lastBin; biny++) {
3751 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3752 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3754 }
3755 }
3756 }
3757 }
3758 else if (axis == 3) {
3761 }
3762 for (Int_t binz = firstBin; binz <= lastBin; binz++) {
3763 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3764 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3766 }
3767 }
3768 }
3769 }
3770
3771 return -1;
3772}
3773
3774////////////////////////////////////////////////////////////////////////////////
3775/// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
3776/// if no bins with content > threshold is found the function returns -1.
3777/// The search will occur between the specified first and last bin. Specifying
3778/// the value of the last bin to search to less than zero will search until the
3779/// last defined bin.
3780
3782{
3783 if (fBuffer) ((TH1*)this)->BufferEmpty();
3784
3785
3786 if (axis < 1 || ( axis > 1 && GetDimension() == 1 ) ||
3787 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3) ) {
3788 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3789 axis = 1;
3790 }
3791 if (firstBin < 1) {
3792 firstBin = 1;
3793 }
3795 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3796 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3797
3798 if (axis == 1) {
3801 }
3802 for (Int_t binx = lastBin; binx >= firstBin; binx--) {
3803 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3804 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3806 }
3807 }
3808 }
3809 }
3810 else if (axis == 2) {
3813 }
3814 for (Int_t biny = lastBin; biny >= firstBin; biny--) {
3815 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3816 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3818 }
3819 }
3820 }
3821 }
3822 else if (axis == 3) {
3825 }
3826 for (Int_t binz = lastBin; binz >= firstBin; binz--) {
3827 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3828 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3830 }
3831 }
3832 }
3833 }
3834
3835 return -1;
3836}
3837
3838////////////////////////////////////////////////////////////////////////////////
3839/// Search object named name in the list of functions.
3840
3841TObject *TH1::FindObject(const char *name) const
3842{
3843 if (fFunctions) return fFunctions->FindObject(name);
3844 return nullptr;
3845}
3846
3847////////////////////////////////////////////////////////////////////////////////
3848/// Search object obj in the list of functions.
3849
3850TObject *TH1::FindObject(const TObject *obj) const
3851{
3852 if (fFunctions) return fFunctions->FindObject(obj);
3853 return nullptr;
3854}
3855
3856////////////////////////////////////////////////////////////////////////////////
3857/// Fit histogram with function fname.
3858///
3859///
3860/// fname is the name of a function available in the global ROOT list of functions
3861/// `gROOT->GetListOfFunctions`
3862/// The list include any TF1 object created by the user plus some pre-defined functions
3863/// which are automatically created by ROOT the first time a pre-defined function is requested from `gROOT`
3864/// (i.e. when calling `gROOT->GetFunction(const char *name)`).
3865/// These pre-defined functions are:
3866/// - `gaus, gausn` where gausn is the normalized Gaussian
3867/// - `landau, landaun`
3868/// - `expo`
3869/// - `pol1,...9, chebyshev1,...9`.
3870///
3871/// For printing the list of all available functions do:
3872///
3873/// TF1::InitStandardFunctions(); // not needed if `gROOT->GetFunction` is called before
3874/// gROOT->GetListOfFunctions()->ls()
3875///
3876/// `fname` can also be a formula that is accepted by the linear fitter containing the special operator `++`,
3877/// representing linear components separated by `++` sign, for example `x++sin(x)` for fitting `[0]*x+[1]*sin(x)`
3878///
3879/// This function finds a pointer to the TF1 object with name `fname` and calls TH1::Fit(TF1 *, Option_t *, Option_t *,
3880/// Double_t, Double_t). See there for the fitting options and the details about fitting histograms
3881
3883{
3884 char *linear;
3885 linear= (char*)strstr(fname, "++");
3886 Int_t ndim=GetDimension();
3887 if (linear){
3888 if (ndim<2){
3890 return Fit(&f1,option,goption,xxmin,xxmax);
3891 }
3892 else if (ndim<3){
3893 TF2 f2(fname, fname);
3894 return Fit(&f2,option,goption,xxmin,xxmax);
3895 }
3896 else{
3897 TF3 f3(fname, fname);
3898 return Fit(&f3,option,goption,xxmin,xxmax);
3899 }
3900 }
3901 else{
3902 TF1 * f1 = (TF1*)gROOT->GetFunction(fname);
3903 if (!f1) { Printf("Unknown function: %s",fname); return -1; }
3904 return Fit(f1,option,goption,xxmin,xxmax);
3905 }
3906}
3907
3908////////////////////////////////////////////////////////////////////////////////
3909/// Fit histogram with the function pointer f1.
3910///
3911/// \param[in] f1 pointer to the function object
3912/// \param[in] option string defining the fit options (see table below).
3913/// \param[in] goption specify a list of graphics options. See TH1::Draw for a complete list of these options.
3914/// \param[in] xxmin lower fitting range
3915/// \param[in] xxmax upper fitting range
3916/// \return A smart pointer to the TFitResult class
3917///
3918/// \anchor HFitOpt
3919/// ### Histogram Fitting Options
3920///
3921/// Here is the full list of fit options that can be given in the parameter `option`.
3922/// Several options can be used together by concatanating the strings without the need of any delimiters.
3923///
3924/// option | description
3925/// -------|------------
3926/// "L" | Uses a log likelihood method (default is chi-square method). To be used when the histogram represents counts.
3927/// "WL" | Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1. This is needed for getting correct parameter uncertainties for weighted fits.
3928/// "P" | Uses Pearson chi-square method. Uses expected errors instead of the observed one (default case). The expected error is instead estimated from the square-root of the bin function value.
3929/// "MULTI" | Uses Loglikelihood method based on multi-nomial distribution. In this case the function must be normalized and one fits only the function shape.
3930/// "W" | Fit using the chi-square method and ignoring the bin uncertainties and skip empty bins.
3931/// "WW" | Fit using the chi-square method and ignoring the bin uncertainties and include the empty bins.
3932/// "I" | Uses the integral of function in the bin instead of the default bin center value.
3933/// "F" | Uses the default minimizer (e.g. Minuit) when fitting a linear function (e.g. polN) instead of the linear fitter.
3934/// "U" | Uses a user specified objective function (e.g. user providedlikelihood function) defined using `TVirtualFitter::SetFCN`
3935/// "E" | Performs a better parameter errors estimation using the Minos technique for all fit parameters.
3936/// "M" | Uses the IMPROVE algorithm (available only in TMinuit). This algorithm attempts improve the found local minimum by searching for a better one.
3937/// "S" | The full result of the fit is returned in the `TFitResultPtr`. This is needed to get the covariance matrix of the fit. See `TFitResult` and the base class `ROOT::Math::FitResult`.
3938/// "Q" | Quiet mode (minimum printing)
3939/// "V" | Verbose mode (default is between Q and V)
3940/// "+" | Adds this new fitted function to the list of fitted functions. By default, the previous function is deleted and only the last one is kept.
3941/// "N" | Does not store the graphics function, does not draw the histogram with the function after fitting.
3942/// "0" | Does not draw the histogram and the fitted function after fitting, but in contrast to option "N", it stores the fitted function in the histogram list of functions.
3943/// "R" | Fit using a fitting range specified in the function range with `TF1::SetRange`.
3944/// "B" | Use this option when you want to fix or set limits on one or more parameters and the fitting function is a predefined one (e.g gaus, expo,..), otherwise in case of pre-defined functions, some default initial values and limits will be used.
3945/// "C" | In case of linear fitting, do no calculate the chisquare (saves CPU time).
3946/// "G" | Uses the gradient implemented in `TF1::GradientPar` for the minimization. This allows to use Automatic Differentiation when it is supported by the provided TF1 function.
3947/// "WIDTH" | Scales the histogran bin content by the bin width (useful for variable bins histograms)
3948/// "SERIAL" | Runs in serial mode. By default if ROOT is built with MT support and MT is enables, the fit is perfomed in multi-thread - "E" Perform better Errors estimation using Minos technique
3949/// "MULTITHREAD" | Forces usage of multi-thread execution whenever possible
3950///
3951/// The default fitting of an histogram (when no option is given) is perfomed as following:
3952/// - a chi-square fit (see below Chi-square Fits) computed using the bin histogram errors and excluding bins with zero errors (empty bins);
3953/// - the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before;
3954/// - the default Minimizer with its default configuration is used (see below Minimizer Configuration) except for linear function;
3955/// - for linear functions (`polN`, `chenbyshev` or formula expressions combined using operator `++`) a linear minimization is used.
3956/// - only the status of the fit is returned;
3957/// - the fit is performed in Multithread whenever is enabled in ROOT;
3958/// - only the last fitted function is saved in the histogram;
3959/// - the histogram is drawn after fitting overalyed with the resulting fitting function
3960///
3961/// \anchor HFitMinimizer
3962/// ### Minimizer Configuration
3963///
3964/// The Fit is perfomed using the default Minimizer, defined in the `ROOT::Math::MinimizerOptions` class.
3965/// It is possible to change the default minimizer and its configuration parameters by calling these static functions before fitting (before calling `TH1::Fit`):
3966/// - `ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerName, minimizerAgorithm)` for changing the minmizer and/or the corresponding algorithm.
3967/// For example `ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");` will set the usage of the BFGS algorithm of the GSL multi-dimensional minimization
3968/// The current defaults are ("Minuit","Migrad").
3969/// See the documentation of the `ROOT::Math::MinimizerOptions` for the available minimizers in ROOT and their corresponding algorithms.
3970/// - `ROOT::Math::MinimizerOptions::SetDefaultTolerance` for setting a different tolerance value for the minimization.
3971/// - `ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls` for setting the maximum number of function calls.
3972/// - `ROOT::Math::MinimizerOptions::SetDefaultPrintLevel` for changing the minimizer print level from level=0 (minimal printing) to level=3 maximum printing
3973///
3974/// Other options are possible depending on the Minimizer used, see the corresponding documentation.
3975/// The default minimizer can be also set in the resource file in etc/system.rootrc. For example
3976///
3977/// ~~~ {.cpp}
3978/// Root.Fitter: Minuit2
3979/// ~~~
3980///
3981/// \anchor HFitChi2
3982/// ### Chi-square Fits
3983///
3984/// By default a chi-square (least-square) fit is performed on the histogram. The so-called modified least-square method
3985/// is used where the residual for each bin is computed using as error the observed value (the bin error) returned by `TH1::GetBinError`
3986///
3987/// \f[
3988/// Chi2 = \sum_{i}{ \left(\frac{y(i) - f(x(i) | p )}{e(i)} \right)^2 }
3989/// \f]
3990///
3991/// where `y(i)` is the bin content for each bin `i`, `x(i)` is the bin center and `e(i)` is the bin error (`sqrt(y(i)` for
3992/// an un-weighted histogram). Bins with zero errors are excluded from the fit. See also later the note on the treatment
3993/// of empty bins. When using option "I" the residual is computed not using the function value at the bin center, `f(x(i)|p)`,
3994/// but the integral of the function in the bin, Integral{ f(x|p)dx }, divided by the bin volume.
3995/// When using option `P` (Pearson chi2), the expected error computed as `e(i) = sqrt(f(x(i)|p))` is used.
3996/// In this case empty bins are considered in the fit.
3997/// Both chi-square methods should not be used when the bin content represent counts, especially in case of low bin statistics,
3998/// because they could return a biased result.
3999///
4000/// \anchor HFitNLL
4001/// ### Likelihood Fits
4002///
4003/// When using option "L" a likelihood fit is used instead of the default chi-square fit.
4004/// The likelihood is built assuming a Poisson probability density function for each bin.
4005/// The negative log-likelihood to be minimized is
4006///
4007/// \f[
4008/// NLL = - \sum_{i}{ \log {\mathrm P} ( y(i) | f(x(i) | p ) ) }
4009/// \f]
4010/// where `P(y|f)` is the Poisson distribution of observing a count `y(i)` in the bin when the expected count is `f(x(i)|p)`.
4011/// The exact likelihood used is the Poisson likelihood described in this paper:
4012/// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
4013/// Nucl. Instrum. Meth. 221 (1984) 437.
4014///
4015/// \f[
4016/// NLL = \sum_{i}{( f(x(i) | p ) + y(i)\log(y(i)/ f(x(i) | p )) - y(i)) }
4017/// \f]
4018/// By using this formulation, `2*NLL` can be interpreted as the chi-square resulting from the fit.
4019///
4020/// This method should be always used when the bin content represents counts (i.e. errors are sqrt(N) ).
4021/// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
4022/// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and the chi2 fit
4023/// give the same result.
4024///
4025/// The likelihood method, although a bit slower, it is therefore the recommended method,
4026/// when the histogram represent counts (Poisson statistics), where the chi-square methods may
4027/// give incorrect results, especially in case of low statistics.
4028/// In case of a weighted histogram, it is possible to perform also a likelihood fit by using the
4029/// option "WL". Note a weighted histogram is a histogram which has been filled with weights and it
4030/// has the information on the sum of the weight square for each bin ( TH1::Sumw2() has been called).
4031/// The bin error for a weighted histogram is the square root of the sum of the weight square.
4032///
4033/// \anchor HFitRes
4034/// ### Fit Result
4035///
4036/// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
4037/// By default the TFitResultPtr contains only the status of the fit which is return by an
4038/// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
4039///
4040/// ~~~ {.cpp}
4041/// Int_t fitStatus = h->Fit(myFunc);
4042/// ~~~
4043///
4044/// If the option "S" is instead used, TFitResultPtr behaves as a smart
4045/// pointer to the TFitResult object. This is useful for retrieving the full result information from the fit, such as the covariance matrix,
4046/// as shown in this example code:
4047///
4048/// ~~~ {.cpp}
4049/// TFitResultPtr r = h->Fit(myFunc,"S");
4050/// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
4051/// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
4052/// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
4053/// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
4054/// r->Print("V"); // print full information of fit including covariance matrix
4055/// r->Write(); // store the result in a file
4056/// ~~~
4057///
4058/// The fit parameters, error and chi-square (but not covariance matrix) can be retrieved also
4059/// directly from the fitted function that is passed to this call.
4060/// Given a pointer to an associated fitted function `myfunc`, one can retrieve the function/fit
4061/// parameters with calls such as:
4062///
4063/// ~~~ {.cpp}
4064/// Double_t chi2 = myfunc->GetChisquare();
4065/// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
4066/// Double_t err0 = myfunc->GetParError(0); //error on first parameter
4067/// ~~~
4068///
4069/// ##### Associated functions
4070///
4071/// One or more objects (typically a TF1*) can be added to the list
4072/// of functions (fFunctions) associated to each histogram.
4073/// When TH1::Fit is invoked, the fitted function is added to the histogram list of functions (fFunctions).
4074/// If the histogram is made persistent, the list of associated functions is also persistent.
4075/// Given a histogram h, one can retrieve an associated function with:
4076///
4077/// ~~~ {.cpp}
4078/// TF1 *myfunc = h->GetFunction("myfunc");
4079/// ~~~
4080/// or by quering directly the list obtained by calling `TH1::GetListOfFunctions`.
4081///
4082/// \anchor HFitStatus
4083/// ### Fit status
4084///
4085/// The status of the fit is obtained converting the TFitResultPtr to an integer
4086/// independently if the fit option "S" is used or not:
4087///
4088/// ~~~ {.cpp}
4089/// TFitResultPtr r = h->Fit(myFunc,opt);
4090/// Int_t fitStatus = r;
4091/// ~~~
4092///
4093/// - `status = 0` : the fit has been performed successfully (i.e no error occurred).
4094/// - `status < 0` : there is an error not connected with the minimization procedure, for example when a wrong function is used.
4095/// - `status > 0` : return status from Minimizer, depends on used Minimizer. For example for TMinuit and Minuit2 we have:
4096/// - `status = migradStatus + 10*minosStatus + 100*hesseStatus + 1000*improveStatus`.
4097/// TMinuit returns 0 (for migrad, minos, hesse or improve) in case of success and 4 in case of error (see the documentation of TMinuit::mnexcm). For example, for an error
4098/// only in Minos but not in Migrad a fitStatus of 40 will be returned.
4099/// Minuit2 returns 0 in case of success and different values in migrad,minos or
4100/// hesse depending on the error. See in this case the documentation of
4101/// Minuit2Minimizer::Minimize for the migrad return status, Minuit2Minimizer::GetMinosError for the
4102/// minos return status and Minuit2Minimizer::Hesse for the hesse return status.
4103/// If other minimizers are used see their specific documentation for the status code returned.
4104/// For example in the case of Fumili, see TFumili::Minimize.
4105///
4106/// \anchor HFitRange
4107/// ### Fitting in a range
4108///
4109/// In order to fit in a sub-range of the histogram you have two options:
4110/// - pass to this function the lower (`xxmin`) and upper (`xxmax`) values for the fitting range;
4111/// - define a specific range in the fitted function and use the fitting option "R".
4112/// For example, if your histogram has a defined range between -4 and 4 and you want to fit a gaussian
4113/// only in the interval 1 to 3, you can do:
4114///
4115/// ~~~ {.cpp}
4116/// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
4117/// histo->Fit("f1", "R");
4118/// ~~~
4119///
4120/// The fitting range is also limited by the histogram range defined using TAxis::SetRange
4121/// or TAxis::SetRangeUser. Therefore the fitting range is the smallest range between the
4122/// histogram one and the one defined by one of the two previous options described above.
4123///
4124/// \anchor HFitInitial
4125/// ### Setting initial conditions
4126///
4127/// Parameters must be initialized before invoking the Fit function.
4128/// The setting of the parameter initial values is automatic for the
4129/// predefined functions such as poln, expo, gaus, landau. One can however disable
4130/// this automatic computation by using the option "B".
4131/// Note that if a predefined function is defined with an argument,
4132/// eg, gaus(0), expo(1), you must specify the initial values for
4133/// the parameters.
4134/// You can specify boundary limits for some or all parameters via
4135///
4136/// ~~~ {.cpp}
4137/// f1->SetParLimits(p_number, parmin, parmax);
4138/// ~~~
4139///
4140/// if `parmin >= parmax`, the parameter is fixed
4141/// Note that you are not forced to fix the limits for all parameters.
4142/// For example, if you fit a function with 6 parameters, you can do:
4143///
4144/// ~~~ {.cpp}
4145/// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
4146/// func->SetParLimits(3, -10, -4);
4147/// func->FixParameter(4, 0);
4148/// func->SetParLimits(5, 1, 1);
4149/// ~~~
4150///
4151/// With this setup, parameters 0->2 can vary freely
4152/// Parameter 3 has boundaries [-10,-4] with initial value -8
4153/// Parameter 4 is fixed to 0
4154/// Parameter 5 is fixed to 100.
4155/// When the lower limit and upper limit are equal, the parameter is fixed.
4156/// However to fix a parameter to 0, one must call the FixParameter function.
4157///
4158/// \anchor HFitStatBox
4159/// ### Fit Statistics Box
4160///
4161/// The statistics box can display the result of the fit.
4162/// You can change the statistics box to display the fit parameters with
4163/// the TStyle::SetOptFit(mode) method. This mode has four digits.
4164/// mode = pcev (default = 0111)
4165///
4166/// v = 1; print name/values of parameters
4167/// e = 1; print errors (if e=1, v must be 1)
4168/// c = 1; print Chisquare/Number of degrees of freedom
4169/// p = 1; print Probability
4170///
4171/// For example: gStyle->SetOptFit(1011);
4172/// prints the fit probability, parameter names/values, and errors.
4173/// You can change the position of the statistics box with these lines
4174/// (where g is a pointer to the TGraph):
4175///
4176/// TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats");
4177/// st->SetX1NDC(newx1); //new x start position
4178/// st->SetX2NDC(newx2); //new x end position
4179///
4180/// \anchor HFitExtra
4181/// ### Additional Notes on Fitting
4182///
4183/// #### Fitting a histogram of dimension N with a function of dimension N-1
4184///
4185/// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
4186/// In this case the chi-square is computed from the squared error distance between the function values and the bin centers weighted by the bin content.
4187/// For correct error scaling, the obtained parameter error are corrected as in the case when the
4188/// option "W" is used.
4189///
4190/// #### User defined objective functions
4191///
4192/// By default when fitting a chi square function is used for fitting. When option "L" is used
4193/// a Poisson likelihood function is used. Using option "MULTI" a multinomial likelihood fit is used.
4194/// Thes functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
4195/// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
4196/// the file math/mathcore/src/FitUtil.cxx.
4197/// It is possible to specify a user defined fitting function, using option "U" and
4198/// calling the following functions:
4199///
4200/// ~~~ {.cpp}
4201/// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction);
4202/// ~~~
4203///
4204/// where MyFittingFunction is of type:
4205///
4206/// ~~~ {.cpp}
4207/// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
4208/// ~~~
4209///
4210/// #### Note on treatment of empty bins
4211///
4212/// Empty bins, which have the content equal to zero AND error equal to zero,
4213/// are excluded by default from the chi-square fit, but they are considered in the likelihood fit.
4214/// since they affect the likelihood if the function value in these bins is not negligible.
4215/// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
4216/// any other bins in the fit. Instead bins with zero error and non-zero content are by default excluded in the chi-squared fit.
4217/// In general, one should not fit a histogram with non-empty bins and zero errors.
4218///
4219/// If the bin errors are not known, one should use the fit option "W", which gives a weight=1 for each bin (it is an unweighted least-square
4220/// fit). When using option "WW" the empty bins will be also considered in the chi-square fit with an error of 1.
4221/// Note that in this fitting case (option "W" or "WW") the resulting fitted parameter errors
4222/// are corrected by the obtained chi2 value using this scaling expression:
4223/// `errorp *= sqrt(chisquare/(ndf-1))` as it is done when fitting a TGraph with
4224/// no point errors.
4225///
4226/// #### Excluding points
4227///
4228/// You can use TF1::RejectPoint inside your fitting function to exclude some points
4229/// within a certain range from the fit. See the tutorial `fit/fitExclude.C`.
4230///
4231///
4232/// #### Warning when using the option "0"
4233///
4234/// When selecting the option "0", the fitted function is added to
4235/// the list of functions of the histogram, but it is not drawn when the histogram is drawn.
4236/// You can undo this behaviour resetting its corresponding bit in the TF1 object as following:
4237///
4238/// ~~~ {.cpp}
4239/// h.Fit("myFunction", "0"); // fit, store function but do not draw
4240/// h.Draw(); // function is not drawn
4241/// h.GetFunction("myFunction")->ResetBit(TF1::kNotDraw);
4242/// h.Draw(); // function is visible again
4243/// ~~~
4245
4247{
4248 // implementation of Fit method is in file hist/src/HFitImpl.cxx
4251
4252 // create range and minimizer options with default values
4255
4256 // need to empty the buffer before
4257 // (t.b.d. do a ML unbinned fit with buffer data)
4258 if (fBuffer) BufferEmpty();
4259
4261}
4262
4263////////////////////////////////////////////////////////////////////////////////
4264/// Display a panel with all histogram fit options.
4265///
4266/// See class TFitPanel for example
4267
4268void TH1::FitPanel()
4269{
4270 if (!gPad)
4271 gROOT->MakeDefCanvas();
4272
4273 if (!gPad) {
4274 Error("FitPanel", "Unable to create a default canvas");
4275 return;
4276 }
4277
4278
4279 // use plugin manager to create instance of TFitEditor
4280 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor");
4281 if (handler && handler->LoadPlugin() != -1) {
4282 if (handler->ExecPlugin(2, gPad, this) == 0)
4283 Error("FitPanel", "Unable to create the FitPanel");
4284 }
4285 else
4286 Error("FitPanel", "Unable to find the FitPanel plug-in");
4287}
4288
4289////////////////////////////////////////////////////////////////////////////////
4290/// Return a histogram containing the asymmetry of this histogram with h2,
4291/// where the asymmetry is defined as:
4292///
4293/// ~~~ {.cpp}
4294/// Asymmetry = (h1 - h2)/(h1 + h2) where h1 = this
4295/// ~~~
4296///
4297/// works for 1D, 2D, etc. histograms
4298/// c2 is an optional argument that gives a relative weight between the two
4299/// histograms, and dc2 is the error on this weight. This is useful, for example,
4300/// when forming an asymmetry between two histograms from 2 different data sets that
4301/// need to be normalized to each other in some way. The function calculates
4302/// the errors assuming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
4303///
4304/// example: assuming 'h1' and 'h2' are already filled
4305///
4306/// ~~~ {.cpp}
4307/// h3 = h1->GetAsymmetry(h2)
4308/// ~~~
4309///
4310/// then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
4311/// h1 and h2 are left intact.
4312///
4313/// Note that it is the user's responsibility to manage the created histogram.
4314/// The name of the returned histogram will be `Asymmetry_nameOfh1-nameOfh2`
4315///
4316/// code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
4317///
4318/// clone the histograms so top and bottom will have the
4319/// correct dimensions:
4320/// Sumw2 just makes sure the errors will be computed properly
4321/// when we form sums and ratios below.
4322
4324{
4325 TH1 *h1 = this;
4326 TString name = TString::Format("Asymmetry_%s-%s",h1->GetName(),h2->GetName() );
4327 TH1 *asym = (TH1*)Clone(name);
4328
4329 // set also the title
4330 TString title = TString::Format("(%s - %s)/(%s+%s)",h1->GetName(),h2->GetName(),h1->GetName(),h2->GetName() );
4331 asym->SetTitle(title);
4332
4333 asym->Sumw2();
4336 TH1 *top = (TH1*)asym->Clone();
4337 TH1 *bottom = (TH1*)asym->Clone();
4339
4340 // form the top and bottom of the asymmetry, and then divide:
4341 top->Add(h1,h2,1,-c2);
4342 bottom->Add(h1,h2,1,c2);
4343 asym->Divide(top,bottom);
4344
4345 Int_t xmax = asym->GetNbinsX();
4346 Int_t ymax = asym->GetNbinsY();
4347 Int_t zmax = asym->GetNbinsZ();
4348
4349 if (h1->fBuffer) h1->BufferEmpty(1);
4350 if (h2->fBuffer) h2->BufferEmpty(1);
4351 if (bottom->fBuffer) bottom->BufferEmpty(1);
4352
4353 // now loop over bins to calculate the correct errors
4354 // the reason this error calculation looks complex is because of c2
4355 for(Int_t i=1; i<= xmax; i++){
4356 for(Int_t j=1; j<= ymax; j++){
4357 for(Int_t k=1; k<= zmax; k++){
4358 Int_t bin = GetBin(i, j, k);
4359 // here some bin contents are written into variables to make the error
4360 // calculation a little more legible:
4362 Double_t b = h2->RetrieveBinContent(bin);
4363 Double_t bot = bottom->RetrieveBinContent(bin);
4364
4365 // make sure there are some events, if not, then the errors are set = 0
4366 // automatically.
4367 //if(bot < 1){} was changed to the next line from recommendation of Jason Seely (28 Nov 2005)
4368 if(bot < 1e-6){}
4369 else{
4370 // computation of errors by Christos Leonidopoulos
4372 Double_t dbsq = h2->GetBinErrorSqUnchecked(bin);
4373 Double_t error = 2*TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4374 asym->SetBinError(i,j,k,error);
4375 }
4376 }
4377 }
4378 }
4379 delete top;
4380 delete bottom;
4381
4382 return asym;
4383}
4384
4385////////////////////////////////////////////////////////////////////////////////
4386/// Static function
4387/// return the default buffer size for automatic histograms
4388/// the parameter fgBufferSize may be changed via SetDefaultBufferSize
4389
4391{
4392 return fgBufferSize;
4393}
4394
4395////////////////////////////////////////////////////////////////////////////////
4396/// Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
4397/// see TH1::SetDefaultSumw2.
4398
4400{
4401 return fgDefaultSumw2;
4402}
4403
4404////////////////////////////////////////////////////////////////////////////////
4405/// Return the current number of entries.
4406
4408{
4409 if (fBuffer) {
4410 Int_t nentries = (Int_t) fBuffer[0];
4411 if (nentries > 0) return nentries;
4412 }
4413
4414 return fEntries;
4415}
4416
4417////////////////////////////////////////////////////////////////////////////////
4418/// Number of effective entries of the histogram.
4419///
4420/// \f[
4421/// neff = \frac{(\sum Weights )^2}{(\sum Weight^2 )}
4422/// \f]
4423///
4424/// In case of an unweighted histogram this number is equivalent to the
4425/// number of entries of the histogram.
4426/// For a weighted histogram, this number corresponds to the hypothetical number of unweighted entries
4427/// a histogram would need to have the same statistical power as this weighted histogram.
4428/// Note: The underflow/overflow are included if one has set the TH1::StatOverFlows flag
4429/// and if the statistics has been computed at filling time.
4430/// If a range is set in the histogram the number is computed from the given range.
4431
4433{
4434 Stat_t s[kNstat];
4435 this->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
4436 return (s[1] ? s[0]*s[0]/s[1] : TMath::Abs(s[0]) );
4437}
4438
4439////////////////////////////////////////////////////////////////////////////////
4440/// Shortcut to set the three histogram colors with a single call.
4441///
4442/// By default: linecolor = markercolor = fillcolor = -1
4443/// If a color is < 0 this method does not change the corresponding color if positive or null it set the color.
4444///
4445/// For instance:
4446/// ~~~ {.cpp}
4447/// h->SetColors(kRed, kRed);
4448/// ~~~
4449/// will set the line color and the marker color to red.
4450
4452{
4453 if (linecolor >= 0)
4455 if (markercolor >= 0)
4457 if (fillcolor >= 0)
4459}
4460
4461
4462////////////////////////////////////////////////////////////////////////////////
4463/// Set highlight (enable/disable) mode for the histogram
4464/// by default highlight mode is disable
4465
4466void TH1::SetHighlight(Bool_t set)
4467{
4468 if (IsHighlight() == set)
4469 return;
4470 if (fDimension > 2) {
4471 Info("SetHighlight", "Supported only 1-D or 2-D histograms");
4472 return;
4473 }
4474
4475 SetBit(kIsHighlight, set);
4476
4477 if (fPainter)
4479}
4480
4481////////////////////////////////////////////////////////////////////////////////
4482/// Redefines TObject::GetObjectInfo.
4483/// Displays the histogram info (bin number, contents, integral up to bin
4484/// corresponding to cursor position px,py
4485
4486char *TH1::GetObjectInfo(Int_t px, Int_t py) const
4487{
4488 return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
4489}
4490
4491////////////////////////////////////////////////////////////////////////////////
4492/// Return pointer to painter.
4493/// If painter does not exist, it is created
4494
4496{
4497 if (!fPainter) {
4498 TString opt = option;
4499 opt.ToLower();
4500 if (opt.Contains("gl") || gStyle->GetCanvasPreferGL()) {
4501 //try to create TGLHistPainter
4502 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TGLHistPainter");
4503
4504 if (handler && handler->LoadPlugin() != -1)
4505 fPainter = reinterpret_cast<TVirtualHistPainter *>(handler->ExecPlugin(1, this));
4506 }
4507 }
4508
4510
4511 return fPainter;
4512}
4513
4514////////////////////////////////////////////////////////////////////////////////
4515/// Compute Quantiles for this histogram.
4516/// A quantile x_p := Q(p) is defined as the value x_p such that the cumulative
4517/// probability distribution Function F of variable X yields:
4518///
4519/// ~~~ {.cpp}
4520/// F(x_p) = Pr(X <= x_p) = p with 0 <= p <= 1.
4521/// x_p = Q(p) = F_inv(p)
4522/// ~~~
4523///
4524/// For instance the median x_0.5 of a distribution is defined as that value
4525/// of the random variable X for which the distribution function equals 0.5:
4526///
4527/// ~~~ {.cpp}
4528/// F(x_0.5) = Probability(X < x_0.5) = 0.5
4529/// x_0.5 = Q(0.5)
4530/// ~~~
4531///
4532/// \author Eddy Offermann
4533/// code from Eddy Offermann, Renaissance
4534///
4535/// \param[in] n maximum size of the arrays xp and p (if given)
4536/// \param[out] xp array to be filled with nq quantiles evaluated at (p). Memory has to be preallocated by caller.
4537/// - If `p == nullptr`, the quantiles are computed at the (first `n`) probabilities p given by the CDF of the histogram;
4538/// `n` must thus be smaller or equal Nbins+1, otherwise the extra values of `xp` will not be filled and `nq` will be smaller than `n`.
4539/// If all bins have non-zero entries, the quantiles happen to be the bin centres.
4540/// Empty bins will, however, be skipped in the quantiles.
4541/// If the CDF is e.g. [0., 0., 0.1, ...], the quantiles would be, [3., 3., 3., ...], with the third bin starting
4542/// at 3.
4543/// \param[in] p array of cumulative probabilities where quantiles should be evaluated.
4544/// - if `p == nullptr`, the CDF of the histogram will be used to compute the quantiles, and will
4545/// have a size of n.
4546/// - Otherwise, it is assumed to contain at least n values.
4547/// \return number of quantiles computed
4548/// \note Unlike in TF1::GetQuantiles, `p` is here an optional argument
4549///
4550/// Note that the Integral of the histogram is automatically recomputed
4551/// if the number of entries is different of the number of entries when
4552/// the integral was computed last time. In case you do not use the Fill
4553/// functions to fill your histogram, but SetBinContent, you must call
4554/// TH1::ComputeIntegral before calling this function.
4555///
4556/// Getting quantiles xp from two histograms and storing results in a TGraph,
4557/// a so-called QQ-plot
4558///
4559/// ~~~ {.cpp}
4560/// TGraph *gr = new TGraph(nprob);
4561/// h1->GetQuantiles(nprob,gr->GetX());
4562/// h2->GetQuantiles(nprob,gr->GetY());
4563/// gr->Draw("alp");
4564/// ~~~
4565///
4566/// Example:
4567///
4568/// ~~~ {.cpp}
4569/// void quantiles() {
4570/// // demo for quantiles
4571/// const Int_t nq = 20;
4572/// TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
4573/// h->FillRandom("gaus",5000);
4574/// h->GetXaxis()->SetTitle("x");
4575/// h->GetYaxis()->SetTitle("Counts");
4576///
4577/// Double_t p[nq]; // probabilities where to evaluate the quantiles in [0,1]
4578/// Double_t xp[nq]; // array of positions X to store the resulting quantiles
4579/// for (Int_t i=0;i<nq;i++) p[i] = Float_t(i+1)/nq;
4580/// h->GetQuantiles(nq,xp,p);
4581///
4582/// //show the original histogram in the top pad
4583/// TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
4584/// c1->Divide(1,2);
4585/// c1->cd(1);
4586/// h->Draw();
4587///
4588/// // show the quantiles in the bottom pad
4589/// c1->cd(2);
4590/// gPad->SetGrid();
4591/// TGraph *gr = new TGraph(nq,p,xp);
4592/// gr->SetMarkerStyle(21);
4593/// gr->GetXaxis()->SetTitle("p");
4594/// gr->GetYaxis()->SetTitle("x");
4595/// gr->Draw("alp");
4596/// }
4597/// ~~~
4598
4600{
4601 if (GetDimension() > 1) {
4602 Error("GetQuantiles","Only available for 1-d histograms");
4603 return 0;
4604 }
4605
4606 const Int_t nbins = GetXaxis()->GetNbins();
4607 if (!fIntegral) ComputeIntegral();
4608 if (fIntegral[nbins+1] != fEntries) ComputeIntegral();
4609
4610 Int_t i, ibin;
4611 Int_t nq = n;
4612 std::unique_ptr<Double_t[]> localProb;
4613 if (p == nullptr) {
4614 nq = nbins+1;
4615 localProb.reset(new Double_t[nq]);
4616 localProb[0] = 0;
4617 for (i=1;i<nq;i++) {
4618 localProb[i] = fIntegral[i] / fIntegral[nbins];
4619 }
4620 }
4621 Double_t const *const prob = p ? p : localProb.get();
4622
4623 for (i = 0; i < nq; i++) {
4625 if (fIntegral[ibin] == prob[i]) {
4626 if (prob[i] == 0.) {
4627 for (; ibin+1 <= nbins && fIntegral[ibin+1] == 0.; ++ibin) {
4628
4629 }
4630 xp[i] = fXaxis.GetBinUpEdge(ibin);
4631 }
4632 else if (prob[i] == 1.) {
4633 xp[i] = fXaxis.GetBinUpEdge(ibin);
4634 }
4635 else {
4636 // Find equal integral in later bins (ie their entries are zero)
4637 Double_t width = 0;
4638 for (Int_t j = ibin+1; j <= nbins; ++j) {
4639 if (prob[i] == fIntegral[j]) {
4641 }
4642 else
4643 break;
4644 }
4646 }
4647 }
4648 else {
4649 xp[i] = GetBinLowEdge(ibin+1);
4651 if (dint > 0) xp[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4652 }
4653 }
4654
4655 return nq;
4656}
4657
4658////////////////////////////////////////////////////////////////////////////////
4664 return 1;
4665}
4666
4667////////////////////////////////////////////////////////////////////////////////
4668/// Compute Initial values of parameters for a gaussian.
4669
4670void H1InitGaus()
4671{
4672 Double_t allcha, sumx, sumx2, x, val, stddev, mean;
4673 Int_t bin;
4674 const Double_t sqrtpi = 2.506628;
4675
4676 // - Compute mean value and StdDev of the histogram in the given range
4678 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4679 Int_t hxfirst = hFitter->GetXfirst();
4680 Int_t hxlast = hFitter->GetXlast();
4681 Double_t valmax = curHist->GetBinContent(hxfirst);
4682 Double_t binwidx = curHist->GetBinWidth(hxfirst);
4683 allcha = sumx = sumx2 = 0;
4684 for (bin=hxfirst;bin<=hxlast;bin++) {
4685 x = curHist->GetBinCenter(bin);
4686 val = TMath::Abs(curHist->GetBinContent(bin));
4687 if (val > valmax) valmax = val;
4688 sumx += val*x;
4689 sumx2 += val*x*x;
4690 allcha += val;
4691 }
4692 if (allcha == 0) return;
4693 mean = sumx/allcha;
4694 stddev = sumx2/allcha - mean*mean;
4695 if (stddev > 0) stddev = TMath::Sqrt(stddev);
4696 else stddev = 0;
4697 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4698 //if the distribution is really gaussian, the best approximation
4699 //is binwidx*allcha/(sqrtpi*stddev)
4700 //However, in case of non-gaussian tails, this underestimates
4701 //the normalisation constant. In this case the maximum value
4702 //is a better approximation.
4703 //We take the average of both quantities
4705
4706 //In case the mean value is outside the histo limits and
4707 //the StdDev is bigger than the range, we take
4708 // mean = center of bins
4709 // stddev = half range
4710 Double_t xmin = curHist->GetXaxis()->GetXmin();
4711 Double_t xmax = curHist->GetXaxis()->GetXmax();
4712 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4713 mean = 0.5*(xmax+xmin);
4714 stddev = 0.5*(xmax-xmin);
4715 }
4716 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4718 f1->SetParameter(1,mean);
4720 f1->SetParLimits(2,0,10*stddev);
4721}
4722
4723////////////////////////////////////////////////////////////////////////////////
4724/// Compute Initial values of parameters for an exponential.
4725
4726void H1InitExpo()
4727{
4729 Int_t ifail;
4731 Int_t hxfirst = hFitter->GetXfirst();
4732 Int_t hxlast = hFitter->GetXlast();
4733 Int_t nchanx = hxlast - hxfirst + 1;
4734
4736
4737 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4739 f1->SetParameter(1,slope);
4740
4741}
4742
4743////////////////////////////////////////////////////////////////////////////////
4744/// Compute Initial values of parameters for a polynom.
4745
4746void H1InitPolynom()
4747{
4748 Double_t fitpar[25];
4749
4751 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4752 Int_t hxfirst = hFitter->GetXfirst();
4753 Int_t hxlast = hFitter->GetXlast();
4754 Int_t nchanx = hxlast - hxfirst + 1;
4755 Int_t npar = f1->GetNpar();
4756
4757 if (nchanx <=1 || npar == 1) {
4758 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4759 fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
4760 } else {
4762 }
4763 for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
4764}
4765
4766////////////////////////////////////////////////////////////////////////////////
4767/// Least squares lpolynomial fitting without weights.
4768///
4769/// \param[in] n number of points to fit
4770/// \param[in] m number of parameters
4771/// \param[in] a array of parameters
4772///
4773/// based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
4774/// (E.Keil. revised by B.Schorr, 23.10.1981.)
4775
4777{
4778 const Double_t zero = 0.;
4779 const Double_t one = 1.;
4780 const Int_t idim = 20;
4781
4782 Double_t b[400] /* was [20][20] */;
4783 Int_t i, k, l, ifail;
4785 Double_t da[20], xk, yk;
4786
4787 if (m <= 2) {
4788 H1LeastSquareLinearFit(n, a[0], a[1], ifail);
4789 return;
4790 }
4791 if (m > idim || m > n) return;
4792 b[0] = Double_t(n);
4793 da[0] = zero;
4794 for (l = 2; l <= m; ++l) {
4795 b[l-1] = zero;
4796 b[m + l*20 - 21] = zero;
4797 da[l-1] = zero;
4798 }
4800 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4801 Int_t hxfirst = hFitter->GetXfirst();
4802 Int_t hxlast = hFitter->GetXlast();
4803 for (k = hxfirst; k <= hxlast; ++k) {
4804 xk = curHist->GetBinCenter(k);
4805 yk = curHist->GetBinContent(k);
4806 power = one;
4807 da[0] += yk;
4808 for (l = 2; l <= m; ++l) {
4809 power *= xk;
4810 b[l-1] += power;
4811 da[l-1] += power*yk;
4812 }
4813 for (l = 2; l <= m; ++l) {
4814 power *= xk;
4815 b[m + l*20 - 21] += power;
4816 }
4817 }
4818 for (i = 3; i <= m; ++i) {
4819 for (k = i; k <= m; ++k) {
4820 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4821 }
4822 }
4824
4825 for (i=0; i<m; ++i) a[i] = da[i];
4826
4827}
4828
4829////////////////////////////////////////////////////////////////////////////////
4830/// Least square linear fit without weights.
4831///
4832/// extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
4833/// (added to LSQ by B. Schorr, 15.02.1982.)
4834
4836{
4838 Int_t i, n;
4840 Double_t fn, xk, yk;
4841 Double_t det;
4842
4843 n = TMath::Abs(ndata);
4844 ifail = -2;
4845 xbar = ybar = x2bar = xybar = 0;
4847 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4848 Int_t hxfirst = hFitter->GetXfirst();
4849 Int_t hxlast = hFitter->GetXlast();
4850 for (i = hxfirst; i <= hxlast; ++i) {
4851 xk = curHist->GetBinCenter(i);
4852 yk = curHist->GetBinContent(i);
4853 if (ndata < 0) {
4854 if (yk <= 0) yk = 1e-9;
4855 yk = TMath::Log(yk);
4856 }
4857 xbar += xk;
4858 ybar += yk;
4859 x2bar += xk*xk;
4860 xybar += xk*yk;
4861 }
4862 fn = Double_t(n);
4863 det = fn*x2bar - xbar*xbar;
4864 ifail = -1;
4865 if (det <= 0) {
4866 a0 = ybar/fn;
4867 a1 = 0;
4868 return;
4869 }
4870 ifail = 0;
4871 a0 = (x2bar*ybar - xbar*xybar) / det;
4872 a1 = (fn*xybar - xbar*ybar) / det;
4873
4874}
4875
4876////////////////////////////////////////////////////////////////////////////////
4877/// Extracted from CERN Program library routine DSEQN.
4878///
4879/// Translated to C++ by Rene Brun
4880
4882{
4884 Int_t nmjp1, i, j, l;
4885 Int_t im1, jp1, nm1, nmi;
4886 Double_t s1, s21, s22;
4887 const Double_t one = 1.;
4888
4889 /* Parameter adjustments */
4890 b_dim1 = idim;
4891 b_offset = b_dim1 + 1;
4892 b -= b_offset;
4893 a_dim1 = idim;
4894 a_offset = a_dim1 + 1;
4895 a -= a_offset;
4896
4897 if (idim < n) return;
4898
4899 ifail = 0;
4900 for (j = 1; j <= n; ++j) {
4901 if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
4902 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4903 if (j == n) continue;
4904 jp1 = j + 1;
4905 for (l = jp1; l <= n; ++l) {
4906 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4907 s1 = -a[l + (j+1)*a_dim1];
4908 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4909 a[l + (j+1)*a_dim1] = -s1;
4910 }
4911 }
4912 if (k <= 0) return;
4913
4914 for (l = 1; l <= k; ++l) {
4915 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4916 }
4917 if (n == 1) return;
4918 for (l = 1; l <= k; ++l) {
4919 for (i = 2; i <= n; ++i) {
4920 im1 = i - 1;
4921 s21 = -b[i + l*b_dim1];
4922 for (j = 1; j <= im1; ++j) {
4923 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4924 }
4925 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4926 }
4927 nm1 = n - 1;
4928 for (i = 1; i <= nm1; ++i) {
4929 nmi = n - i;
4930 s22 = -b[nmi + l*b_dim1];
4931 for (j = 1; j <= i; ++j) {
4932 nmjp1 = n - j + 1;
4933 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4934 }
4935 b[nmi + l*b_dim1] = -s22;
4936 }
4937 }
4938}
4939
4940////////////////////////////////////////////////////////////////////////////////
4941/// Return Global bin number corresponding to binx,y,z.
4942///
4943/// 2-D and 3-D histograms are represented with a one dimensional
4944/// structure.
4945/// This has the advantage that all existing functions, such as
4946/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
4947///
4948/// In case of a TH1x, returns binx directly.
4949/// see TH1::GetBinXYZ for the inverse transformation.
4950///
4951/// Convention for numbering bins
4952///
4953/// For all histogram types: nbins, xlow, xup
4954///
4955/// - bin = 0; underflow bin
4956/// - bin = 1; first bin with low-edge xlow INCLUDED
4957/// - bin = nbins; last bin with upper-edge xup EXCLUDED
4958/// - bin = nbins+1; overflow bin
4959///
4960/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
4961/// For example, assuming a 3-D histogram with binx,biny,binz, the function
4962///
4963/// ~~~ {.cpp}
4964/// Int_t bin = h->GetBin(binx,biny,binz);
4965/// ~~~
4966///
4967/// returns a global/linearized bin number. This global bin is useful
4968/// to access the bin information independently of the dimension.
4969
4971{
4972 Int_t ofx = fXaxis.GetNbins() + 1; // overflow bin
4973 if (binx < 0) binx = 0;
4974 if (binx > ofx) binx = ofx;
4975
4976 return binx;
4977}
4978
4979////////////////////////////////////////////////////////////////////////////////
4980/// Return binx, biny, binz corresponding to the global bin number globalbin
4981/// see TH1::GetBin function above
4982
4984{
4985 Int_t nx = fXaxis.GetNbins()+2;
4986 Int_t ny = fYaxis.GetNbins()+2;
4987
4988 if (GetDimension() == 1) {
4989 binx = binglobal%nx;
4990 biny = 0;
4991 binz = 0;
4992 return;
4993 }
4994 if (GetDimension() == 2) {
4995 binx = binglobal%nx;
4996 biny = ((binglobal-binx)/nx)%ny;
4997 binz = 0;
4998 return;
4999 }
5000 if (GetDimension() == 3) {
5001 binx = binglobal%nx;
5002 biny = ((binglobal-binx)/nx)%ny;
5003 binz = ((binglobal-binx)/nx -biny)/ny;
5004 }
5005}
5006
5007////////////////////////////////////////////////////////////////////////////////
5008/// Return a random number distributed according the histogram bin contents.
5009/// This function checks if the bins integral exists. If not, the integral
5010/// is evaluated, normalized to one.
5011///
5012/// @param rng (optional) Random number generator pointer used (default is gRandom)
5013///
5014/// The integral is automatically recomputed if the number of entries
5015/// is not the same then when the integral was computed.
5016/// NB Only valid for 1-d histograms. Use GetRandom2 or 3 otherwise.
5017/// If the histogram has a bin with negative content a NaN is returned
5018
5020{
5021 if (fDimension > 1) {
5022 Error("GetRandom","Function only valid for 1-d histograms");
5023 return 0;
5024 }
5026 Double_t integral = 0;
5027 // compute integral checking that all bins have positive content (see ROOT-5894)
5028 if (fIntegral) {
5029 if (fIntegral[nbinsx+1] != fEntries) integral = ((TH1*)this)->ComputeIntegral(true);
5030 else integral = fIntegral[nbinsx];
5031 } else {
5032 integral = ((TH1*)this)->ComputeIntegral(true);
5033 }
5034 if (integral == 0) return 0;
5035 // return a NaN in case some bins have negative content
5036 if (integral == TMath::QuietNaN() ) return TMath::QuietNaN();
5037
5038 Double_t r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
5041 if (r1 > fIntegral[ibin]) x +=
5043 return x;
5044}
5045
5046////////////////////////////////////////////////////////////////////////////////
5047/// Return content of bin number bin.
5048///
5049/// Implemented in TH1C,S,F,D
5050///
5051/// Convention for numbering bins
5052///
5053/// For all histogram types: nbins, xlow, xup
5054///
5055/// - bin = 0; underflow bin
5056/// - bin = 1; first bin with low-edge xlow INCLUDED
5057/// - bin = nbins; last bin with upper-edge xup EXCLUDED
5058/// - bin = nbins+1; overflow bin
5059///
5060/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
5061/// For example, assuming a 3-D histogram with binx,biny,binz, the function
5062///
5063/// ~~~ {.cpp}
5064/// Int_t bin = h->GetBin(binx,biny,binz);
5065/// ~~~
5066///
5067/// returns a global/linearized bin number. This global bin is useful
5068/// to access the bin information independently of the dimension.
5069
5071{
5072 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
5073 if (bin < 0) bin = 0;
5074 if (bin >= fNcells) bin = fNcells-1;
5075
5076 return RetrieveBinContent(bin);
5077}
5078
5079////////////////////////////////////////////////////////////////////////////////
5080/// Compute first binx in the range [firstx,lastx] for which
5081/// diff = abs(bin_content-c) <= maxdiff
5082///
5083/// In case several bins in the specified range with diff=0 are found
5084/// the first bin found is returned in binx.
5085/// In case several bins in the specified range satisfy diff <=maxdiff
5086/// the bin with the smallest difference is returned in binx.
5087/// In all cases the function returns the smallest difference.
5088///
5089/// NOTE1: if firstx <= 0, firstx is set to bin 1
5090/// if (lastx < firstx then firstx is set to the number of bins
5091/// ie if firstx=0 and lastx=0 (default) the search is on all bins.
5092///
5093/// NOTE2: if maxdiff=0 (default), the first bin with content=c is returned.
5094
5096{
5097 if (fDimension > 1) {
5098 binx = 0;
5099 Error("GetBinWithContent","function is only valid for 1-D histograms");
5100 return 0;
5101 }
5102
5103 if (fBuffer) ((TH1*)this)->BufferEmpty();
5104
5105 if (firstx <= 0) firstx = 1;
5106 if (lastx < firstx) lastx = fXaxis.GetNbins();
5107 Int_t binminx = 0;
5108 Double_t diff, curmax = 1.e240;
5109 for (Int_t i=firstx;i<=lastx;i++) {
5111 if (diff <= 0) {binx = i; return diff;}
5112 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
5113 }
5114 binx = binminx;
5115 return curmax;
5116}
5117
5118////////////////////////////////////////////////////////////////////////////////
5119/// Given a point x, approximates the value via linear interpolation
5120/// based on the two nearest bin centers
5121///
5122/// Andy Mastbaum 10/21/08
5123
5125{
5126 if (fBuffer) ((TH1*)this)->BufferEmpty();
5127
5129 Double_t x0,x1,y0,y1;
5130
5131 if(x<=GetBinCenter(1)) {
5132 return RetrieveBinContent(1);
5133 } else if(x>=GetBinCenter(GetNbinsX())) {
5134 return RetrieveBinContent(GetNbinsX());
5135 } else {
5136 if(x<=GetBinCenter(xbin)) {
5138 x0 = GetBinCenter(xbin-1);
5140 x1 = GetBinCenter(xbin);
5141 } else {
5143 x0 = GetBinCenter(xbin);
5145 x1 = GetBinCenter(xbin+1);
5146 }
5147 return y0 + (x-x0)*((y1-y0)/(x1-x0));
5148 }
5149}
5150
5151////////////////////////////////////////////////////////////////////////////////
5152/// 2d Interpolation. Not yet implemented.
5153
5155{
5156 Error("Interpolate","This function must be called with 1 argument for a TH1");
5157 return 0;
5158}
5159
5160////////////////////////////////////////////////////////////////////////////////
5161/// 3d Interpolation. Not yet implemented.
5162
5164{
5165 Error("Interpolate","This function must be called with 1 argument for a TH1");
5166 return 0;
5167}
5168
5169///////////////////////////////////////////////////////////////////////////////
5170/// Check if a histogram is empty
5171/// (this is a protected method used mainly by TH1Merger )
5172
5173Bool_t TH1::IsEmpty() const
5174{
5175 // if fTsumw or fentries are not zero histogram is not empty
5176 // need to use GetEntries() instead of fEntries in case of bugger histograms
5177 // so we will flash the buffer
5178 if (fTsumw != 0) return kFALSE;
5179 if (GetEntries() != 0) return kFALSE;
5180 // case fTSumw == 0 amd entries are also zero
5181 // this should not really happening, but if one sets content by hand
5182 // it can happen. a call to ResetStats() should be done in such cases
5183 double sumw = 0;
5184 for (int i = 0; i< GetNcells(); ++i) sumw += RetrieveBinContent(i);
5185 return (sumw != 0) ? kFALSE : kTRUE;
5186}
5187
5188////////////////////////////////////////////////////////////////////////////////
5189/// Return true if the bin is overflow.
5190
5192{
5193 Int_t binx, biny, binz;
5194 GetBinXYZ(bin, binx, biny, binz);
5195
5196 if (iaxis == 0) {
5197 if ( fDimension == 1 )
5198 return binx >= GetNbinsX() + 1;
5199 if ( fDimension == 2 )
5200 return (binx >= GetNbinsX() + 1) ||
5201 (biny >= GetNbinsY() + 1);
5202 if ( fDimension == 3 )
5203 return (binx >= GetNbinsX() + 1) ||
5204 (biny >= GetNbinsY() + 1) ||
5205 (binz >= GetNbinsZ() + 1);
5206 return kFALSE;
5207 }
5208 if (iaxis == 1)
5209 return binx >= GetNbinsX() + 1;
5210 if (iaxis == 2)
5211 return biny >= GetNbinsY() + 1;
5212 if (iaxis == 3)
5213 return binz >= GetNbinsZ() + 1;
5214
5215 Error("IsBinOverflow","Invalid axis value");
5216 return kFALSE;
5217}
5218
5219////////////////////////////////////////////////////////////////////////////////
5220/// Return true if the bin is underflow.
5221/// If iaxis = 0 make OR with all axes otherwise check only for the given axis
5222
5224{
5225 Int_t binx, biny, binz;
5226 GetBinXYZ(bin, binx, biny, binz);
5227
5228 if (iaxis == 0) {
5229 if ( fDimension == 1 )
5230 return (binx <= 0);
5231 else if ( fDimension == 2 )
5232 return (binx <= 0 || biny <= 0);
5233 else if ( fDimension == 3 )
5234 return (binx <= 0 || biny <= 0 || binz <= 0);
5235 else
5236 return kFALSE;
5237 }
5238 if (iaxis == 1)
5239 return (binx <= 0);
5240 if (iaxis == 2)
5241 return (biny <= 0);
5242 if (iaxis == 3)
5243 return (binz <= 0);
5244
5245 Error("IsBinUnderflow","Invalid axis value");
5246 return kFALSE;
5247}
5248
5249////////////////////////////////////////////////////////////////////////////////
5250/// Reduce the number of bins for the axis passed in the option to the number of bins having a label.
5251/// The method will remove only the extra bins existing after the last "labeled" bin.
5252/// Note that if there are "un-labeled" bins present between "labeled" bins they will not be removed
5253
5255{
5257 TAxis *axis = nullptr;
5258 if (iaxis == 1) axis = GetXaxis();
5259 if (iaxis == 2) axis = GetYaxis();
5260 if (iaxis == 3) axis = GetZaxis();
5261 if (!axis) {
5262 Error("LabelsDeflate","Invalid axis option %s",ax);
5263 return;
5264 }
5265 if (!axis->GetLabels()) return;
5266
5267 // find bin with last labels
5268 // bin number is object ID in list of labels
5269 // therefore max bin number is number of bins of the deflated histograms
5270 TIter next(axis->GetLabels());
5271 TObject *obj;
5272 Int_t nbins = 0;
5273 while ((obj = next())) {
5274 Int_t ibin = obj->GetUniqueID();
5275 if (ibin > nbins) nbins = ibin;
5276 }
5277 if (nbins < 1) nbins = 1;
5278
5279 // Do nothing in case it was the last bin
5280 if (nbins==axis->GetNbins()) return;
5281
5282 TH1 *hold = (TH1*)IsA()->New();
5283 R__ASSERT(hold);
5284 hold->SetDirectory(nullptr);
5285 Copy(*hold);
5286
5287 Bool_t timedisp = axis->GetTimeDisplay();
5288 Double_t xmin = axis->GetXmin();
5289 Double_t xmax = axis->GetBinUpEdge(nbins);
5290 if (xmax <= xmin) xmax = xmin +nbins;
5291 axis->SetRange(0,0);
5292 axis->Set(nbins,xmin,xmax);
5293 SetBinsLength(-1); // reset the number of cells
5295 if (errors) fSumw2.Set(fNcells);
5296 axis->SetTimeDisplay(timedisp);
5297 // reset histogram content
5298 Reset("ICE");
5299
5300 //now loop on all bins and refill
5301 // NOTE that if the bins without labels have content
5302 // it will be put in the underflow/overflow.
5303 // For this reason we use AddBinContent method
5305 Int_t bin,binx,biny,binz;
5306 for (bin=0; bin < hold->fNcells; ++bin) {
5307 hold->GetBinXYZ(bin,binx,biny,binz);
5309 Double_t cu = hold->RetrieveBinContent(bin);
5311 if (errors) {
5312 fSumw2.fArray[ibin] += hold->fSumw2.fArray[bin];
5313 }
5314 }
5316 delete hold;
5317}
5318
5319////////////////////////////////////////////////////////////////////////////////
5320/// Double the number of bins for axis.
5321/// Refill histogram.
5322/// This function is called by TAxis::FindBin(const char *label)
5323
5325{
5327 TAxis *axis = nullptr;
5328 if (iaxis == 1) axis = GetXaxis();
5329 if (iaxis == 2) axis = GetYaxis();
5330 if (iaxis == 3) axis = GetZaxis();
5331 if (!axis) return;
5332
5333 TH1 *hold = (TH1*)IsA()->New();
5334 hold->SetDirectory(nullptr);
5335 Copy(*hold);
5336 hold->ResetBit(kMustCleanup);
5337
5338 Bool_t timedisp = axis->GetTimeDisplay();
5339 Int_t nbins = axis->GetNbins();
5340 Double_t xmin = axis->GetXmin();
5341 Double_t xmax = axis->GetXmax();
5342 xmax = xmin + 2*(xmax-xmin);
5343 axis->SetRange(0,0);
5344 // double the bins and recompute ncells
5345 axis->Set(2*nbins,xmin,xmax);
5346 SetBinsLength(-1);
5348 if (errors) fSumw2.Set(fNcells);
5349 axis->SetTimeDisplay(timedisp);
5350
5351 Reset("ICE"); // reset content and error
5352
5353 //now loop on all bins and refill
5355 Int_t bin,ibin,binx,biny,binz;
5356 for (ibin =0; ibin < hold->fNcells; ibin++) {
5357 // get the binx,y,z values . The x-y-z (axis) bin values will stay the same between new-old after the expanding
5358 hold->GetBinXYZ(ibin,binx,biny,binz);
5359 bin = GetBin(binx,biny,binz);
5360
5361 // underflow and overflow will be cleaned up because their meaning has been altered
5362 if (hold->IsBinUnderflow(ibin,iaxis) || hold->IsBinOverflow(ibin,iaxis)) {
5363 continue;
5364 }
5365 else {
5366 AddBinContent(bin, hold->RetrieveBinContent(ibin));
5367 if (errors) fSumw2.fArray[bin] += hold->fSumw2.fArray[ibin];
5368 }
5369 }
5371 delete hold;
5372}
5373
5374////////////////////////////////////////////////////////////////////////////////
5375/// Sort bins with labels or set option(s) to draw axis with labels
5376/// \param[in] option
5377/// - "a" sort by alphabetic order
5378/// - ">" sort by decreasing values
5379/// - "<" sort by increasing values
5380/// - "h" draw labels horizontal
5381/// - "v" draw labels vertical
5382/// - "u" draw labels up (end of label right adjusted)
5383/// - "d" draw labels down (start of label left adjusted)
5384///
5385/// In case not all bins have labels sorting will work only in the case
5386/// the first `n` consecutive bins have all labels and sorting will be performed on
5387/// those label bins.
5388///
5389/// \param[in] ax axis
5390
5392{
5394 TAxis *axis = nullptr;
5395 if (iaxis == 1)
5396 axis = GetXaxis();
5397 if (iaxis == 2)
5398 axis = GetYaxis();
5399 if (iaxis == 3)
5400 axis = GetZaxis();
5401 if (!axis)
5402 return;
5403 THashList *labels = axis->GetLabels();
5404 if (!labels) {
5405 Warning("LabelsOption", "Axis %s has no labels!",axis->GetName());
5406 return;
5407 }
5408 TString opt = option;
5409 opt.ToLower();
5410 Int_t iopt = -1;
5411 if (opt.Contains("h")) {
5416 iopt = 0;
5417 }
5418 if (opt.Contains("v")) {
5423 iopt = 1;
5424 }
5425 if (opt.Contains("u")) {
5426 axis->SetBit(TAxis::kLabelsUp);
5430 iopt = 2;
5431 }
5432 if (opt.Contains("d")) {
5437 iopt = 3;
5438 }
5439 Int_t sort = -1;
5440 if (opt.Contains("a"))
5441 sort = 0;
5442 if (opt.Contains(">"))
5443 sort = 1;
5444 if (opt.Contains("<"))
5445 sort = 2;
5446 if (sort < 0) {
5447 if (iopt < 0)
5448 Error("LabelsOption", "%s is an invalid label placement option!",opt.Data());
5449 return;
5450 }
5451
5452 // Code works only if first n bins have labels if we uncomment following line
5453 // but we don't want to support this special case
5454 // Int_t n = TMath::Min(axis->GetNbins(), labels->GetSize());
5455
5456 // support only cases where each bin has a labels (should be when axis is alphanumeric)
5457 Int_t n = labels->GetSize();
5458 if (n != axis->GetNbins()) {
5459 // check if labels are all consecutive and starts from the first bin
5460 // in that case the current code will work fine
5461 Int_t firstLabelBin = axis->GetNbins()+1;
5462 Int_t lastLabelBin = -1;
5463 for (Int_t i = 0; i < n; ++i) {
5464 Int_t bin = labels->At(i)->GetUniqueID();
5465 if (bin < firstLabelBin) firstLabelBin = bin;
5466 if (bin > lastLabelBin) lastLabelBin = bin;
5467 }
5468 if (firstLabelBin != 1 || lastLabelBin-firstLabelBin +1 != n) {
5469 Error("LabelsOption", "%s of Histogram %s contains bins without labels. Sorting will not work correctly - return",
5470 axis->GetName(), GetName());
5471 return;
5472 }
5473 // case where label bins are consecutive starting from first bin will work
5474 // calling before a TH1::LabelsDeflate() will avoid this error message
5475 Warning("LabelsOption", "axis %s of Histogram %s has extra following bins without labels. Sorting will work only for first label bins",
5476 axis->GetName(), GetName());
5477 }
5478 std::vector<Int_t> a(n);
5479 std::vector<Int_t> b(n);
5480
5481
5482 Int_t i, j, k;
5483 std::vector<Double_t> cont;
5484 std::vector<Double_t> errors2;
5485 THashList *labold = new THashList(labels->GetSize(), 1);
5486 TIter nextold(labels);
5487 TObject *obj = nullptr;
5488 labold->AddAll(labels);
5489 labels->Clear();
5490
5491 // delete buffer if it is there since bins will be reordered.
5492 if (fBuffer)
5493 BufferEmpty(1);
5494
5495 if (sort > 0) {
5496 //---sort by values of bins
5497 if (GetDimension() == 1) {
5498 cont.resize(n);
5499 if (fSumw2.fN)
5500 errors2.resize(n);
5501 for (i = 0; i < n; i++) {
5502 cont[i] = RetrieveBinContent(i + 1);
5503 if (!errors2.empty())
5504 errors2[i] = GetBinErrorSqUnchecked(i + 1);
5505 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5506 a[i] = i;
5507 }
5508 if (sort == 1)
5509 TMath::Sort(n, cont.data(), a.data(), kTRUE); // sort by decreasing values
5510 else
5511 TMath::Sort(n, cont.data(), a.data(), kFALSE); // sort by increasing values
5512 for (i = 0; i < n; i++) {
5513 // use UpdateBinCOntent to not screw up histogram entries
5514 UpdateBinContent(i + 1, cont[b[a[i]] - 1]); // b[a[i]] returns bin number. .we need to subtract 1
5515 if (gDebug)
5516 Info("LabelsOption","setting bin %d value %f from bin %d label %s at pos %d ",
5517 i+1,cont[b[a[i]] - 1],b[a[i]],labold->At(a[i])->GetName(),a[i]);
5518 if (!errors2.empty())
5519 fSumw2.fArray[i + 1] = errors2[b[a[i]] - 1];
5520 }
5521 for (i = 0; i < n; i++) {
5522 obj = labold->At(a[i]);
5523 labels->Add(obj);
5524 obj->SetUniqueID(i + 1);
5525 }
5526 } else if (GetDimension() == 2) {
5527 std::vector<Double_t> pcont(n + 2);
5528 Int_t nx = fXaxis.GetNbins() + 2;
5529 Int_t ny = fYaxis.GetNbins() + 2;
5530 cont.resize((nx + 2) * (ny + 2));
5531 if (fSumw2.fN)
5532 errors2.resize((nx + 2) * (ny + 2));
5533 for (i = 0; i < nx; i++) {
5534 for (j = 0; j < ny; j++) {
5535 Int_t bin = GetBin(i,j);
5536 cont[i + nx * j] = RetrieveBinContent(bin);
5537 if (!errors2.empty())
5538 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5539 if (axis == GetXaxis())
5540 k = i - 1;
5541 else
5542 k = j - 1;
5543 if (k >= 0 && k < n) { // we consider underflow/overflows in y for ordering the bins
5544 pcont[k] += cont[i + nx * j];
5545 a[k] = k;
5546 }
5547 }
5548 }
5549 if (sort == 1)
5550 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5551 else
5552 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5553 for (i = 0; i < n; i++) {
5554 // iterate on old label list to find corresponding bin match
5555 TIter next(labold);
5556 UInt_t bin = a[i] + 1;
5557 while ((obj = next())) {
5558 if (obj->GetUniqueID() == (UInt_t)bin)
5559 break;
5560 else
5561 obj = nullptr;
5562 }
5563 if (!obj) {
5564 // this should not really happen
5565 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5566 return;
5567 }
5568
5569 labels->Add(obj);
5570 if (gDebug)
5571 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from order " << a[i] << " bin "
5572 << b[a[i]] << "content " << pcont[a[i]] << std::endl;
5573 }
5574 // need to set here new ordered labels - otherwise loop before does not work since labold and labels list
5575 // contain same objects
5576 for (i = 0; i < n; i++) {
5577 labels->At(i)->SetUniqueID(i + 1);
5578 }
5579 // set now the bin contents
5580 if (axis == GetXaxis()) {
5581 for (i = 0; i < n; i++) {
5582 Int_t ix = a[i] + 1;
5583 for (j = 0; j < ny; j++) {
5584 Int_t bin = GetBin(i + 1, j);
5585 UpdateBinContent(bin, cont[ix + nx * j]);
5586 if (!errors2.empty())
5587 fSumw2.fArray[bin] = errors2[ix + nx * j];
5588 }
5589 }
5590 } else {
5591 // using y axis
5592 for (i = 0; i < nx; i++) {
5593 for (j = 0; j < n; j++) {
5594 Int_t iy = a[j] + 1;
5595 Int_t bin = GetBin(i, j + 1);
5596 UpdateBinContent(bin, cont[i + nx * iy]);
5597 if (!errors2.empty())
5598 fSumw2.fArray[bin] = errors2[i + nx * iy];
5599 }
5600 }
5601 }
5602 } else {
5603 // sorting histograms: 3D case
5604 std::vector<Double_t> pcont(n + 2);
5605 Int_t nx = fXaxis.GetNbins() + 2;
5606 Int_t ny = fYaxis.GetNbins() + 2;
5607 Int_t nz = fZaxis.GetNbins() + 2;
5608 Int_t l = 0;
5609 cont.resize((nx + 2) * (ny + 2) * (nz + 2));
5610 if (fSumw2.fN)
5611 errors2.resize((nx + 2) * (ny + 2) * (nz + 2));
5612 for (i = 0; i < nx; i++) {
5613 for (j = 0; j < ny; j++) {
5614 for (k = 0; k < nz; k++) {
5615 Int_t bin = GetBin(i,j,k);
5617 if (axis == GetXaxis())
5618 l = i - 1;
5619 else if (axis == GetYaxis())
5620 l = j - 1;
5621 else
5622 l = k - 1;
5623 if (l >= 0 && l < n) { // we consider underflow/overflows in y for ordering the bins
5624 pcont[l] += c;
5625 a[l] = l;
5626 }
5627 cont[i + nx * (j + ny * k)] = c;
5628 if (!errors2.empty())
5629 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5630 }
5631 }
5632 }
5633 if (sort == 1)
5634 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5635 else
5636 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5637 for (i = 0; i < n; i++) {
5638 // iterate on the old label list to find corresponding bin match
5639 TIter next(labold);
5640 UInt_t bin = a[i] + 1;
5641 obj = nullptr;
5642 while ((obj = next())) {
5643 if (obj->GetUniqueID() == (UInt_t)bin) {
5644 break;
5645 }
5646 else
5647 obj = nullptr;
5648 }
5649 if (!obj) {
5650 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5651 return;
5652 }
5653 labels->Add(obj);
5654 if (gDebug)
5655 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from bin " << a[i] << "content "
5656 << pcont[a[i]] << std::endl;
5657 }
5658
5659 // need to set here new ordered labels - otherwise loop before does not work since labold and llabels list
5660 // contain same objects
5661 for (i = 0; i < n; i++) {
5662 labels->At(i)->SetUniqueID(i + 1);
5663 }
5664 // set now the bin contents
5665 if (axis == GetXaxis()) {
5666 for (i = 0; i < n; i++) {
5667 Int_t ix = a[i] + 1;
5668 for (j = 0; j < ny; j++) {
5669 for (k = 0; k < nz; k++) {
5670 Int_t bin = GetBin(i + 1, j, k);
5671 UpdateBinContent(bin, cont[ix + nx * (j + ny * k)]);
5672 if (!errors2.empty())
5673 fSumw2.fArray[bin] = errors2[ix + nx * (j + ny * k)];
5674 }
5675 }
5676 }
5677 } else if (axis == GetYaxis()) {
5678 // using y axis
5679 for (i = 0; i < nx; i++) {
5680 for (j = 0; j < n; j++) {
5681 Int_t iy = a[j] + 1;
5682 for (k = 0; k < nz; k++) {
5683 Int_t bin = GetBin(i, j + 1, k);
5684 UpdateBinContent(bin, cont[i + nx * (iy + ny * k)]);
5685 if (!errors2.empty())
5686 fSumw2.fArray[bin] = errors2[i + nx * (iy + ny * k)];
5687 }
5688 }
5689 }
5690 } else {
5691 // using z axis
5692 for (i = 0; i < nx; i++) {
5693 for (j = 0; j < ny; j++) {
5694 for (k = 0; k < n; k++) {
5695 Int_t iz = a[k] + 1;
5696 Int_t bin = GetBin(i, j , k +1);
5697 UpdateBinContent(bin, cont[i + nx * (j + ny * iz)]);
5698 if (!errors2.empty())
5699 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * iz)];
5700 }
5701 }
5702 }
5703 }
5704 }
5705 } else {
5706 //---alphabetic sort
5707 // sort labels using vector of strings and TMath::Sort
5708 // I need to array because labels order in list is not necessary that of the bins
5709 std::vector<std::string> vecLabels(n);
5710 for (i = 0; i < n; i++) {
5711 vecLabels[i] = labold->At(i)->GetName();
5712 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5713 a[i] = i;
5714 }
5715 // sort in ascending order for strings
5716 TMath::Sort(n, vecLabels.data(), a.data(), kFALSE);
5717 // set the new labels
5718 for (i = 0; i < n; i++) {
5719 TObject *labelObj = labold->At(a[i]);
5720 labels->Add(labold->At(a[i]));
5721 // set the corresponding bin. NB bin starts from 1
5722 labelObj->SetUniqueID(i + 1);
5723 if (gDebug)
5724 std::cout << "bin " << i + 1 << " setting new labels for axis " << labold->At(a[i])->GetName() << " from "
5725 << b[a[i]] << std::endl;
5726 }
5727
5728 if (GetDimension() == 1) {
5729 cont.resize(n + 2);
5730 if (fSumw2.fN)
5731 errors2.resize(n + 2);
5732 for (i = 0; i < n; i++) {
5733 cont[i] = RetrieveBinContent(b[a[i]]);
5734 if (!errors2.empty())
5736 }
5737 for (i = 0; i < n; i++) {
5738 UpdateBinContent(i + 1, cont[i]);
5739 if (!errors2.empty())
5740 fSumw2.fArray[i+1] = errors2[i];
5741 }
5742 } else if (GetDimension() == 2) {
5743 Int_t nx = fXaxis.GetNbins() + 2;
5744 Int_t ny = fYaxis.GetNbins() + 2;
5745 cont.resize(nx * ny);
5746 if (fSumw2.fN)
5747 errors2.resize(nx * ny);
5748 // copy old bin contents and then set to new ordered bins
5749 // N.B. bin in histograms starts from 1, but in y we consider under/overflows
5750 for (i = 0; i < nx; i++) {
5751 for (j = 0; j < ny; j++) { // ny is nbins+2
5752 Int_t bin = GetBin(i, j);
5753 cont[i + nx * j] = RetrieveBinContent(bin);
5754 if (!errors2.empty())
5755 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5756 }
5757 }
5758 if (axis == GetXaxis()) {
5759 for (i = 0; i < n; i++) {
5760 for (j = 0; j < ny; j++) {
5761 Int_t bin = GetBin(i + 1 , j);
5762 UpdateBinContent(bin, cont[b[a[i]] + nx * j]);
5763 if (!errors2.empty())
5764 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * j];
5765 }
5766 }
5767 } else {
5768 for (i = 0; i < nx; i++) {
5769 for (j = 0; j < n; j++) {
5770 Int_t bin = GetBin(i, j + 1);
5771 UpdateBinContent(bin, cont[i + nx * b[a[j]]]);
5772 if (!errors2.empty())
5773 fSumw2.fArray[bin] = errors2[i + nx * b[a[j]]];
5774 }
5775 }
5776 }
5777 } else {
5778 // case of 3D (needs to be tested)
5779 Int_t nx = fXaxis.GetNbins() + 2;
5780 Int_t ny = fYaxis.GetNbins() + 2;
5781 Int_t nz = fZaxis.GetNbins() + 2;
5782 cont.resize(nx * ny * nz);
5783 if (fSumw2.fN)
5784 errors2.resize(nx * ny * nz);
5785 for (i = 0; i < nx; i++) {
5786 for (j = 0; j < ny; j++) {
5787 for (k = 0; k < nz; k++) {
5788 Int_t bin = GetBin(i, j, k);
5789 cont[i + nx * (j + ny * k)] = RetrieveBinContent(bin);
5790 if (!errors2.empty())
5791 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5792 }
5793 }
5794 }
5795 if (axis == GetXaxis()) {
5796 // labels on x axis
5797 for (i = 0; i < n; i++) { // for x we loop only on bins with the labels
5798 for (j = 0; j < ny; j++) {
5799 for (k = 0; k < nz; k++) {
5800 Int_t bin = GetBin(i + 1, j, k);
5801 UpdateBinContent(bin, cont[b[a[i]] + nx * (j + ny * k)]);
5802 if (!errors2.empty())
5803 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * (j + ny * k)];
5804 }
5805 }
5806 }
5807 } else if (axis == GetYaxis()) {
5808 // labels on y axis
5809 for (i = 0; i < nx; i++) {
5810 for (j = 0; j < n; j++) {
5811 for (k = 0; k < nz; k++) {
5812 Int_t bin = GetBin(i, j+1, k);
5813 UpdateBinContent(bin, cont[i + nx * (b[a[j]] + ny * k)]);
5814 if (!errors2.empty())
5815 fSumw2.fArray[bin] = errors2[i + nx * (b[a[j]] + ny * k)];
5816 }
5817 }
5818 }
5819 } else {
5820 // labels on z axis
5821 for (i = 0; i < nx; i++) {
5822 for (j = 0; j < ny; j++) {
5823 for (k = 0; k < n; k++) {
5824 Int_t bin = GetBin(i, j, k+1);
5825 UpdateBinContent(bin, cont[i + nx * (j + ny * b[a[k]])]);
5826 if (!errors2.empty())
5827 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * b[a[k]])];
5828 }
5829 }
5830 }
5831 }
5832 }
5833 }
5834 // need to set to zero the statistics if axis has been sorted
5835 // see for example TH3::PutStats for definition of s vector
5836 bool labelsAreSorted = kFALSE;
5837 for (i = 0; i < n; ++i) {
5838 if (a[i] != i) {
5840 break;
5841 }
5842 }
5843 if (labelsAreSorted) {
5844 double s[TH1::kNstat];
5845 GetStats(s);
5846 if (iaxis == 1) {
5847 s[2] = 0; // fTsumwx
5848 s[3] = 0; // fTsumwx2
5849 s[6] = 0; // fTsumwxy
5850 s[9] = 0; // fTsumwxz
5851 } else if (iaxis == 2) {
5852 s[4] = 0; // fTsumwy
5853 s[5] = 0; // fTsumwy2
5854 s[6] = 0; // fTsumwxy
5855 s[10] = 0; // fTsumwyz
5856 } else if (iaxis == 3) {
5857 s[7] = 0; // fTsumwz
5858 s[8] = 0; // fTsumwz2
5859 s[9] = 0; // fTsumwxz
5860 s[10] = 0; // fTsumwyz
5861 }
5862 PutStats(s);
5863 }
5864 delete labold;
5865}
5866
5867////////////////////////////////////////////////////////////////////////////////
5868/// Test if two double are almost equal.
5869
5870static inline Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon = 0.00000001)
5871{
5872 return TMath::Abs(a - b) < epsilon;
5873}
5874
5875////////////////////////////////////////////////////////////////////////////////
5876/// Test if a double is almost an integer.
5877
5878static inline Bool_t AlmostInteger(Double_t a, Double_t epsilon = 0.00000001)
5879{
5880 return AlmostEqual(a - TMath::Floor(a), 0, epsilon) ||
5881 AlmostEqual(a - TMath::Floor(a), 1, epsilon);
5882}
5883
5884////////////////////////////////////////////////////////////////////////////////
5885/// Test if the binning is equidistant.
5886
5887static inline bool IsEquidistantBinning(const TAxis& axis)
5888{
5889 // check if axis bin are equals
5890 if (!axis.GetXbins()->fN) return true; //
5891 // not able to check if there is only one axis entry
5892 bool isEquidistant = true;
5893 const Double_t firstBinWidth = axis.GetBinWidth(1);
5894 for (int i = 1; i < axis.GetNbins(); ++i) {
5895 const Double_t binWidth = axis.GetBinWidth(i);
5896 const bool match = TMath::AreEqualRel(firstBinWidth, binWidth, 1.E-10);
5897 isEquidistant &= match;
5898 if (!match)
5899 break;
5900 }
5901 return isEquidistant;
5902}
5903
5904////////////////////////////////////////////////////////////////////////////////
5905/// Same limits and bins.
5906
5908 return axis1.GetNbins() == axis2.GetNbins() &&
5909 TMath::AreEqualAbs(axis1.GetXmin(), axis2.GetXmin(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10) &&
5910 TMath::AreEqualAbs(axis1.GetXmax(), axis2.GetXmax(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10);
5911}
5912
5913////////////////////////////////////////////////////////////////////////////////
5914/// Finds new limits for the axis for the Merge function.
5915/// returns false if the limits are incompatible
5916
5918{
5920 return kTRUE;
5921
5923 return kFALSE; // not equidistant user binning not supported
5924
5925 Double_t width1 = destAxis.GetBinWidth(0);
5926 Double_t width2 = anAxis.GetBinWidth(0);
5927 if (width1 == 0 || width2 == 0)
5928 return kFALSE; // no binning not supported
5929
5930 Double_t xmin = TMath::Min(destAxis.GetXmin(), anAxis.GetXmin());
5931 Double_t xmax = TMath::Max(destAxis.GetXmax(), anAxis.GetXmax());
5933
5934 // check the bin size
5936 return kFALSE;
5937
5938 // std::cout << "Find new limit using given axis " << anAxis.GetXmin() << " , " << anAxis.GetXmax() << " bin width " << width2 << std::endl;
5939 // std::cout << " and destination axis " << destAxis.GetXmin() << " , " << destAxis.GetXmax() << " bin width " << width1 << std::endl;
5940
5941
5942 // check the limits
5943 Double_t delta;
5944 delta = (destAxis.GetXmin() - xmin)/width1;
5945 if (!AlmostInteger(delta))
5946 xmin -= (TMath::Ceil(delta) - delta)*width1;
5947
5948 delta = (anAxis.GetXmin() - xmin)/width2;
5949 if (!AlmostInteger(delta))
5950 xmin -= (TMath::Ceil(delta) - delta)*width2;
5951
5952
5953 delta = (destAxis.GetXmin() - xmin)/width1;
5954 if (!AlmostInteger(delta))
5955 return kFALSE;
5956
5957
5958 delta = (xmax - destAxis.GetXmax())/width1;
5959 if (!AlmostInteger(delta))
5960 xmax += (TMath::Ceil(delta) - delta)*width1;
5961
5962
5963 delta = (xmax - anAxis.GetXmax())/width2;
5964 if (!AlmostInteger(delta))
5965 xmax += (TMath::Ceil(delta) - delta)*width2;
5966
5967
5968 delta = (xmax - destAxis.GetXmax())/width1;
5969 if (!AlmostInteger(delta))
5970 return kFALSE;
5971#ifdef DEBUG
5972 if (!AlmostInteger((xmax - xmin) / width)) { // unnecessary check
5973 printf("TH1::RecomputeAxisLimits - Impossible\n");
5974 return kFALSE;
5975 }
5976#endif
5977
5978
5980
5981 //std::cout << "New re-computed axis : [ " << xmin << " , " << xmax << " ] width = " << width << " nbins " << destAxis.GetNbins() << std::endl;
5982
5983 return kTRUE;
5984}
5985
5986////////////////////////////////////////////////////////////////////////////////
5987/// Add all histograms in the collection to this histogram.
5988/// This function computes the min/max for the x axis,
5989/// compute a new number of bins, if necessary,
5990/// add bin contents, errors and statistics.
5991/// If all histograms have bin labels, bins with identical labels
5992/// will be merged, no matter what their order is.
5993/// If overflows are present and limits are different the function will fail.
5994/// The function returns the total number of entries in the result histogram
5995/// if the merge is successful, -1 otherwise.
5996///
5997/// Possible option:
5998/// -NOL : the merger will ignore the labels and merge the histograms bin by bin using bin center values to match bins
5999/// -NOCHECK: the histogram will not perform a check for duplicate labels in case of axes with labels. The check
6000/// (enabled by default) slows down the merging
6001///
6002/// IMPORTANT remark. The axis x may have different number
6003/// of bins and different limits, BUT the largest bin width must be
6004/// a multiple of the smallest bin width and the upper limit must also
6005/// be a multiple of the bin width.
6006/// Example:
6007///
6008/// ~~~ {.cpp}
6009/// void atest() {
6010/// TH1F *h1 = new TH1F("h1","h1",110,-110,0);
6011/// TH1F *h2 = new TH1F("h2","h2",220,0,110);
6012/// TH1F *h3 = new TH1F("h3","h3",330,-55,55);
6013/// TRandom r;
6014/// for (Int_t i=0;i<10000;i++) {
6015/// h1->Fill(r.Gaus(-55,10));
6016/// h2->Fill(r.Gaus(55,10));
6017/// h3->Fill(r.Gaus(0,10));
6018/// }
6019///
6020/// TList *list = new TList;
6021/// list->Add(h1);
6022/// list->Add(h2);
6023/// list->Add(h3);
6024/// TH1F *h = (TH1F*)h1->Clone("h");
6025/// h->Reset();
6026/// h->Merge(list);
6027/// h->Draw();
6028/// }
6029/// ~~~
6030
6032{
6033 if (!li) return 0;
6034 if (li->IsEmpty()) return (Long64_t) GetEntries();
6035
6036 // use TH1Merger class
6037 TH1Merger merger(*this,*li,opt);
6038 Bool_t ret = merger();
6039
6040 return (ret) ? GetEntries() : -1;
6041}
6042
6043
6044////////////////////////////////////////////////////////////////////////////////
6045/// Performs the operation:
6046///
6047/// `this = this*c1*f1`
6048///
6049/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
6050///
6051/// Only bins inside the function range are recomputed.
6052/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6053/// you should call Sumw2 before making this operation.
6054/// This is particularly important if you fit the histogram after TH1::Multiply
6055///
6056/// The function return kFALSE if the Multiply operation failed
6057
6059{
6060 if (!f1) {
6061 Error("Multiply","Attempt to multiply by a non-existing function");
6062 return kFALSE;
6063 }
6064
6065 // delete buffer if it is there since it will become invalid
6066 if (fBuffer) BufferEmpty(1);
6067
6068 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of (cells)
6069 Int_t ny = GetNbinsY() + 2;
6070 Int_t nz = GetNbinsZ() + 2;
6071 if (fDimension < 2) ny = 1;
6072 if (fDimension < 3) nz = 1;
6073
6074 // reset min-maximum
6075 SetMinimum();
6076 SetMaximum();
6077
6078 // - Loop on bins (including underflows/overflows)
6079 Double_t xx[3];
6080 Double_t *params = nullptr;
6081 f1->InitArgs(xx,params);
6082
6083 for (Int_t binz = 0; binz < nz; ++binz) {
6084 xx[2] = fZaxis.GetBinCenter(binz);
6085 for (Int_t biny = 0; biny < ny; ++biny) {
6086 xx[1] = fYaxis.GetBinCenter(biny);
6087 for (Int_t binx = 0; binx < nx; ++binx) {
6088 xx[0] = fXaxis.GetBinCenter(binx);
6089 if (!f1->IsInside(xx)) continue;
6091 Int_t bin = binx + nx * (biny + ny *binz);
6092 Double_t cu = c1*f1->EvalPar(xx);
6093 if (TF1::RejectedPoint()) continue;
6095 if (fSumw2.fN) {
6096 fSumw2.fArray[bin] = cu * cu * GetBinErrorSqUnchecked(bin);
6097 }
6098 }
6099 }
6100 }
6101 ResetStats();
6102 return kTRUE;
6103}
6104
6105////////////////////////////////////////////////////////////////////////////////
6106/// Multiply this histogram by h1.
6107///
6108/// `this = this*h1`
6109///
6110/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6111/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
6112/// if not already set.
6113///
6114/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6115/// you should call Sumw2 before making this operation.
6116/// This is particularly important if you fit the histogram after TH1::Multiply
6117///
6118/// The function return kFALSE if the Multiply operation failed
6119
6120Bool_t TH1::Multiply(const TH1 *h1)
6121{
6122 if (!h1) {
6123 Error("Multiply","Attempt to multiply by a non-existing histogram");
6124 return kFALSE;
6125 }
6126
6127 // delete buffer if it is there since it will become invalid
6128 if (fBuffer) BufferEmpty(1);
6129
6130 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins) {
6131 return false;
6132 }
6133
6134 // Create Sumw2 if h1 has Sumw2 set
6135 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
6136
6137 // - Reset min- maximum
6138 SetMinimum();
6139 SetMaximum();
6140
6141 // - Loop on bins (including underflows/overflows)
6142 for (Int_t i = 0; i < fNcells; ++i) {
6145 UpdateBinContent(i, c0 * c1);
6146 if (fSumw2.fN) {
6148 }
6149 }
6150 ResetStats();
6151 return kTRUE;
6152}
6153
6154////////////////////////////////////////////////////////////////////////////////
6155/// Replace contents of this histogram by multiplication of h1 by h2.
6156///
6157/// `this = (c1*h1)*(c2*h2)`
6158///
6159/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6160/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
6161/// if not already set.
6162///
6163/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6164/// you should call Sumw2 before making this operation.
6165/// This is particularly important if you fit the histogram after TH1::Multiply
6166///
6167/// The function return kFALSE if the Multiply operation failed
6168
6170{
6171 TString opt = option;
6172 opt.ToLower();
6173 // Bool_t binomial = kFALSE;
6174 // if (opt.Contains("b")) binomial = kTRUE;
6175 if (!h1 || !h2) {
6176 Error("Multiply","Attempt to multiply by a non-existing histogram");
6177 return kFALSE;
6178 }
6179
6180 // delete buffer if it is there since it will become invalid
6181 if (fBuffer) BufferEmpty(1);
6182
6183 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins ||
6184 LoggedInconsistency("Multiply", h1, h2) >= kDifferentNumberOfBins) {
6185 return false;
6186 }
6187
6188 // Create Sumw2 if h1 or h2 have Sumw2 set
6189 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
6190
6191 // - Reset min - maximum
6192 SetMinimum();
6193 SetMaximum();
6194
6195 // - Loop on bins (including underflows/overflows)
6196 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
6197 for (Int_t i = 0; i < fNcells; ++i) {
6199 Double_t b2 = h2->RetrieveBinContent(i);
6200 UpdateBinContent(i, c1 * b1 * c2 * b2);
6201 if (fSumw2.fN) {
6202 fSumw2.fArray[i] = c1sq * c2sq * (h1->GetBinErrorSqUnchecked(i) * b2 * b2 + h2->GetBinErrorSqUnchecked(i) * b1 * b1);
6203 }
6204 }
6205 ResetStats();
6206 return kTRUE;
6207}
6208
6209////////////////////////////////////////////////////////////////////////////////
6210/// Control routine to paint any kind of histograms.
6211///
6212/// This function is automatically called by TCanvas::Update.
6213/// (see TH1::Draw for the list of options)
6214
6216{
6218
6219 if (fPainter) {
6220 if (option && strlen(option) > 0)
6222 else
6224 }
6225}
6226
6227////////////////////////////////////////////////////////////////////////////////
6228/// Rebin this histogram
6229///
6230/// #### case 1 xbins=0
6231///
6232/// If newname is blank (default), the current histogram is modified and
6233/// a pointer to it is returned.
6234///
6235/// If newname is not blank, the current histogram is not modified, and a
6236/// new histogram is returned which is a Clone of the current histogram
6237/// with its name set to newname.
6238///
6239/// The parameter ngroup indicates how many bins of this have to be merged
6240/// into one bin of the result.
6241///
6242/// If the original histogram has errors stored (via Sumw2), the resulting
6243/// histograms has new errors correctly calculated.
6244///
6245/// examples: if h1 is an existing TH1F histogram with 100 bins
6246///
6247/// ~~~ {.cpp}
6248/// h1->Rebin(); //merges two bins in one in h1: previous contents of h1 are lost
6249/// h1->Rebin(5); //merges five bins in one in h1
6250/// TH1F *hnew = dynamic_cast<TH1F*>(h1->Rebin(5,"hnew")); // creates a new histogram hnew
6251/// // merging 5 bins of h1 in one bin
6252/// ~~~
6253///
6254/// NOTE: If ngroup is not an exact divider of the number of bins,
6255/// the top limit of the rebinned histogram is reduced
6256/// to the upper edge of the last bin that can make a complete
6257/// group. The remaining bins are added to the overflow bin.
6258/// Statistics will be recomputed from the new bin contents.
6259///
6260/// #### case 2 xbins!=0
6261///
6262/// A new histogram is created (you should specify newname).
6263/// The parameter ngroup is the number of variable size bins in the created histogram.
6264/// The array xbins must contain ngroup+1 elements that represent the low-edges
6265/// of the bins.
6266/// If the original histogram has errors stored (via Sumw2), the resulting
6267/// histograms has new errors correctly calculated.
6268///
6269/// NOTE: The bin edges specified in xbins should correspond to bin edges
6270/// in the original histogram. If a bin edge in the new histogram is
6271/// in the middle of a bin in the original histogram, all entries in
6272/// the split bin in the original histogram will be transfered to the
6273/// lower of the two possible bins in the new histogram. This is
6274/// probably not what you want. A warning message is emitted in this
6275/// case
6276///
6277/// examples: if h1 is an existing TH1F histogram with 100 bins
6278///
6279/// ~~~ {.cpp}
6280/// Double_t xbins[25] = {...} array of low-edges (xbins[25] is the upper edge of last bin
6281/// h1->Rebin(24,"hnew",xbins); //creates a new variable bin size histogram hnew
6282/// ~~~
6283
6284TH1 *TH1::Rebin(Int_t ngroup, const char*newname, const Double_t *xbins)
6285{
6286 Int_t nbins = fXaxis.GetNbins();
6289 if ((ngroup <= 0) || (ngroup > nbins)) {
6290 Error("Rebin", "Illegal value of ngroup=%d",ngroup);
6291 return nullptr;
6292 }
6293
6294 if (fDimension > 1 || InheritsFrom(TProfile::Class())) {
6295 Error("Rebin", "Operation valid on 1-D histograms only");
6296 return nullptr;
6297 }
6298 if (!newname && xbins) {
6299 Error("Rebin","if xbins is specified, newname must be given");
6300 return nullptr;
6301 }
6302
6303 Int_t newbins = nbins/ngroup;
6304 if (!xbins) {
6305 Int_t nbg = nbins/ngroup;
6306 if (nbg*ngroup != nbins) {
6307 Warning("Rebin", "ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
6308 }
6309 }
6310 else {
6311 // in the case that xbins is given (rebinning in variable bins), ngroup is
6312 // the new number of bins and number of grouped bins is not constant.
6313 // when looping for setting the contents for the new histogram we
6314 // need to loop on all bins of original histogram. Then set ngroup=nbins
6315 newbins = ngroup;
6316 ngroup = nbins;
6317 }
6318
6319 // Save old bin contents into a new array
6320 Double_t entries = fEntries;
6321 Double_t *oldBins = new Double_t[nbins+2];
6322 Int_t bin, i;
6323 for (bin=0;bin<nbins+2;bin++) oldBins[bin] = RetrieveBinContent(bin);
6324 Double_t *oldErrors = nullptr;
6325 if (fSumw2.fN != 0) {
6326 oldErrors = new Double_t[nbins+2];
6327 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] = GetBinError(bin);
6328 }
6329 // rebin will not include underflow/overflow if new axis range is larger than old axis range
6330 if (xbins) {
6331 if (xbins[0] < fXaxis.GetXmin() && oldBins[0] != 0 )
6332 Warning("Rebin","underflow entries will not be used when rebinning");
6333 if (xbins[newbins] > fXaxis.GetXmax() && oldBins[nbins+1] != 0 )
6334 Warning("Rebin","overflow entries will not be used when rebinning");
6335 }
6336
6337
6338 // create a clone of the old histogram if newname is specified
6339 TH1 *hnew = this;
6340 if ((newname && strlen(newname) > 0) || xbins) {
6341 hnew = (TH1*)Clone(newname);
6342 }
6343
6344 //reset can extend bit to avoid an axis extension in SetBinContent
6345 UInt_t oldExtendBitMask = hnew->SetCanExtend(kNoAxis);
6346
6347 // save original statistics
6348 Double_t stat[kNstat];
6349 GetStats(stat);
6350 bool resetStat = false;
6351 // change axis specs and rebuild bin contents array::RebinAx
6352 if(!xbins && (newbins*ngroup != nbins)) {
6354 resetStat = true; //stats must be reset because top bins will be moved to overflow bin
6355 }
6356 // save the TAttAxis members (reset by SetBins)
6368
6369 if(!xbins && (fXaxis.GetXbins()->GetSize() > 0)){ // variable bin sizes
6370 Double_t *bins = new Double_t[newbins+1];
6371 for(i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup);
6372 hnew->SetBins(newbins,bins); //this also changes errors array (if any)
6373 delete [] bins;
6374 } else if (xbins) {
6375 hnew->SetBins(newbins,xbins);
6376 } else {
6377 hnew->SetBins(newbins,xmin,xmax);
6378 }
6379
6380 // Restore axis attributes
6392
6393 // copy merged bin contents (ignore under/overflows)
6394 // Start merging only once the new lowest edge is reached
6395 Int_t startbin = 1;
6396 const Double_t newxmin = hnew->GetXaxis()->GetBinLowEdge(1);
6397 while( fXaxis.GetBinCenter(startbin) < newxmin && startbin <= nbins ) {
6398 startbin++;
6399 }
6402 for (bin = 1;bin<=newbins;bin++) {
6403 binContent = 0;
6404 binError = 0;
6405 Int_t imax = ngroup;
6406 Double_t xbinmax = hnew->GetXaxis()->GetBinUpEdge(bin);
6407 // check bin edges for the cases when we provide an array of bins
6408 // be careful in case bins can have zero width
6410 hnew->GetXaxis()->GetBinLowEdge(bin),
6411 TMath::Max(1.E-8 * fXaxis.GetBinWidth(oldbin), 1.E-16 )) )
6412 {
6413 Warning("Rebin","Bin edge %d of rebinned histogram does not match any bin edges of the old histogram. Result can be inconsistent",bin);
6414 }
6415 for (i=0;i<ngroup;i++) {
6416 if( (oldbin+i > nbins) ||
6417 ( hnew != this && (fXaxis.GetBinCenter(oldbin+i) > xbinmax)) ) {
6418 imax = i;
6419 break;
6420 }
6423 }
6424 hnew->SetBinContent(bin,binContent);
6425 if (oldErrors) hnew->SetBinError(bin,TMath::Sqrt(binError));
6426 oldbin += imax;
6427 }
6428
6429 // sum underflow and overflow contents until startbin
6430 binContent = 0;
6431 binError = 0;
6432 for (i = 0; i < startbin; ++i) {
6433 binContent += oldBins[i];
6434 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6435 }
6436 hnew->SetBinContent(0,binContent);
6437 if (oldErrors) hnew->SetBinError(0,TMath::Sqrt(binError));
6438 // sum overflow
6439 binContent = 0;
6440 binError = 0;
6441 for (i = oldbin; i <= nbins+1; ++i) {
6442 binContent += oldBins[i];
6443 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6444 }
6445 hnew->SetBinContent(newbins+1,binContent);
6446 if (oldErrors) hnew->SetBinError(newbins+1,TMath::Sqrt(binError));
6447
6448 hnew->SetCanExtend(oldExtendBitMask); // restore previous state
6449
6450 // restore statistics and entries modified by SetBinContent
6451 hnew->SetEntries(entries);
6452 if (!resetStat) hnew->PutStats(stat);
6453 delete [] oldBins;
6454 if (oldErrors) delete [] oldErrors;
6455 return hnew;
6456}
6457
6458////////////////////////////////////////////////////////////////////////////////
6459/// finds new limits for the axis so that *point* is within the range and
6460/// the limits are compatible with the previous ones (see TH1::Merge).
6461/// new limits are put into *newMin* and *newMax* variables.
6462/// axis - axis whose limits are to be recomputed
6463/// point - point that should fit within the new axis limits
6464/// newMin - new minimum will be stored here
6465/// newMax - new maximum will be stored here.
6466/// false if failed (e.g. if the initial axis limits are wrong
6467/// or the new range is more than \f$ 2^{64} \f$ times the old one).
6468
6470{
6471 Double_t xmin = axis->GetXmin();
6472 Double_t xmax = axis->GetXmax();
6473 if (xmin >= xmax) return kFALSE;
6475
6476 //recompute new axis limits by doubling the current range
6477 Int_t ntimes = 0;
6478 while (point < xmin) {
6479 if (ntimes++ > 64)
6480 return kFALSE;
6481 xmin = xmin - range;
6482 range *= 2;
6483 }
6484 while (point >= xmax) {
6485 if (ntimes++ > 64)
6486 return kFALSE;
6487 xmax = xmax + range;
6488 range *= 2;
6489 }
6490 newMin = xmin;
6491 newMax = xmax;
6492 // Info("FindNewAxisLimits", "OldAxis: (%lf, %lf), new: (%lf, %lf), point: %lf",
6493 // axis->GetXmin(), axis->GetXmax(), xmin, xmax, point);
6494
6495 return kTRUE;
6496}
6497
6498////////////////////////////////////////////////////////////////////////////////
6499/// Histogram is resized along axis such that x is in the axis range.
6500/// The new axis limits are recomputed by doubling iteratively
6501/// the current axis range until the specified value x is within the limits.
6502/// The algorithm makes a copy of the histogram, then loops on all bins
6503/// of the old histogram to fill the extended histogram.
6504/// Takes into account errors (Sumw2) if any.
6505/// The algorithm works for 1-d, 2-D and 3-D histograms.
6506/// The axis must be extendable before invoking this function.
6507/// Ex:
6508///
6509/// ~~~ {.cpp}
6510/// h->GetXaxis()->SetCanExtend(kTRUE);
6511/// ~~~
6512
6513void TH1::ExtendAxis(Double_t x, TAxis *axis)
6514{
6515 if (!axis->CanExtend()) return;
6516 if (TMath::IsNaN(x)) { // x may be a NaN
6518 return;
6519 }
6520
6521 if (axis->GetXmin() >= axis->GetXmax()) return;
6522 if (axis->GetNbins() <= 0) return;
6523
6525 if (!FindNewAxisLimits(axis, x, xmin, xmax))
6526 return;
6527
6528 //save a copy of this histogram
6529 TH1 *hold = (TH1*)IsA()->New();
6530 hold->SetDirectory(nullptr);
6531 Copy(*hold);
6532 //set new axis limits
6533 axis->SetLimits(xmin,xmax);
6534
6535
6536 //now loop on all bins and refill
6538
6539 Reset("ICE"); //reset only Integral, contents and Errors
6540
6541 int iaxis = 0;
6542 if (axis == &fXaxis) iaxis = 1;
6543 if (axis == &fYaxis) iaxis = 2;
6544 if (axis == &fZaxis) iaxis = 3;
6545 bool firstw = kTRUE;
6546 Int_t binx,biny, binz = 0;
6547 Int_t ix = 0,iy = 0,iz = 0;
6548 Double_t bx,by,bz;
6549 Int_t ncells = hold->GetNcells();
6550 for (Int_t bin = 0; bin < ncells; ++bin) {
6551 hold->GetBinXYZ(bin,binx,biny,binz);
6552 bx = hold->GetXaxis()->GetBinCenter(binx);
6553 ix = fXaxis.FindFixBin(bx);
6554 if (fDimension > 1) {
6555 by = hold->GetYaxis()->GetBinCenter(biny);
6556 iy = fYaxis.FindFixBin(by);
6557 if (fDimension > 2) {
6558 bz = hold->GetZaxis()->GetBinCenter(binz);
6559 iz = fZaxis.FindFixBin(bz);
6560 }
6561 }
6562 // exclude underflow/overflow
6563 double content = hold->RetrieveBinContent(bin);
6564 if (content == 0) continue;
6565 if (IsBinUnderflow(bin,iaxis) || IsBinOverflow(bin,iaxis) ) {
6566 if (firstw) {
6567 Warning("ExtendAxis","Histogram %s has underflow or overflow in the axis that is extendable"
6568 " their content will be lost",GetName() );
6569 firstw= kFALSE;
6570 }
6571 continue;
6572 }
6573 Int_t ibin= GetBin(ix,iy,iz);
6575 if (errors) {
6576 fSumw2.fArray[ibin] += hold->GetBinErrorSqUnchecked(bin);
6577 }
6578 }
6579 delete hold;
6580}
6581
6582////////////////////////////////////////////////////////////////////////////////
6583/// Recursively remove object from the list of functions
6584
6586{
6587 // Rely on TROOT::RecursiveRemove to take the readlock.
6588
6589 if (fFunctions) {
6591 }
6592}
6593
6594////////////////////////////////////////////////////////////////////////////////
6595/// Multiply this histogram by a constant c1.
6596///
6597/// `this = c1*this`
6598///
6599/// Note that both contents and errors (if any) are scaled.
6600/// This function uses the services of TH1::Add
6601///
6602/// IMPORTANT NOTE: Sumw2() is called automatically when scaling.
6603/// If you are not interested in the histogram statistics you can call
6604/// Sumw2(kFALSE) or use the option "nosw2"
6605///
6606/// One can scale a histogram such that the bins integral is equal to
6607/// the normalization parameter via TH1::Scale(Double_t norm), where norm
6608/// is the desired normalization divided by the integral of the histogram.
6609///
6610/// If option contains "width" the bin contents and errors are divided
6611/// by the bin width.
6612
6614{
6615
6616 TString opt = option; opt.ToLower();
6617 // store bin errors when scaling since cannot anymore be computed as sqrt(N)
6618 if (!opt.Contains("nosw2") && GetSumw2N() == 0) Sumw2();
6619 if (opt.Contains("width")) Add(this, this, c1, -1);
6620 else {
6621 if (fBuffer) BufferEmpty(1);
6622 for(Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, c1 * RetrieveBinContent(i));
6623 if (fSumw2.fN) for(Int_t i = 0; i < fNcells; ++i) fSumw2.fArray[i] *= (c1 * c1); // update errors
6624 // update global histograms statistics
6625 Double_t s[kNstat] = {0};
6626 GetStats(s);
6627 for (Int_t i=0 ; i < kNstat; i++) {
6628 if (i == 1) s[i] = c1*c1*s[i];
6629 else s[i] = c1*s[i];
6630 }
6631 PutStats(s);
6632 SetMinimum(); SetMaximum(); // minimum and maximum value will be recalculated the next time
6633 }
6634
6635 // if contours set, must also scale contours
6637 if (ncontours == 0) return;
6639 for (Int_t i = 0; i < ncontours; ++i) levels[i] *= c1;
6640}
6641
6642////////////////////////////////////////////////////////////////////////////////
6643/// Returns true if all axes are extendable.
6644
6646{
6648 if (GetDimension() > 1) canExtend &= fYaxis.CanExtend();
6649 if (GetDimension() > 2) canExtend &= fZaxis.CanExtend();
6650
6651 return canExtend;
6652}
6653
6654////////////////////////////////////////////////////////////////////////////////
6655/// Make the histogram axes extendable / not extendable according to the bit mask
6656/// returns the previous bit mask specifying which axes are extendable
6657
6659{
6661
6665
6666 if (GetDimension() > 1) {
6670 }
6671
6672 if (GetDimension() > 2) {
6676 }
6677
6678 return oldExtendBitMask;
6679}
6680
6681///////////////////////////////////////////////////////////////////////////////
6682/// Internal function used in TH1::Fill to see which axis is full alphanumeric,
6683/// i.e. can be extended and is alphanumeric
6685{
6689 bitMask |= kYaxis;
6691 bitMask |= kZaxis;
6692
6693 return bitMask;
6694}
6695
6696////////////////////////////////////////////////////////////////////////////////
6697/// Static function to set the default buffer size for automatic histograms.
6698/// When a histogram is created with one of its axis lower limit greater
6699/// or equal to its upper limit, the function SetBuffer is automatically
6700/// called with the default buffer size.
6701
6703{
6704 fgBufferSize = bufsize > 0 ? bufsize : 0;
6705}
6706
6707////////////////////////////////////////////////////////////////////////////////
6708/// When this static function is called with `sumw2=kTRUE`, all new
6709/// histograms will automatically activate the storage
6710/// of the sum of squares of errors, ie TH1::Sumw2 is automatically called.
6711
6713{
6715}
6716
6717////////////////////////////////////////////////////////////////////////////////
6718/// Change/set the title.
6719///
6720/// If title is in the form `stringt;stringx;stringy;stringz`
6721/// the histogram title is set to `stringt`, the x axis title to `stringx`,
6722/// the y axis title to `stringy`, and the z axis title to `stringz`.
6723///
6724/// To insert the character `;` in one of the titles, one should use `#;`
6725/// or `#semicolon`.
6726
6727void TH1::SetTitle(const char *title)
6728{
6729 fTitle = title;
6730 fTitle.ReplaceAll("#;",2,"#semicolon",10);
6731
6732 // Decode fTitle. It may contain X, Y and Z titles
6734 Int_t isc = str1.Index(";");
6735 Int_t lns = str1.Length();
6736
6737 if (isc >=0 ) {
6738 fTitle = str1(0,isc);
6739 str1 = str1(isc+1, lns);
6740 isc = str1.Index(";");
6741 if (isc >=0 ) {
6742 str2 = str1(0,isc);
6743 str2.ReplaceAll("#semicolon",10,";",1);
6744 fXaxis.SetTitle(str2.Data());
6745 lns = str1.Length();
6746 str1 = str1(isc+1, lns);
6747 isc = str1.Index(";");
6748 if (isc >=0 ) {
6749 str2 = str1(0,isc);
6750 str2.ReplaceAll("#semicolon",10,";",1);
6751 fYaxis.SetTitle(str2.Data());
6752 lns = str1.Length();
6753 str1 = str1(isc+1, lns);
6754 str1.ReplaceAll("#semicolon",10,";",1);
6755 fZaxis.SetTitle(str1.Data());
6756 } else {
6757 str1.ReplaceAll("#semicolon",10,";",1);
6758 fYaxis.SetTitle(str1.Data());
6759 }
6760 } else {
6761 str1.ReplaceAll("#semicolon",10,";",1);
6762 fXaxis.SetTitle(str1.Data());
6763 }
6764 }
6765
6766 fTitle.ReplaceAll("#semicolon",10,";",1);
6767
6768 if (gPad && TestBit(kMustCleanup)) gPad->Modified();
6769}
6770
6771////////////////////////////////////////////////////////////////////////////////
6772/// Smooth array xx, translation of Hbook routine `hsmoof.F`.
6773/// Based on algorithm 353QH twice presented by J. Friedman
6774/// in [Proc. of the 1974 CERN School of Computing, Norway, 11-24 August, 1974](https://cds.cern.ch/record/186223).
6775/// See also Section 4.2 in [J. Friedman, Data Analysis Techniques for High Energy Physics](https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-176.pdf).
6776
6778{
6779 if (nn < 3 ) {
6780 ::Error("SmoothArray","Need at least 3 points for smoothing: n = %d",nn);
6781 return;
6782 }
6783
6784 Int_t ii;
6785 std::array<double, 3> hh{};
6786
6787 std::vector<double> yy(nn);
6788 std::vector<double> zz(nn);
6789 std::vector<double> rr(nn);
6790
6791 for (Int_t pass=0;pass<ntimes;pass++) {
6792 // first copy original data into temp array
6793 std::copy(xx, xx+nn, zz.begin() );
6794
6795 for (int noent = 0; noent < 2; ++noent) { // run algorithm two times
6796
6797 // do 353 i.e. running median 3, 5, and 3 in a single loop
6798 for (int kk = 0; kk < 3; kk++) {
6799 std::copy(zz.begin(), zz.end(), yy.begin());
6800 int medianType = (kk != 1) ? 3 : 5;
6801 int ifirst = (kk != 1 ) ? 1 : 2;
6802 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6803 //nn2 = nn - ik - 1;
6804 // do all elements beside the first and last point for median 3
6805 // and first two and last 2 for median 5
6806 for ( ii = ifirst; ii < ilast; ii++) {
6807 zz[ii] = TMath::Median(medianType, yy.data() + ii - ifirst);
6808 }
6809
6810 if (kk == 0) { // first median 3
6811 // first point
6812 hh[0] = zz[1];
6813 hh[1] = zz[0];
6814 hh[2] = 3*zz[1] - 2*zz[2];
6815 zz[0] = TMath::Median(3, hh.data());
6816 // last point
6817 hh[0] = zz[nn - 2];
6818 hh[1] = zz[nn - 1];
6819 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6820 zz[nn - 1] = TMath::Median(3, hh.data());
6821 }
6822
6823 if (kk == 1) { // median 5
6824 // second point with window length 3
6825 zz[1] = TMath::Median(3, yy.data());
6826 // second-to-last point with window length 3
6827 zz[nn - 2] = TMath::Median(3, yy.data() + nn - 3);
6828 }
6829
6830 // In the third iteration (kk == 2), the first and last point stay
6831 // the same (see paper linked in the documentation).
6832 }
6833
6834 std::copy ( zz.begin(), zz.end(), yy.begin() );
6835
6836 // quadratic interpolation for flat segments
6837 for (ii = 2; ii < (nn - 2); ii++) {
6838 if (zz[ii - 1] != zz[ii]) continue;
6839 if (zz[ii] != zz[ii + 1]) continue;
6840 const double tmp0 = zz[ii - 2] - zz[ii];
6841 const double tmp1 = zz[ii + 2] - zz[ii];
6842 if (tmp0 * tmp1 <= 0) continue;
6843 int jk = 1;
6844 if ( std::abs(tmp1) > std::abs(tmp0) ) jk = -1;
6845 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6846 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6847 }
6848
6849 // running means
6850 //std::copy(zz.begin(), zz.end(), yy.begin());
6851 for (ii = 1; ii < nn - 1; ii++) {
6852 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6853 }
6854 zz[0] = yy[0];
6855 zz[nn - 1] = yy[nn - 1];
6856
6857 if (noent == 0) {
6858
6859 // save computed values
6860 std::copy(zz.begin(), zz.end(), rr.begin());
6861
6862 // COMPUTE residuals
6863 for (ii = 0; ii < nn; ii++) {
6864 zz[ii] = xx[ii] - zz[ii];
6865 }
6866 }
6867
6868 } // end loop on noent
6869
6870
6871 double xmin = TMath::MinElement(nn,xx);
6872 for (ii = 0; ii < nn; ii++) {
6873 if (xmin < 0) xx[ii] = rr[ii] + zz[ii];
6874 // make smoothing defined positive - not better using 0 ?
6875 else xx[ii] = std::max((rr[ii] + zz[ii]),0.0 );
6876 }
6877 }
6878}
6879
6880////////////////////////////////////////////////////////////////////////////////
6881/// Smooth bin contents of this histogram.
6882/// if option contains "R" smoothing is applied only to the bins
6883/// defined in the X axis range (default is to smooth all bins)
6884/// Bin contents are replaced by their smooth values.
6885/// Errors (if any) are not modified.
6886/// the smoothing procedure is repeated ntimes (default=1)
6887
6889{
6890 if (fDimension != 1) {
6891 Error("Smooth","Smooth only supported for 1-d histograms");
6892 return;
6893 }
6894 Int_t nbins = fXaxis.GetNbins();
6895 if (nbins < 3) {
6896 Error("Smooth","Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6897 return;
6898 }
6899
6900 // delete buffer if it is there since it will become invalid
6901 if (fBuffer) BufferEmpty(1);
6902
6903 Int_t firstbin = 1, lastbin = nbins;
6904 TString opt = option;
6905 opt.ToLower();
6906 if (opt.Contains("r")) {
6909 }
6910 nbins = lastbin - firstbin + 1;
6911 Double_t *xx = new Double_t[nbins];
6913 Int_t i;
6914 for (i=0;i<nbins;i++) {
6916 }
6917
6918 TH1::SmoothArray(nbins,xx,ntimes);
6919
6920 for (i=0;i<nbins;i++) {
6922 }
6923 fEntries = nent;
6924 delete [] xx;
6925
6926 if (gPad) gPad->Modified();
6927}
6928
6929////////////////////////////////////////////////////////////////////////////////
6930/// if flag=kTRUE, underflows and overflows are used by the Fill functions
6931/// in the computation of statistics (mean value, StdDev).
6932/// By default, underflows or overflows are not used.
6933
6935{
6937}
6938
6939////////////////////////////////////////////////////////////////////////////////
6940/// Stream a class object.
6941
6942void TH1::Streamer(TBuffer &b)
6943{
6944 if (b.IsReading()) {
6945 UInt_t R__s, R__c;
6946 Version_t R__v = b.ReadVersion(&R__s, &R__c);
6947 if (fDirectory) fDirectory->Remove(this);
6948 fDirectory = nullptr;
6949 if (R__v > 2) {
6950 b.ReadClassBuffer(TH1::Class(), this, R__v, R__s, R__c);
6951
6953 fXaxis.SetParent(this);
6954 fYaxis.SetParent(this);
6955 fZaxis.SetParent(this);
6956 TIter next(fFunctions);
6957 TObject *obj;
6958 while ((obj=next())) {
6959 if (obj->InheritsFrom(TF1::Class())) ((TF1*)obj)->SetParent(this);
6960 }
6961 return;
6962 }
6963 //process old versions before automatic schema evolution
6968 b >> fNcells;
6969 fXaxis.Streamer(b);
6970 fYaxis.Streamer(b);
6971 fZaxis.Streamer(b);
6972 fXaxis.SetParent(this);
6973 fYaxis.SetParent(this);
6974 fZaxis.SetParent(this);
6975 b >> fBarOffset;
6976 b >> fBarWidth;
6977 b >> fEntries;
6978 b >> fTsumw;
6979 b >> fTsumw2;
6980 b >> fTsumwx;
6981 b >> fTsumwx2;
6982 if (R__v < 2) {
6984 Float_t *contour=nullptr;
6985 b >> maximum; fMaximum = maximum;
6986 b >> minimum; fMinimum = minimum;
6987 b >> norm; fNormFactor = norm;
6988 Int_t n = b.ReadArray(contour);
6989 fContour.Set(n);
6990 for (Int_t i=0;i<n;i++) fContour.fArray[i] = contour[i];
6991 delete [] contour;
6992 } else {
6993 b >> fMaximum;
6994 b >> fMinimum;
6995 b >> fNormFactor;
6997 }
6998 fSumw2.Streamer(b);
7000 fFunctions->Delete();
7002 b.CheckByteCount(R__s, R__c, TH1::IsA());
7003
7004 } else {
7005 b.WriteClassBuffer(TH1::Class(),this);
7006 }
7007}
7008
7009////////////////////////////////////////////////////////////////////////////////
7010/// Print some global quantities for this histogram.
7011/// \param[in] option
7012/// - "base" is given, number of bins and ranges are also printed
7013/// - "range" is given, bin contents and errors are also printed
7014/// for all bins in the current range (default 1-->nbins)
7015/// - "all" is given, bin contents and errors are also printed
7016/// for all bins including under and overflows.
7017
7018void TH1::Print(Option_t *option) const
7019{
7020 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7021 printf( "TH1.Print Name = %s, Entries= %d, Total sum= %g\n",GetName(),Int_t(fEntries),GetSumOfWeights());
7022 TString opt = option;
7023 opt.ToLower();
7024 Int_t all;
7025 if (opt.Contains("all")) all = 0;
7026 else if (opt.Contains("range")) all = 1;
7027 else if (opt.Contains("base")) all = 2;
7028 else return;
7029
7030 Int_t bin, binx, biny, binz;
7032 if (all == 0) {
7033 lastx = fXaxis.GetNbins()+1;
7034 if (fDimension > 1) lasty = fYaxis.GetNbins()+1;
7035 if (fDimension > 2) lastz = fZaxis.GetNbins()+1;
7036 } else {
7038 if (fDimension > 1) {firsty = fYaxis.GetFirst(); lasty = fYaxis.GetLast();}
7039 if (fDimension > 2) {firstz = fZaxis.GetFirst(); lastz = fZaxis.GetLast();}
7040 }
7041
7042 if (all== 2) {
7043 printf(" Title = %s\n", GetTitle());
7044 printf(" NbinsX= %d, xmin= %g, xmax=%g", fXaxis.GetNbins(), fXaxis.GetXmin(), fXaxis.GetXmax());
7045 if( fDimension > 1) printf(", NbinsY= %d, ymin= %g, ymax=%g", fYaxis.GetNbins(), fYaxis.GetXmin(), fYaxis.GetXmax());
7046 if( fDimension > 2) printf(", NbinsZ= %d, zmin= %g, zmax=%g", fZaxis.GetNbins(), fZaxis.GetXmin(), fZaxis.GetXmax());
7047 printf("\n");
7048 return;
7049 }
7050
7051 Double_t w,e;
7052 Double_t x,y,z;
7053 if (fDimension == 1) {
7054 for (binx=firstx;binx<=lastx;binx++) {
7057 e = GetBinError(binx);
7058 if(fSumw2.fN) printf(" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
7059 else printf(" fSumw[%d]=%g, x=%g\n",binx,w,x);
7060 }
7061 }
7062 if (fDimension == 2) {
7063 for (biny=firsty;biny<=lasty;biny++) {
7065 for (binx=firstx;binx<=lastx;binx++) {
7066 bin = GetBin(binx,biny);
7068 w = RetrieveBinContent(bin);
7069 e = GetBinError(bin);
7070 if(fSumw2.fN) printf(" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
7071 else printf(" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
7072 }
7073 }
7074 }
7075 if (fDimension == 3) {
7076 for (binz=firstz;binz<=lastz;binz++) {
7078 for (biny=firsty;biny<=lasty;biny++) {
7080 for (binx=firstx;binx<=lastx;binx++) {
7081 bin = GetBin(binx,biny,binz);
7083 w = RetrieveBinContent(bin);
7084 e = GetBinError(bin);
7085 if(fSumw2.fN) printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
7086 else printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
7087 }
7088 }
7089 }
7090 }
7091}
7092
7093////////////////////////////////////////////////////////////////////////////////
7094/// Using the current bin info, recompute the arrays for contents and errors
7095
7096void TH1::Rebuild(Option_t *)
7097{
7098 SetBinsLength();
7099 if (fSumw2.fN) {
7101 }
7102}
7103
7104////////////////////////////////////////////////////////////////////////////////
7105/// Reset this histogram: contents, errors, etc.
7106/// \param[in] option
7107/// - if "ICE" is specified, resets only Integral, Contents and Errors.
7108/// - if "ICES" is specified, resets only Integral, Contents, Errors and Statistics
7109/// This option is used
7110/// - if "M" is specified, resets also Minimum and Maximum
7111
7113{
7114 // The option "ICE" is used when extending the histogram (in ExtendAxis, LabelInflate, etc..)
7115 // The option "ICES is used in combination with the buffer (see BufferEmpty and BufferFill)
7116
7117 TString opt = option;
7118 opt.ToUpper();
7119 fSumw2.Reset();
7120 if (fIntegral) {
7121 delete [] fIntegral;
7122 fIntegral = nullptr;
7123 }
7124
7125 if (opt.Contains("M")) {
7126 SetMinimum();
7127 SetMaximum();
7128 }
7129
7130 if (opt.Contains("ICE") && !opt.Contains("S")) return;
7131
7132 // Setting fBuffer[0] = 0 is like resetting the buffer but not deleting it
7133 // But what is the sense of calling BufferEmpty() ? For making the axes ?
7134 // BufferEmpty will update contents that later will be
7135 // reset in calling TH1D::Reset. For this we need to reset the stats afterwards
7136 // It may be needed for computing the axis limits....
7137 if (fBuffer) {BufferEmpty(); fBuffer[0] = 0;}
7138
7139 // need to reset also the statistics
7140 // (needs to be done after calling BufferEmpty() )
7141 fTsumw = 0;
7142 fTsumw2 = 0;
7143 fTsumwx = 0;
7144 fTsumwx2 = 0;
7145 fEntries = 0;
7146
7147 if (opt == "ICES") return;
7148
7149
7150 TObject *stats = fFunctions->FindObject("stats");
7152 //special logic to support the case where the same object is
7153 //added multiple times in fFunctions.
7154 //This case happens when the same object is added with different
7155 //drawing modes
7156 TObject *obj;
7157 while ((obj = fFunctions->First())) {
7158 while(fFunctions->Remove(obj)) { }
7159 delete obj;
7160 }
7161 if(stats) fFunctions->Add(stats);
7162 fContour.Set(0);
7163}
7164
7165////////////////////////////////////////////////////////////////////////////////
7166/// Save the histogram as .csv, .tsv or .txt. In case of any other extension, fall
7167/// back to TObject::SaveAs, which saves as a .C macro (but with the file name
7168/// extension specified by the user)
7169///
7170/// The Under/Overflow bins are also exported (as first and last lines)
7171/// The fist 2 columns are the lower and upper edges of the bins
7172/// Column 3 contains the bin contents
7173/// The last column contains the error in y. If errors are not present, the column
7174/// is left empty
7175///
7176/// The result can be immediately imported into Excel, gnuplot, Python or whatever,
7177/// without the needing to install pyroot, etc.
7178///
7179/// \param filename the name of the file where to store the histogram
7180/// \param option some tuning options
7181///
7182/// The file extension defines the delimiter used:
7183/// - `.csv` : comma
7184/// - `.tsv` : tab
7185/// - `.txt` : space
7186///
7187/// If option = "title" a title line is generated. If the y-axis has a title,
7188/// this title is displayed as column 3 name, otherwise, it shows "BinContent"
7189
7190void TH1::SaveAs(const char *filename, Option_t *option) const
7191{
7192 char del = '\0';
7193 TString ext = "";
7195 TString opt = option;
7196
7197 if (filename) {
7198 if (fname.EndsWith(".csv")) {
7199 del = ',';
7200 ext = "csv";
7201 } else if (fname.EndsWith(".tsv")) {
7202 del = '\t';
7203 ext = "tsv";
7204 } else if (fname.EndsWith(".txt")) {
7205 del = ' ';
7206 ext = "txt";
7207 }
7208 }
7209 if (!del) {
7211 return;
7212 }
7213 std::ofstream out;
7214 out.open(filename, std::ios::out);
7215 if (!out.good()) {
7216 Error("SaveAs", "cannot open file: %s", filename);
7217 return;
7218 }
7219 if (opt.Contains("title")) {
7220 if (std::strcmp(GetYaxis()->GetTitle(), "") == 0) {
7221 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del
7222 << "BinContent"
7223 << del << "ey" << std::endl;
7224 } else {
7225 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del << GetYaxis()->GetTitle() << del << "ey" << std::endl;
7226 }
7227 }
7228 if (fSumw2.fN) {
7229 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7230 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7231 << GetBinError(i) << std::endl;
7232 }
7233 } else {
7234 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7235 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7236 << std::endl;
7237 }
7238 }
7239 out.close();
7240 Info("SaveAs", "%s file: %s has been generated", ext.Data(), filename);
7241}
7242
7243////////////////////////////////////////////////////////////////////////////////
7244/// Provide variable name for histogram for saving as primitive
7245/// Histogram pointer has by default the histogram name with an incremental suffix.
7246/// If the histogram belongs to a graph or a stack the suffix is not added because
7247/// the graph and stack objects are not aware of this new name. Same thing if
7248/// the histogram is drawn with the option COLZ because the TPaletteAxis drawn
7249/// when this option is selected, does not know this new name either.
7250
7252{
7253 thread_local Int_t storeNumber = 0;
7254
7255 TString opt = option;
7256 opt.ToLower();
7257 TString histName = GetName();
7258 // for TProfile and TH2Poly also fDirectory should be tested
7259 if (!histName.Contains("Graph") && !histName.Contains("_stack_") && !opt.Contains("colz") &&
7260 (!testfdir || !fDirectory)) {
7261 storeNumber++;
7262 histName += "__";
7263 histName += storeNumber;
7264 }
7265 if (histName.IsNull())
7266 histName = "unnamed";
7267 return gInterpreter->MapCppName(histName);
7268}
7269
7270////////////////////////////////////////////////////////////////////////////////
7271/// Save primitive as a C++ statement(s) on output stream out
7272
7273void TH1::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/)
7274{
7275 // empty the buffer before if it exists
7276 if (fBuffer)
7277 BufferEmpty();
7278
7280
7283 SetName(hname);
7284
7285 out <<" \n";
7286
7287 // Check if the histogram has equidistant X bins or not. If not, we
7288 // create an array holding the bins.
7289 if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray)
7290 sxaxis = SavePrimitiveVector(out, hname + "_x", GetXaxis()->GetXbins()->fN, GetXaxis()->GetXbins()->fArray);
7291 // If the histogram is 2 or 3 dimensional, check if the histogram
7292 // has equidistant Y bins or not. If not, we create an array
7293 // holding the bins.
7294 if (fDimension > 1 && GetYaxis()->GetXbins()->fN && GetYaxis()->GetXbins()->fArray)
7295 syaxis = SavePrimitiveVector(out, hname + "_y", GetYaxis()->GetXbins()->fN, GetYaxis()->GetXbins()->fArray);
7296 // IF the histogram is 3 dimensional, check if the histogram
7297 // has equidistant Z bins or not. If not, we create an array
7298 // holding the bins.
7299 if (fDimension > 2 && GetZaxis()->GetXbins()->fN && GetZaxis()->GetXbins()->fArray)
7300 szaxis = SavePrimitiveVector(out, hname + "_z", GetZaxis()->GetXbins()->fN, GetZaxis()->GetXbins()->fArray);
7301
7302 const auto old_precision{out.precision()};
7303 constexpr auto max_precision{std::numeric_limits<double>::digits10 + 1};
7304 out << std::setprecision(max_precision);
7305
7306 out << " " << ClassName() << " *" << hname << " = new " << ClassName() << "(\"" << hname << "\", \""
7307 << TString(GetTitle()).ReplaceSpecialCppChars() << "\", " << GetXaxis()->GetNbins();
7308 if (!sxaxis.IsNull())
7309 out << ", " << sxaxis << ".data()";
7310 else
7311 out << ", " << GetXaxis()->GetXmin() << ", " << GetXaxis()->GetXmax();
7312 if (fDimension > 1) {
7313 out << ", " << GetYaxis()->GetNbins();
7314 if (!syaxis.IsNull())
7315 out << ", " << syaxis << ".data()";
7316 else
7317 out << ", " << GetYaxis()->GetXmin() << ", " << GetYaxis()->GetXmax();
7318 }
7319 if (fDimension > 2) {
7320 out << ", " << GetZaxis()->GetNbins();
7321 if (!szaxis.IsNull())
7322 out << ", " << szaxis << ".data()";
7323 else
7324 out << ", " << GetZaxis()->GetXmin() << ", " << GetZaxis()->GetXmax();
7325 }
7326 out << ");\n";
7327
7329 Int_t numbins = 0, numerrors = 0;
7330
7331 std::vector<Double_t> content(fNcells), errors(save_errors ? fNcells : 0);
7332 for (Int_t bin = 0; bin < fNcells; bin++) {
7333 content[bin] = RetrieveBinContent(bin);
7334 if (content[bin])
7335 numbins++;
7336 if (save_errors) {
7337 errors[bin] = GetBinError(bin);
7338 if (errors[bin])
7339 numerrors++;
7340 }
7341 }
7342
7343 if ((numbins < 100) && (numerrors < 100)) {
7344 // in case of few non-empty bins store them as before
7345 for (Int_t bin = 0; bin < fNcells; bin++) {
7346 if (content[bin])
7347 out << " " << hname << "->SetBinContent(" << bin << "," << content[bin] << ");\n";
7348 }
7349 if (save_errors)
7350 for (Int_t bin = 0; bin < fNcells; bin++) {
7351 if (errors[bin])
7352 out << " " << hname << "->SetBinError(" << bin << "," << errors[bin] << ");\n";
7353 }
7354 } else {
7355 if (numbins > 0) {
7357 out << " for (Int_t bin = 0; bin < " << fNcells << "; bin++)\n";
7358 out << " if (" << vectname << "[bin])\n";
7359 out << " " << hname << "->SetBinContent(bin, " << vectname << "[bin]);\n";
7360 }
7361 if (numerrors > 0) {
7363 out << " for (Int_t bin = 0; bin < " << fNcells << "; bin++)\n";
7364 out << " if (" << vectname << "[bin])\n";
7365 out << " " << hname << "->SetBinError(bin, " << vectname << "[bin]);\n";
7366 }
7367 }
7368
7370 out << std::setprecision(old_precision);
7371 SetName(savedName.Data());
7372}
7373
7374////////////////////////////////////////////////////////////////////////////////
7375/// Helper function for the SavePrimitive functions from TH1
7376/// or classes derived from TH1, eg TProfile, TProfile2D.
7377
7378void TH1::SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option /*= ""*/)
7379{
7380 if (TMath::Abs(GetBarOffset()) > 1e-5)
7381 out << " " << hname << "->SetBarOffset(" << GetBarOffset() << ");\n";
7382 if (TMath::Abs(GetBarWidth() - 1) > 1e-5)
7383 out << " " << hname << "->SetBarWidth(" << GetBarWidth() << ");\n";
7384 if (fMinimum != -1111)
7385 out << " " << hname << "->SetMinimum(" << fMinimum << ");\n";
7386 if (fMaximum != -1111)
7387 out << " " << hname << "->SetMaximum(" << fMaximum << ");\n";
7388 if (fNormFactor != 0)
7389 out << " " << hname << "->SetNormFactor(" << fNormFactor << ");\n";
7390 if (fEntries != 0)
7391 out << " " << hname << "->SetEntries(" << fEntries << ");\n";
7392 if (!fDirectory)
7393 out << " " << hname << "->SetDirectory(nullptr);\n";
7394 if (TestBit(kNoStats))
7395 out << " " << hname << "->SetStats(0);\n";
7396 if (fOption.Length() != 0)
7397 out << " " << hname << "->SetOption(\n" << TString(fOption).ReplaceSpecialCppChars() << "\");\n";
7398
7399 // save contour levels
7401 if (ncontours > 0) {
7403 if (TestBit(kUserContour)) {
7404 std::vector<Double_t> levels(ncontours);
7405 for (Int_t bin = 0; bin < ncontours; bin++)
7406 levels[bin] = GetContourLevel(bin);
7408 }
7409 out << " " << hname << "->SetContour(" << ncontours;
7410 if (!vectname.IsNull())
7411 out << ", " << vectname << ".data()";
7412 out << ");\n";
7413 }
7414
7416
7417 // save attributes
7418 SaveFillAttributes(out, hname, 0, 1001);
7419 SaveLineAttributes(out, hname, 1, 1, 1);
7420 SaveMarkerAttributes(out, hname, 1, 1, 1);
7421 fXaxis.SaveAttributes(out, hname, "->GetXaxis()");
7422 fYaxis.SaveAttributes(out, hname, "->GetYaxis()");
7423 fZaxis.SaveAttributes(out, hname, "->GetZaxis()");
7424
7426}
7427
7428////////////////////////////////////////////////////////////////////////////////
7429/// Save list of functions
7430/// Also can be used by TGraph classes
7431
7432void TH1::SavePrimitiveFunctions(std::ostream &out, const char *varname, TList *lst)
7433{
7434 thread_local Int_t funcNumber = 0;
7435
7436 TObjLink *lnk = lst ? lst->FirstLink() : nullptr;
7437 while (lnk) {
7438 auto obj = lnk->GetObject();
7439 obj->SavePrimitive(out, TString::Format("nodraw #%d\n", ++funcNumber).Data());
7440 TString objvarname = obj->GetName();
7442 if (obj->InheritsFrom(TF1::Class())) {
7444 objvarname = gInterpreter->MapCppName(objvarname);
7445 out << " " << objvarname << "->SetParent(" << varname << ");\n";
7446 } else if (obj->InheritsFrom("TPaveStats")) {
7447 objvarname = "ptstats";
7448 withopt = kFALSE; // pave stats preserve own draw options
7449 out << " " << objvarname << "->SetParent(" << varname << ");\n";
7450 } else if (obj->InheritsFrom("TPolyMarker")) {
7451 objvarname = "pmarker";
7452 }
7453
7454 out << " " << varname << "->GetListOfFunctions()->Add(" << objvarname;
7455 if (withopt)
7456 out << ",\"" << TString(lnk->GetOption()).ReplaceSpecialCppChars() << "\"";
7457 out << ");\n";
7458
7459 lnk = lnk->Next();
7460 }
7461}
7462
7463////////////////////////////////////////////////////////////////////////////////
7504 }
7505}
7506
7507////////////////////////////////////////////////////////////////////////////////
7508/// For axis = 1,2 or 3 returns the mean value of the histogram along
7509/// X,Y or Z axis.
7510///
7511/// For axis = 11, 12, 13 returns the standard error of the mean value
7512/// of the histogram along X, Y or Z axis
7513///
7514/// Note that the mean value/StdDev is computed using the bins in the currently
7515/// defined range (see TAxis::SetRange). By default the range includes
7516/// all bins from 1 to nbins included, excluding underflows and overflows.
7517/// To force the underflows and overflows in the computation, one must
7518/// call the static function TH1::StatOverflows(kTRUE) before filling
7519/// the histogram.
7520///
7521/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7522/// are calculated. By default, if no range has been set, the returned mean is
7523/// the (unbinned) one calculated at fill time. If a range has been set, however,
7524/// the mean is calculated using the bins in range, as described above; THIS
7525/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7526/// the range. To ensure that the returned mean (and all other statistics) is
7527/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7528/// See TH1::GetStats.
7529///
7530/// Return mean value of this histogram along the X axis.
7531
7532Double_t TH1::GetMean(Int_t axis) const
7533{
7534 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7536 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7537 GetStats(stats);
7538 if (stats[0] == 0) return 0;
7539 if (axis<4){
7540 Int_t ax[3] = {2,4,7};
7541 return stats[ax[axis-1]]/stats[0];
7542 } else {
7543 // mean error = StdDev / sqrt( Neff )
7544 Double_t stddev = GetStdDev(axis-10);
7546 return ( neff > 0 ? stddev/TMath::Sqrt(neff) : 0. );
7547 }
7548}
7549
7550////////////////////////////////////////////////////////////////////////////////
7551/// Return standard error of mean of this histogram along the X axis.
7552///
7553/// Note that the mean value/StdDev is computed using the bins in the currently
7554/// defined range (see TAxis::SetRange). By default the range includes
7555/// all bins from 1 to nbins included, excluding underflows and overflows.
7556/// To force the underflows and overflows in the computation, one must
7557/// call the static function TH1::StatOverflows(kTRUE) before filling
7558/// the histogram.
7559///
7560/// Also note, that although the definition of standard error doesn't include the
7561/// assumption of normality, many uses of this feature implicitly assume it.
7562///
7563/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7564/// are calculated. By default, if no range has been set, the returned value is
7565/// the (unbinned) one calculated at fill time. If a range has been set, however,
7566/// the value is calculated using the bins in range, as described above; THIS
7567/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7568/// the range. To ensure that the returned value (and all other statistics) is
7569/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7570/// See TH1::GetStats.
7571
7573{
7574 return GetMean(axis+10);
7575}
7576
7577////////////////////////////////////////////////////////////////////////////////
7578/// Returns the Standard Deviation (Sigma).
7579/// The Sigma estimate is computed as
7580/// \f[
7581/// \sqrt{\frac{1}{N}(\sum(x_i-x_{mean})^2)}
7582/// \f]
7583/// For axis = 1,2 or 3 returns the Sigma value of the histogram along
7584/// X, Y or Z axis
7585/// For axis = 11, 12 or 13 returns the error of StdDev estimation along
7586/// X, Y or Z axis for Normal distribution
7587///
7588/// Note that the mean value/sigma is computed using the bins in the currently
7589/// defined range (see TAxis::SetRange). By default the range includes
7590/// all bins from 1 to nbins included, excluding underflows and overflows.
7591/// To force the underflows and overflows in the computation, one must
7592/// call the static function TH1::StatOverflows(kTRUE) before filling
7593/// the histogram.
7594///
7595/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7596/// are calculated. By default, if no range has been set, the returned standard
7597/// deviation is the (unbinned) one calculated at fill time. If a range has been
7598/// set, however, the standard deviation is calculated using the bins in range,
7599/// as described above; THIS IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use
7600/// TAxis::SetRange(0, 0) to unset the range. To ensure that the returned standard
7601/// deviation (and all other statistics) is always that of the binned data stored
7602/// in the histogram, call TH1::ResetStats. See TH1::GetStats.
7603
7604Double_t TH1::GetStdDev(Int_t axis) const
7605{
7606 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7607
7609 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7610 GetStats(stats);
7611 if (stats[0] == 0) return 0;
7612 Int_t ax[3] = {2,4,7};
7613 Int_t axm = ax[axis%10 - 1];
7614 x = stats[axm]/stats[0];
7615 // for negative stddev (e.g. when having negative weights) - return stdev=0
7616 stddev2 = TMath::Max( stats[axm+1]/stats[0] -x*x, 0.0 );
7617 if (axis<10)
7618 return TMath::Sqrt(stddev2);
7619 else {
7620 // The right formula for StdDev error depends on 4th momentum (see Kendall-Stuart Vol 1 pag 243)
7621 // formula valid for only gaussian distribution ( 4-th momentum = 3 * sigma^4 )
7623 return ( neff > 0 ? TMath::Sqrt(stddev2/(2*neff) ) : 0. );
7624 }
7625}
7626
7627////////////////////////////////////////////////////////////////////////////////
7628/// Return error of standard deviation estimation for Normal distribution
7629///
7630/// Note that the mean value/StdDev is computed using the bins in the currently
7631/// defined range (see TAxis::SetRange). By default the range includes
7632/// all bins from 1 to nbins included, excluding underflows and overflows.
7633/// To force the underflows and overflows in the computation, one must
7634/// call the static function TH1::StatOverflows(kTRUE) before filling
7635/// the histogram.
7636///
7637/// Value returned is standard deviation of sample standard deviation.
7638/// Note that it is an approximated value which is valid only in the case that the
7639/// original data distribution is Normal. The correct one would require
7640/// the 4-th momentum value, which cannot be accurately estimated from a histogram since
7641/// the x-information for all entries is not kept.
7642///
7643/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7644/// are calculated. By default, if no range has been set, the returned value is
7645/// the (unbinned) one calculated at fill time. If a range has been set, however,
7646/// the value is calculated using the bins in range, as described above; THIS
7647/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7648/// the range. To ensure that the returned value (and all other statistics) is
7649/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7650/// See TH1::GetStats.
7651
7653{
7654 return GetStdDev(axis+10);
7655}
7656
7657////////////////////////////////////////////////////////////////////////////////
7658/// - For axis = 1, 2 or 3 returns skewness of the histogram along x, y or z axis.
7659/// - For axis = 11, 12 or 13 returns the approximate standard error of skewness
7660/// of the histogram along x, y or z axis
7661///
7662///Note, that since third and fourth moment are not calculated
7663///at the fill time, skewness and its standard error are computed bin by bin
7664///
7665/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7666/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7667
7669{
7670
7671 if (axis > 0 && axis <= 3){
7672
7673 Double_t mean = GetMean(axis);
7674 Double_t stddev = GetStdDev(axis);
7676
7683 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7686 if (firstBinX == 1) firstBinX = 0;
7687 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7688 }
7690 if (firstBinY == 1) firstBinY = 0;
7691 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7692 }
7694 if (firstBinZ == 1) firstBinZ = 0;
7695 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7696 }
7697 }
7698
7699 Double_t x = 0;
7700 Double_t sum=0;
7701 Double_t np=0;
7702 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7703 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7704 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7705 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7706 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7707 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7709 np+=w;
7710 sum+=w*(x-mean)*(x-mean)*(x-mean);
7711 }
7712 }
7713 }
7714 sum/=np*stddev3;
7715 return sum;
7716 }
7717 else if (axis > 10 && axis <= 13) {
7718 //compute standard error of skewness
7719 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7721 return ( neff > 0 ? TMath::Sqrt(6./neff ) : 0. );
7722 }
7723 else {
7724 Error("GetSkewness", "illegal value of parameter");
7725 return 0;
7726 }
7727}
7728
7729////////////////////////////////////////////////////////////////////////////////
7730/// - For axis =1, 2 or 3 returns kurtosis of the histogram along x, y or z axis.
7731/// Kurtosis(gaussian(0, 1)) = 0.
7732/// - For axis =11, 12 or 13 returns the approximate standard error of kurtosis
7733/// of the histogram along x, y or z axis
7734////
7735/// Note, that since third and fourth moment are not calculated
7736/// at the fill time, kurtosis and its standard error are computed bin by bin
7737///
7738/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7739/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7740
7742{
7743 if (axis > 0 && axis <= 3){
7744
7745 Double_t mean = GetMean(axis);
7746 Double_t stddev = GetStdDev(axis);
7748
7755 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7758 if (firstBinX == 1) firstBinX = 0;
7759 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7760 }
7762 if (firstBinY == 1) firstBinY = 0;
7763 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7764 }
7766 if (firstBinZ == 1) firstBinZ = 0;
7767 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7768 }
7769 }
7770
7771 Double_t x = 0;
7772 Double_t sum=0;
7773 Double_t np=0;
7774 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7775 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7776 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7777 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7778 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7779 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7781 np+=w;
7782 sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
7783 }
7784 }
7785 }
7786 sum/=(np*stddev4);
7787 return sum-3;
7788
7789 } else if (axis > 10 && axis <= 13) {
7790 //compute standard error of skewness
7791 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7793 return ( neff > 0 ? TMath::Sqrt(24./neff ) : 0. );
7794 }
7795 else {
7796 Error("GetKurtosis", "illegal value of parameter");
7797 return 0;
7798 }
7799}
7800
7801////////////////////////////////////////////////////////////////////////////////
7802/// fill the array stats from the contents of this histogram
7803/// The array stats must be correctly dimensioned in the calling program.
7804///
7805/// ~~~ {.cpp}
7806/// stats[0] = sumw
7807/// stats[1] = sumw2
7808/// stats[2] = sumwx
7809/// stats[3] = sumwx2
7810/// ~~~
7811///
7812/// If no axis-subrange is specified (via TAxis::SetRange), the array stats
7813/// is simply a copy of the statistics quantities computed at filling time.
7814/// If a sub-range is specified, the function recomputes these quantities
7815/// from the bin contents in the current axis range.
7816///
7817/// IMPORTANT NOTE: This means that the returned statistics are context-dependent.
7818/// If TAxis::kAxisRange, the returned statistics are dependent on the binning;
7819/// otherwise, they are a copy of the histogram statistics computed at fill time,
7820/// which are unbinned by default (calling TH1::ResetStats forces them to use
7821/// binned statistics). You can reset TAxis::kAxisRange using TAxis::SetRange(0, 0).
7822///
7823/// Note that the mean value/StdDev is computed using the bins in the currently
7824/// defined range (see TAxis::SetRange). By default the range includes
7825/// all bins from 1 to nbins included, excluding underflows and overflows.
7826/// To force the underflows and overflows in the computation, one must
7827/// call the static function TH1::StatOverflows(kTRUE) before filling
7828/// the histogram.
7829
7830void TH1::GetStats(Double_t *stats) const
7831{
7832 if (fBuffer) ((TH1*)this)->BufferEmpty();
7833
7834 // Loop on bins (possibly including underflows/overflows)
7835 Int_t bin, binx;
7836 Double_t w,err;
7837 Double_t x;
7838 // identify the case of labels with extension of axis range
7839 // in this case the statistics in x does not make any sense
7840 Bool_t labelHist = ((const_cast<TAxis&>(fXaxis)).GetLabels() && fXaxis.CanExtend() );
7841 // fTsumw == 0 && fEntries > 0 is a special case when uses SetBinContent or calls ResetStats before
7842 if ( (fTsumw == 0 && fEntries > 0) || fXaxis.TestBit(TAxis::kAxisRange) ) {
7843 for (bin=0;bin<4;bin++) stats[bin] = 0;
7844
7847 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7849 if (firstBinX == 1) firstBinX = 0;
7850 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7851 }
7852 for (binx = firstBinX; binx <= lastBinX; binx++) {
7854 //w = TMath::Abs(RetrieveBinContent(binx));
7855 // not sure what to do here if w < 0
7857 err = TMath::Abs(GetBinError(binx));
7858 stats[0] += w;
7859 stats[1] += err*err;
7860 // statistics in x makes sense only for not labels histograms
7861 if (!labelHist) {
7862 stats[2] += w*x;
7863 stats[3] += w*x*x;
7864 }
7865 }
7866 // if (stats[0] < 0) {
7867 // // in case total is negative do something ??
7868 // stats[0] = 0;
7869 // }
7870 } else {
7871 stats[0] = fTsumw;
7872 stats[1] = fTsumw2;
7873 stats[2] = fTsumwx;
7874 stats[3] = fTsumwx2;
7875 }
7876}
7877
7878////////////////////////////////////////////////////////////////////////////////
7879/// Replace current statistics with the values in array stats
7880
7882{
7883 fTsumw = stats[0];
7884 fTsumw2 = stats[1];
7885 fTsumwx = stats[2];
7886 fTsumwx2 = stats[3];
7887}
7888
7889////////////////////////////////////////////////////////////////////////////////
7890/// Reset the statistics including the number of entries
7891/// and replace with values calculated from bin content
7892///
7893/// The number of entries is set to the total bin content or (in case of weighted histogram)
7894/// to number of effective entries
7895///
7896/// \note By default, before calling this function, statistics are those
7897/// computed at fill time, which are unbinned. See TH1::GetStats.
7898
7899void TH1::ResetStats()
7900{
7901 Double_t stats[kNstat] = {0};
7902 fTsumw = 0;
7903 fEntries = 1; // to force re-calculation of the statistics in TH1::GetStats
7904 GetStats(stats);
7905 PutStats(stats);
7907 // use effective entries for weighted histograms: (sum_w) ^2 / sum_w2
7908 if (fSumw2.fN > 0 && fTsumw > 0 && stats[1] > 0 ) fEntries = stats[0]*stats[0]/ stats[1];
7909}
7910
7911////////////////////////////////////////////////////////////////////////////////
7912/// Return the sum of all weights
7913/// \param includeOverflow true to include under/overflows bins, false to exclude those.
7914/// \note Different from TH1::GetSumOfWeights, that always excludes those
7915
7917{
7918 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7919
7920 const Int_t start = (includeOverflow ? 0 : 1);
7921 const Int_t lastX = fXaxis.GetNbins() + (includeOverflow ? 1 : 0);
7922 const Int_t lastY = fYaxis.GetNbins() + (includeOverflow ? 1 : 0);
7923 const Int_t lastZ = fZaxis.GetNbins() + (includeOverflow ? 1 : 0);
7924 Double_t sum =0;
7925 for(auto binz = start; binz <= lastZ; binz++) {
7926 for(auto biny = start; biny <= lastY; biny++) {
7927 for(auto binx = start; binx <= lastX; binx++) {
7928 const auto bin = GetBin(binx, biny, binz);
7929 sum += RetrieveBinContent(bin);
7930 }
7931 }
7932 }
7933 return sum;
7934}
7935
7936////////////////////////////////////////////////////////////////////////////////
7937///Return integral of bin contents. Only bins in the bins range are considered.
7938///
7939/// By default the integral is computed as the sum of bin contents in the range.
7940/// if option "width" is specified, the integral is the sum of
7941/// the bin contents multiplied by the bin width in x.
7942
7944{
7946}
7947
7948////////////////////////////////////////////////////////////////////////////////
7949/// Return integral of bin contents in range [binx1,binx2].
7950///
7951/// By default the integral is computed as the sum of bin contents in the range.
7952/// if option "width" is specified, the integral is the sum of
7953/// the bin contents multiplied by the bin width in x.
7954
7956{
7957 double err = 0;
7958 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
7959}
7960
7961////////////////////////////////////////////////////////////////////////////////
7962/// Return integral of bin contents in range [binx1,binx2] and its error.
7963///
7964/// By default the integral is computed as the sum of bin contents in the range.
7965/// if option "width" is specified, the integral is the sum of
7966/// the bin contents multiplied by the bin width in x.
7967/// the error is computed using error propagation from the bin errors assuming that
7968/// all the bins are uncorrelated
7969
7971{
7972 return DoIntegral(binx1,binx2,0,-1,0,-1,error,option,kTRUE);
7973}
7974
7975////////////////////////////////////////////////////////////////////////////////
7976/// Internal function compute integral and optionally the error between the limits
7977/// specified by the bin number values working for all histograms (1D, 2D and 3D)
7978
7980 Option_t *option, Bool_t doError) const
7981{
7982 if (fBuffer) ((TH1*)this)->BufferEmpty();
7983
7984 Int_t nx = GetNbinsX() + 2;
7985 if (binx1 < 0) binx1 = 0;
7986 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
7987
7988 if (GetDimension() > 1) {
7989 Int_t ny = GetNbinsY() + 2;
7990 if (biny1 < 0) biny1 = 0;
7991 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
7992 } else {
7993 biny1 = 0; biny2 = 0;
7994 }
7995
7996 if (GetDimension() > 2) {
7997 Int_t nz = GetNbinsZ() + 2;
7998 if (binz1 < 0) binz1 = 0;
7999 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
8000 } else {
8001 binz1 = 0; binz2 = 0;
8002 }
8003
8004 // - Loop on bins in specified range
8005 TString opt = option;
8006 opt.ToLower();
8008 if (opt.Contains("width")) width = kTRUE;
8009
8010
8011 Double_t dx = 1., dy = .1, dz =.1;
8012 Double_t integral = 0;
8013 Double_t igerr2 = 0;
8014 for (Int_t binx = binx1; binx <= binx2; ++binx) {
8015 if (width) dx = fXaxis.GetBinWidth(binx);
8016 for (Int_t biny = biny1; biny <= biny2; ++biny) {
8017 if (width) dy = fYaxis.GetBinWidth(biny);
8018 for (Int_t binz = binz1; binz <= binz2; ++binz) {
8019 Int_t bin = GetBin(binx, biny, binz);
8020 Double_t dv = 0.0;
8021 if (width) {
8023 dv = dx * dy * dz;
8024 integral += RetrieveBinContent(bin) * dv;
8025 } else {
8026 integral += RetrieveBinContent(bin);
8027 }
8028 if (doError) {
8029 if (width) igerr2 += GetBinErrorSqUnchecked(bin) * dv * dv;
8030 else igerr2 += GetBinErrorSqUnchecked(bin);
8031 }
8032 }
8033 }
8034 }
8035
8036 if (doError) error = TMath::Sqrt(igerr2);
8037 return integral;
8038}
8039
8040////////////////////////////////////////////////////////////////////////////////
8041/// Statistical test of compatibility in shape between
8042/// this histogram and h2, using the Anderson-Darling 2 sample test.
8043///
8044/// The AD 2 sample test formula are derived from the paper
8045/// F.W Scholz, M.A. Stephens "k-Sample Anderson-Darling Test".
8046///
8047/// The test is implemented in root in the ROOT::Math::GoFTest class
8048/// It is the same formula ( (6) in the paper), and also shown in
8049/// [this preprint](http://arxiv.org/pdf/0804.0380v1.pdf)
8050///
8051/// Binned data are considered as un-binned data
8052/// with identical observation happening in the bin center.
8053///
8054/// \param[in] h2 Pointer to 1D histogram
8055/// \param[in] option is a character string to specify options
8056/// - "D" Put out a line of "Debug" printout
8057/// - "T" Return the normalized A-D test statistic
8058///
8059/// - Note1: Underflow and overflow are not considered in the test
8060/// - Note2: The test works only for un-weighted histogram (i.e. representing counts)
8061/// - Note3: The histograms are not required to have the same X axis
8062/// - Note4: The test works only for 1-dimensional histograms
8063
8065{
8066 Double_t advalue = 0;
8068
8069 TString opt = option;
8070 opt.ToUpper();
8071 if (opt.Contains("D") ) {
8072 printf(" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
8073 }
8074 if (opt.Contains("T") ) return advalue;
8075
8076 return pvalue;
8077}
8078
8079////////////////////////////////////////////////////////////////////////////////
8080/// Same function as above but returning also the test statistic value
8081
8083{
8084 if (GetDimension() != 1 || h2->GetDimension() != 1) {
8085 Error("AndersonDarlingTest","Histograms must be 1-D");
8086 return -1;
8087 }
8088
8089 // empty the buffer. Probably we could add as an unbinned test
8090 if (fBuffer) ((TH1*)this)->BufferEmpty();
8091
8092 // use the BinData class
8095
8096 ROOT::Fit::FillData(data1, this, nullptr);
8097 ROOT::Fit::FillData(data2, h2, nullptr);
8098
8099 double pvalue;
8101
8102 return pvalue;
8103}
8104
8105////////////////////////////////////////////////////////////////////////////////
8106/// Statistical test of compatibility in shape between
8107/// this histogram and h2, using Kolmogorov test.
8108/// Note that the KolmogorovTest (KS) test should in theory be used only for unbinned data
8109/// and not for binned data as in the case of the histogram (see NOTE 3 below).
8110/// So, before using this method blindly, read the NOTE 3.
8111///
8112/// Default: Ignore under- and overflow bins in comparison
8113///
8114/// \param[in] h2 histogram
8115/// \param[in] option is a character string to specify options
8116/// - "U" include Underflows in test (also for 2-dim)
8117/// - "O" include Overflows (also valid for 2-dim)
8118/// - "N" include comparison of normalizations
8119/// - "D" Put out a line of "Debug" printout
8120/// - "M" Return the Maximum Kolmogorov distance instead of prob
8121/// - "X" Run the pseudo experiments post-processor with the following procedure:
8122/// make pseudoexperiments based on random values from the parent distribution,
8123/// compare the KS distance of the pseudoexperiment to the parent
8124/// distribution, and count all the KS values above the value
8125/// obtained from the original data to Monte Carlo distribution.
8126/// The number of pseudo-experiments nEXPT is by default 1000, and
8127/// it can be changed by specifying the option as "X=number",
8128/// for example "X=10000" for 10000 toys.
8129/// The function returns the probability.
8130/// (thanks to Ben Kilminster to submit this procedure). Note that
8131/// this option "X" is much slower.
8132///
8133/// The returned function value is the probability of test
8134/// (much less than one means NOT compatible)
8135///
8136/// Code adapted by Rene Brun from original HBOOK routine HDIFF
8137///
8138/// NOTE1
8139/// A good description of the Kolmogorov test can be seen at:
8140/// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
8141///
8142/// NOTE2
8143/// see also alternative function TH1::Chi2Test
8144/// The Kolmogorov test is assumed to give better results than Chi2Test
8145/// in case of histograms with low statistics.
8146///
8147/// NOTE3 (Jan Conrad, Fred James)
8148/// "The returned value PROB is calculated such that it will be
8149/// uniformly distributed between zero and one for compatible histograms,
8150/// provided the data are not binned (or the number of bins is very large
8151/// compared with the number of events). Users who have access to unbinned
8152/// data and wish exact confidence levels should therefore not put their data
8153/// into histograms, but should call directly TMath::KolmogorovTest. On
8154/// the other hand, since TH1 is a convenient way of collecting data and
8155/// saving space, this function has been provided. However, the values of
8156/// PROB for binned data will be shifted slightly higher than expected,
8157/// depending on the effects of the binning. For example, when comparing two
8158/// uniform distributions of 500 events in 100 bins, the values of PROB,
8159/// instead of being exactly uniformly distributed between zero and one, have
8160/// a mean value of about 0.56. We can apply a useful
8161/// rule: As long as the bin width is small compared with any significant
8162/// physical effect (for example the experimental resolution) then the binning
8163/// cannot have an important effect. Therefore, we believe that for all
8164/// practical purposes, the probability value PROB is calculated correctly
8165/// provided the user is aware that:
8166///
8167/// 1. The value of PROB should not be expected to have exactly the correct
8168/// distribution for binned data.
8169/// 2. The user is responsible for seeing to it that the bin widths are
8170/// small compared with any physical phenomena of interest.
8171/// 3. The effect of binning (if any) is always to make the value of PROB
8172/// slightly too big. That is, setting an acceptance criterion of (PROB>0.05
8173/// will assure that at most 5% of truly compatible histograms are rejected,
8174/// and usually somewhat less."
8175///
8176/// Note also that for GoF test of unbinned data ROOT provides also the class
8177/// ROOT::Math::GoFTest. The class has also method for doing one sample tests
8178/// (i.e. comparing the data with a given distribution).
8179
8181{
8182 TString opt = option;
8183 opt.ToUpper();
8184
8185 Double_t prob = 0;
8186 TH1 *h1 = (TH1*)this;
8187 if (h2 == nullptr) return 0;
8188 const TAxis *axis1 = h1->GetXaxis();
8189 const TAxis *axis2 = h2->GetXaxis();
8190 Int_t ncx1 = axis1->GetNbins();
8191 Int_t ncx2 = axis2->GetNbins();
8192
8193 // Check consistency of dimensions
8194 if (h1->GetDimension() != 1 || h2->GetDimension() != 1) {
8195 Error("KolmogorovTest","Histograms must be 1-D\n");
8196 return 0;
8197 }
8198
8199 // Check consistency in number of channels
8200 if (ncx1 != ncx2) {
8201 Error("KolmogorovTest","Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
8202 return 0;
8203 }
8204
8205 // empty the buffer. Probably we could add as an unbinned test
8206 if (fBuffer) ((TH1*)this)->BufferEmpty();
8207
8208 // Check consistency in bin edges
8209 for(Int_t i = 1; i <= axis1->GetNbins() + 1; ++i) {
8210 if(!TMath::AreEqualRel(axis1->GetBinLowEdge(i), axis2->GetBinLowEdge(i), 1.E-15)) {
8211 Error("KolmogorovTest","Histograms are not consistent: they have different bin edges");
8212 return 0;
8213 }
8214 }
8215
8218 Double_t sum1 = 0, sum2 = 0;
8219 Double_t ew1, ew2, w1 = 0, w2 = 0;
8220 Int_t bin;
8221 Int_t ifirst = 1;
8222 Int_t ilast = ncx1;
8223 // integral of all bins (use underflow/overflow if option)
8224 if (opt.Contains("U")) ifirst = 0;
8225 if (opt.Contains("O")) ilast = ncx1 +1;
8226 for (bin = ifirst; bin <= ilast; bin++) {
8227 sum1 += h1->RetrieveBinContent(bin);
8228 sum2 += h2->RetrieveBinContent(bin);
8229 ew1 = h1->GetBinError(bin);
8230 ew2 = h2->GetBinError(bin);
8231 w1 += ew1*ew1;
8232 w2 += ew2*ew2;
8233 }
8234 if (sum1 == 0) {
8235 Error("KolmogorovTest","Histogram1 %s integral is zero\n",h1->GetName());
8236 return 0;
8237 }
8238 if (sum2 == 0) {
8239 Error("KolmogorovTest","Histogram2 %s integral is zero\n",h2->GetName());
8240 return 0;
8241 }
8242
8243 // calculate the effective entries.
8244 // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
8245 // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
8246 Double_t esum1 = 0, esum2 = 0;
8247 if (w1 > 0)
8248 esum1 = sum1 * sum1 / w1;
8249 else
8250 afunc1 = kTRUE; // use later for calculating z
8251
8252 if (w2 > 0)
8253 esum2 = sum2 * sum2 / w2;
8254 else
8255 afunc2 = kTRUE; // use later for calculating z
8256
8257 if (afunc2 && afunc1) {
8258 Error("KolmogorovTest","Errors are zero for both histograms\n");
8259 return 0;
8260 }
8261
8262
8263 Double_t s1 = 1/sum1;
8264 Double_t s2 = 1/sum2;
8265
8266 // Find largest difference for Kolmogorov Test
8267 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
8268
8269 for (bin=ifirst;bin<=ilast;bin++) {
8270 rsum1 += s1*h1->RetrieveBinContent(bin);
8271 rsum2 += s2*h2->RetrieveBinContent(bin);
8273 }
8274
8275 // Get Kolmogorov probability
8276 Double_t z, prb1=0, prb2=0, prb3=0;
8277
8278 // case h1 is exact (has zero errors)
8279 if (afunc1)
8280 z = dfmax*TMath::Sqrt(esum2);
8281 // case h2 has zero errors
8282 else if (afunc2)
8283 z = dfmax*TMath::Sqrt(esum1);
8284 else
8285 // for comparison between two data sets
8287
8289
8290 // option N to combine normalization makes sense if both afunc1 and afunc2 are false
8291 if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
8292 // Combine probabilities for shape and normalization,
8293 prb1 = prob;
8296 prb2 = TMath::Prob(chi2,1);
8297 // see Eadie et al., section 11.6.2
8298 if (prob > 0 && prb2 > 0) prob *= prb2*(1-TMath::Log(prob*prb2));
8299 else prob = 0;
8300 }
8301 // X option. Run Pseudo-experiments to determine NULL distribution of the
8302 // KS distance. We can find the probability from the number of pseudo-experiment that have a
8303 // KS distance larger than the one opbserved in the data.
8304 // We use the histogram with the largest statistics as a parent distribution for the NULL.
8305 // Note if one histogram has zero errors is considered as a function. In that case we use it
8306 // as parent distribution for the toys.
8307 //
8308 Int_t nEXPT = 1000;
8309 if (opt.Contains("X")) {
8310 // get number of pseudo-experiment of specified
8311 if (opt.Contains("X=")) {
8312 int numpos = opt.Index("X=") + 2; // 2 is length of X=
8313 int numlen = 0;
8314 int len = opt.Length();
8315 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) )
8316 numlen++;
8317 TString snum = opt(numpos,numlen);
8318 int num = atoi(snum.Data());
8319 if (num <= 0)
8320 Warning("KolmogorovTest","invalid number of toys given: %d - use 1000",num);
8321 else
8322 nEXPT = num;
8323 }
8324
8326 TH1D hparent;
8327 // we cannot have afunc1 and func2 both True
8328 if (afunc1 || esum1 > esum2 ) h1->Copy(hparent);
8329 else h2->Copy(hparent);
8330
8331 // copy h1Expt from h1 and h2. It is just needed to get the correct binning
8332
8333
8334 if (hparent.GetMinimum() < 0.0) {
8335 // we need to create a new histogram
8336 // With negative bins we can't draw random samples in a meaningful way.
8337 Warning("KolmogorovTest", "Detected bins with negative weights, these have been ignored and output might be "
8338 "skewed. Reduce number of bins for histogram?");
8339 while (hparent.GetMinimum() < 0.0) {
8340 Int_t idx = hparent.GetMinimumBin();
8341 hparent.SetBinContent(idx, 0.0);
8342 }
8343 }
8344
8345 // make nEXPT experiments (this should be a parameter)
8346 prb3 = 0;
8347 TH1D h1Expt;
8348 h1->Copy(h1Expt);
8349 TH1D h2Expt;
8350 h1->Copy(h2Expt);
8351 // loop on pseudoexperients and generate the two histograms h1Expt and h2Expt according to the
8352 // parent distribution. In case the parent distribution is not an histogram but a function randomize only one
8353 // histogram
8354 for (Int_t i=0; i < nEXPT; i++) {
8355 if (!afunc1) {
8356 h1Expt.Reset();
8357 h1Expt.FillRandom(&hparent, (Int_t)esum1);
8358 }
8359 if (!afunc2) {
8360 h2Expt.Reset();
8361 h2Expt.FillRandom(&hparent, (Int_t)esum2);
8362 }
8363 // note we cannot have both afunc1 and afunc2 to be true
8364 if (afunc1)
8365 dSEXPT = hparent.KolmogorovTest(&h2Expt,"M");
8366 else if (afunc2)
8367 dSEXPT = hparent.KolmogorovTest(&h1Expt,"M");
8368 else
8369 dSEXPT = h1Expt.KolmogorovTest(&h2Expt,"M");
8370 // count number of cases toy KS distance (TS) is larger than oberved one
8371 if (dSEXPT>dfmax) prb3 += 1.0;
8372 }
8373 // compute p-value
8374 prb3 /= (Double_t)nEXPT;
8375 }
8376
8377
8378 // debug printout
8379 if (opt.Contains("D")) {
8380 printf(" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",h1->GetName(),sum1,esum1);
8381 printf(" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->GetName(),sum2,esum2);
8382 printf(" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
8383 if (opt.Contains("N"))
8384 printf(" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
8385 if (opt.Contains("X"))
8386 printf(" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
8387 }
8388 // This numerical error condition should never occur:
8389 if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
8390 if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
8391
8392 if(opt.Contains("M")) return dfmax;
8393 else if(opt.Contains("X")) return prb3;
8394 else return prob;
8395}
8396
8397////////////////////////////////////////////////////////////////////////////////
8398/// Replace bin contents by the contents of array content
8399
8400void TH1::SetContent(const Double_t *content)
8401{
8402 fEntries = fNcells;
8403 fTsumw = 0;
8404 for (Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, content[i]);
8405}
8406
8407////////////////////////////////////////////////////////////////////////////////
8408/// Return contour values into array levels if pointer levels is non zero.
8409///
8410/// The function returns the number of contour levels.
8411/// see GetContourLevel to return one contour only
8412
8414{
8416 if (levels) {
8417 if (nlevels == 0) {
8418 nlevels = 20;
8420 } else {
8422 }
8423 for (Int_t level=0; level<nlevels; level++) levels[level] = fContour.fArray[level];
8424 }
8425 return nlevels;
8426}
8427
8428////////////////////////////////////////////////////////////////////////////////
8429/// Return value of contour number level.
8430/// Use GetContour to return the array of all contour levels
8431
8433{
8434 return (level >= 0 && level < fContour.fN) ? fContour.fArray[level] : 0.0;
8435}
8436
8437////////////////////////////////////////////////////////////////////////////////
8438/// Return the value of contour number "level" in Pad coordinates.
8439/// ie: if the Pad is in log scale along Z it returns le log of the contour level
8440/// value. See GetContour to return the array of all contour levels
8441
8443{
8444 if (level <0 || level >= fContour.fN) return 0;
8445 Double_t zlevel = fContour.fArray[level];
8446
8447 // In case of user defined contours and Pad in log scale along Z,
8448 // fContour.fArray doesn't contain the log of the contour whereas it does
8449 // in case of equidistant contours.
8450 if (gPad && gPad->GetLogz() && TestBit(kUserContour)) {
8451 if (zlevel <= 0) return 0;
8453 }
8454 return zlevel;
8455}
8456
8457////////////////////////////////////////////////////////////////////////////////
8458/// Set the maximum number of entries to be kept in the buffer.
8459
8460void TH1::SetBuffer(Int_t bufsize, Option_t * /*option*/)
8461{
8462 if (fBuffer) {
8463 BufferEmpty();
8464 delete [] fBuffer;
8465 fBuffer = nullptr;
8466 }
8467 if (bufsize <= 0) {
8468 fBufferSize = 0;
8469 return;
8470 }
8471 if (bufsize < 100) bufsize = 100;
8472 fBufferSize = 1 + bufsize*(fDimension+1);
8474 memset(fBuffer, 0, sizeof(Double_t)*fBufferSize);
8475}
8476
8477////////////////////////////////////////////////////////////////////////////////
8478/// Set the number and values of contour levels.
8479///
8480/// By default the number of contour levels is set to 20. The contours values
8481/// in the array "levels" should be specified in increasing order.
8482///
8483/// if argument levels = 0 or missing, equidistant contours are computed
8484
8486{
8487 Int_t level;
8489 if (nlevels <=0 ) {
8490 fContour.Set(0);
8491 return;
8492 }
8494
8495 // - Contour levels are specified
8496 if (levels) {
8498 for (level=0; level<nlevels; level++) fContour.fArray[level] = levels[level];
8499 } else {
8500 // - contour levels are computed automatically as equidistant contours
8501 Double_t zmin = GetMinimum();
8502 Double_t zmax = GetMaximum();
8503 if ((zmin == zmax) && (zmin != 0)) {
8504 zmax += 0.01*TMath::Abs(zmax);
8505 zmin -= 0.01*TMath::Abs(zmin);
8506 }
8507 Double_t dz = (zmax-zmin)/Double_t(nlevels);
8508 if (gPad && gPad->GetLogz()) {
8509 if (zmax <= 0) return;
8510 if (zmin <= 0) zmin = 0.001*zmax;
8511 zmin = TMath::Log10(zmin);
8512 zmax = TMath::Log10(zmax);
8513 dz = (zmax-zmin)/Double_t(nlevels);
8514 }
8515 for (level=0; level<nlevels; level++) {
8516 fContour.fArray[level] = zmin + dz*Double_t(level);
8517 }
8518 }
8519}
8520
8521////////////////////////////////////////////////////////////////////////////////
8522/// Set value for one contour level.
8523
8525{
8526 if (level < 0 || level >= fContour.fN) return;
8528 fContour.fArray[level] = value;
8529}
8530
8531////////////////////////////////////////////////////////////////////////////////
8532/// Return maximum value smaller than maxval of bins in the range,
8533/// unless the value has been overridden by TH1::SetMaximum,
8534/// in which case it returns that value. This happens, for example,
8535/// when the histogram is drawn and the y or z axis limits are changed
8536///
8537/// To get the maximum value of bins in the histogram regardless of
8538/// whether the value has been overridden (using TH1::SetMaximum), use
8539///
8540/// ~~~ {.cpp}
8541/// h->GetBinContent(h->GetMaximumBin())
8542/// ~~~
8543///
8544/// TH1::GetMaximumBin can be used to get the location of the maximum
8545/// value.
8546
8548{
8549 if (fMaximum != -1111) return fMaximum;
8550
8551 // empty the buffer
8552 if (fBuffer) ((TH1*)this)->BufferEmpty();
8553
8554 Int_t bin, binx, biny, binz;
8555 Int_t xfirst = fXaxis.GetFirst();
8556 Int_t xlast = fXaxis.GetLast();
8557 Int_t yfirst = fYaxis.GetFirst();
8558 Int_t ylast = fYaxis.GetLast();
8559 Int_t zfirst = fZaxis.GetFirst();
8560 Int_t zlast = fZaxis.GetLast();
8562 for (binz=zfirst;binz<=zlast;binz++) {
8563 for (biny=yfirst;biny<=ylast;biny++) {
8564 for (binx=xfirst;binx<=xlast;binx++) {
8565 bin = GetBin(binx,biny,binz);
8567 if (value > maximum && value < maxval) maximum = value;
8568 }
8569 }
8570 }
8571 return maximum;
8572}
8573
8574////////////////////////////////////////////////////////////////////////////////
8575/// Return location of bin with maximum value in the range.
8576///
8577/// TH1::GetMaximum can be used to get the maximum value.
8578
8580{
8583}
8584
8585////////////////////////////////////////////////////////////////////////////////
8586/// Return location of bin with maximum value in the range.
8587
8589{
8590 // empty the buffer
8591 if (fBuffer) ((TH1*)this)->BufferEmpty();
8592
8593 Int_t bin, binx, biny, binz;
8594 Int_t locm;
8595 Int_t xfirst = fXaxis.GetFirst();
8596 Int_t xlast = fXaxis.GetLast();
8597 Int_t yfirst = fYaxis.GetFirst();
8598 Int_t ylast = fYaxis.GetLast();
8599 Int_t zfirst = fZaxis.GetFirst();
8600 Int_t zlast = fZaxis.GetLast();
8602 locm = locmax = locmay = locmaz = 0;
8603 for (binz=zfirst;binz<=zlast;binz++) {
8604 for (biny=yfirst;biny<=ylast;biny++) {
8605 for (binx=xfirst;binx<=xlast;binx++) {
8606 bin = GetBin(binx,biny,binz);
8608 if (value > maximum) {
8609 maximum = value;
8610 locm = bin;
8611 locmax = binx;
8612 locmay = biny;
8613 locmaz = binz;
8614 }
8615 }
8616 }
8617 }
8618 return locm;
8619}
8620
8621////////////////////////////////////////////////////////////////////////////////
8622/// Return minimum value larger than minval of bins in the range,
8623/// unless the value has been overridden by TH1::SetMinimum,
8624/// in which case it returns that value. This happens, for example,
8625/// when the histogram is drawn and the y or z axis limits are changed
8626///
8627/// To get the minimum value of bins in the histogram regardless of
8628/// whether the value has been overridden (using TH1::SetMinimum), use
8629///
8630/// ~~~ {.cpp}
8631/// h->GetBinContent(h->GetMinimumBin())
8632/// ~~~
8633///
8634/// TH1::GetMinimumBin can be used to get the location of the
8635/// minimum value.
8636
8638{
8639 if (fMinimum != -1111) return fMinimum;
8640
8641 // empty the buffer
8642 if (fBuffer) ((TH1*)this)->BufferEmpty();
8643
8644 Int_t bin, binx, biny, binz;
8645 Int_t xfirst = fXaxis.GetFirst();
8646 Int_t xlast = fXaxis.GetLast();
8647 Int_t yfirst = fYaxis.GetFirst();
8648 Int_t ylast = fYaxis.GetLast();
8649 Int_t zfirst = fZaxis.GetFirst();
8650 Int_t zlast = fZaxis.GetLast();
8652 for (binz=zfirst;binz<=zlast;binz++) {
8653 for (biny=yfirst;biny<=ylast;biny++) {
8654 for (binx=xfirst;binx<=xlast;binx++) {
8655 bin = GetBin(binx,biny,binz);
8658 }
8659 }
8660 }
8661 return minimum;
8662}
8663
8664////////////////////////////////////////////////////////////////////////////////
8665/// Return location of bin with minimum value in the range.
8666
8668{
8671}
8672
8673////////////////////////////////////////////////////////////////////////////////
8674/// Return location of bin with minimum value in the range.
8675
8677{
8678 // empty the buffer
8679 if (fBuffer) ((TH1*)this)->BufferEmpty();
8680
8681 Int_t bin, binx, biny, binz;
8682 Int_t locm;
8683 Int_t xfirst = fXaxis.GetFirst();
8684 Int_t xlast = fXaxis.GetLast();
8685 Int_t yfirst = fYaxis.GetFirst();
8686 Int_t ylast = fYaxis.GetLast();
8687 Int_t zfirst = fZaxis.GetFirst();
8688 Int_t zlast = fZaxis.GetLast();
8690 locm = locmix = locmiy = locmiz = 0;
8691 for (binz=zfirst;binz<=zlast;binz++) {
8692 for (biny=yfirst;biny<=ylast;biny++) {
8693 for (binx=xfirst;binx<=xlast;binx++) {
8694 bin = GetBin(binx,biny,binz);
8696 if (value < minimum) {
8697 minimum = value;
8698 locm = bin;
8699 locmix = binx;
8700 locmiy = biny;
8701 locmiz = binz;
8702 }
8703 }
8704 }
8705 }
8706 return locm;
8707}
8708
8709///////////////////////////////////////////////////////////////////////////////
8710/// Retrieve the minimum and maximum values in the histogram
8711///
8712/// This will not return a cached value and will always search the
8713/// histogram for the min and max values. The user can condition whether
8714/// or not to call this with the GetMinimumStored() and GetMaximumStored()
8715/// methods. If the cache is empty, then the value will be -1111. Users
8716/// can then use the SetMinimum() or SetMaximum() methods to cache the results.
8717/// For example, the following recipe will make efficient use of this method
8718/// and the cached minimum and maximum values.
8719//
8720/// \code{.cpp}
8721/// Double_t currentMin = pHist->GetMinimumStored();
8722/// Double_t currentMax = pHist->GetMaximumStored();
8723/// if ((currentMin == -1111) || (currentMax == -1111)) {
8724/// pHist->GetMinimumAndMaximum(currentMin, currentMax);
8725/// pHist->SetMinimum(currentMin);
8726/// pHist->SetMaximum(currentMax);
8727/// }
8728/// \endcode
8729///
8730/// \param min reference to variable that will hold found minimum value
8731/// \param max reference to variable that will hold found maximum value
8732
8733void TH1::GetMinimumAndMaximum(Double_t& min, Double_t& max) const
8734{
8735 // empty the buffer
8736 if (fBuffer) ((TH1*)this)->BufferEmpty();
8737
8738 Int_t bin, binx, biny, binz;
8739 Int_t xfirst = fXaxis.GetFirst();
8740 Int_t xlast = fXaxis.GetLast();
8741 Int_t yfirst = fYaxis.GetFirst();
8742 Int_t ylast = fYaxis.GetLast();
8743 Int_t zfirst = fZaxis.GetFirst();
8744 Int_t zlast = fZaxis.GetLast();
8745 min=TMath::Infinity();
8746 max=-TMath::Infinity();
8748 for (binz=zfirst;binz<=zlast;binz++) {
8749 for (biny=yfirst;biny<=ylast;biny++) {
8750 for (binx=xfirst;binx<=xlast;binx++) {
8751 bin = GetBin(binx,biny,binz);
8753 if (value < min) min = value;
8754 if (value > max) max = value;
8755 }
8756 }
8757 }
8758}
8759
8760////////////////////////////////////////////////////////////////////////////////
8761/// Redefine x axis parameters.
8762///
8763/// The X axis parameters are modified.
8764/// The bins content array is resized
8765/// if errors (Sumw2) the errors array is resized
8766/// The previous bin contents are lost
8767/// To change only the axis limits, see TAxis::SetRange
8768
8770{
8771 if (GetDimension() != 1) {
8772 Error("SetBins","Operation only valid for 1-d histograms");
8773 return;
8774 }
8775 fXaxis.SetRange(0,0);
8777 fYaxis.Set(1,0,1);
8778 fZaxis.Set(1,0,1);
8779 fNcells = nx+2;
8781 if (fSumw2.fN) {
8783 }
8784}
8785
8786////////////////////////////////////////////////////////////////////////////////
8787/// Redefine x axis parameters with variable bin sizes.
8788///
8789/// The X axis parameters are modified.
8790/// The bins content array is resized
8791/// if errors (Sumw2) the errors array is resized
8792/// The previous bin contents are lost
8793/// To change only the axis limits, see TAxis::SetRange
8794/// xBins is supposed to be of length nx+1
8795
8796void TH1::SetBins(Int_t nx, const Double_t *xBins)
8797{
8798 if (GetDimension() != 1) {
8799 Error("SetBins","Operation only valid for 1-d histograms");
8800 return;
8801 }
8802 fXaxis.SetRange(0,0);
8803 fXaxis.Set(nx,xBins);
8804 fYaxis.Set(1,0,1);
8805 fZaxis.Set(1,0,1);
8806 fNcells = nx+2;
8808 if (fSumw2.fN) {
8810 }
8811}
8812
8813////////////////////////////////////////////////////////////////////////////////
8814/// Redefine x and y axis parameters.
8815///
8816/// The X and Y axis parameters are modified.
8817/// The bins content array is resized
8818/// if errors (Sumw2) the errors array is resized
8819/// The previous bin contents are lost
8820/// To change only the axis limits, see TAxis::SetRange
8821
8823{
8824 if (GetDimension() != 2) {
8825 Error("SetBins","Operation only valid for 2-D histograms");
8826 return;
8827 }
8828 fXaxis.SetRange(0,0);
8829 fYaxis.SetRange(0,0);
8832 fZaxis.Set(1,0,1);
8833 fNcells = (nx+2)*(ny+2);
8835 if (fSumw2.fN) {
8837 }
8838}
8839
8840////////////////////////////////////////////////////////////////////////////////
8841/// Redefine x and y axis parameters with variable bin sizes.
8842///
8843/// The X and Y axis parameters are modified.
8844/// The bins content array is resized
8845/// if errors (Sumw2) the errors array is resized
8846/// The previous bin contents are lost
8847/// To change only the axis limits, see TAxis::SetRange
8848/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1
8849
8850void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
8851{
8852 if (GetDimension() != 2) {
8853 Error("SetBins","Operation only valid for 2-D histograms");
8854 return;
8855 }
8856 fXaxis.SetRange(0,0);
8857 fYaxis.SetRange(0,0);
8858 fXaxis.Set(nx,xBins);
8859 fYaxis.Set(ny,yBins);
8860 fZaxis.Set(1,0,1);
8861 fNcells = (nx+2)*(ny+2);
8863 if (fSumw2.fN) {
8865 }
8866}
8867
8868////////////////////////////////////////////////////////////////////////////////
8869/// Redefine x, y and z axis parameters.
8870///
8871/// The X, Y and Z axis parameters are modified.
8872/// The bins content array is resized
8873/// if errors (Sumw2) the errors array is resized
8874/// The previous bin contents are lost
8875/// To change only the axis limits, see TAxis::SetRange
8876
8878{
8879 if (GetDimension() != 3) {
8880 Error("SetBins","Operation only valid for 3-D histograms");
8881 return;
8882 }
8883 fXaxis.SetRange(0,0);
8884 fYaxis.SetRange(0,0);
8885 fZaxis.SetRange(0,0);
8888 fZaxis.Set(nz,zmin,zmax);
8889 fNcells = (nx+2)*(ny+2)*(nz+2);
8891 if (fSumw2.fN) {
8893 }
8894}
8895
8896////////////////////////////////////////////////////////////////////////////////
8897/// Redefine x, y and z axis parameters with variable bin sizes.
8898///
8899/// The X, Y and Z axis parameters are modified.
8900/// The bins content array is resized
8901/// if errors (Sumw2) the errors array is resized
8902/// The previous bin contents are lost
8903/// To change only the axis limits, see TAxis::SetRange
8904/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1,
8905/// zBins is supposed to be of length nz+1
8906
8907void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz, const Double_t *zBins)
8908{
8909 if (GetDimension() != 3) {
8910 Error("SetBins","Operation only valid for 3-D histograms");
8911 return;
8912 }
8913 fXaxis.SetRange(0,0);
8914 fYaxis.SetRange(0,0);
8915 fZaxis.SetRange(0,0);
8916 fXaxis.Set(nx,xBins);
8917 fYaxis.Set(ny,yBins);
8918 fZaxis.Set(nz,zBins);
8919 fNcells = (nx+2)*(ny+2)*(nz+2);
8921 if (fSumw2.fN) {
8923 }
8924}
8925
8926////////////////////////////////////////////////////////////////////////////////
8927/// By default, when a histogram is created, it is added to the list
8928/// of histogram objects in the current directory in memory.
8929/// Remove reference to this histogram from current directory and add
8930/// reference to new directory dir. dir can be 0 in which case the
8931/// histogram does not belong to any directory.
8932///
8933/// Note that the directory is not a real property of the histogram and
8934/// it will not be copied when the histogram is copied or cloned.
8935/// If the user wants to have the copied (cloned) histogram in the same
8936/// directory, he needs to set again the directory using SetDirectory to the
8937/// copied histograms
8938
8940{
8941 if (fDirectory == dir) return;
8942 if (fDirectory) fDirectory->Remove(this);
8943 fDirectory = dir;
8944 if (fDirectory) {
8946 fDirectory->Append(this);
8947 }
8948}
8949
8950////////////////////////////////////////////////////////////////////////////////
8951/// Replace bin errors by values in array error.
8952
8953void TH1::SetError(const Double_t *error)
8954{
8955 for (Int_t i = 0; i < fNcells; ++i) SetBinError(i, error[i]);
8956}
8957
8958////////////////////////////////////////////////////////////////////////////////
8959/// Change the name of this histogram
8961
8962void TH1::SetName(const char *name)
8963{
8964 // Histograms are named objects in a THashList.
8965 // We must update the hashlist if we change the name
8966 // We protect this operation
8968 if (fDirectory) fDirectory->Remove(this);
8969 fName = name;
8970 if (fDirectory) fDirectory->Append(this);
8971}
8972
8973////////////////////////////////////////////////////////////////////////////////
8974/// Change the name and title of this histogram
8975
8976void TH1::SetNameTitle(const char *name, const char *title)
8977{
8978 // Histograms are named objects in a THashList.
8979 // We must update the hashlist if we change the name
8980 SetName(name);
8981 SetTitle(title);
8982}
8983
8984////////////////////////////////////////////////////////////////////////////////
8985/// Set statistics option on/off.
8986///
8987/// By default, the statistics box is drawn.
8988/// The paint options can be selected via gStyle->SetOptStat.
8989/// This function sets/resets the kNoStats bit in the histogram object.
8990/// It has priority over the Style option.
8991
8993{
8995 if (!stats) {
8997 //remove the "stats" object from the list of functions
8998 if (fFunctions) {
8999 TObject *obj = fFunctions->FindObject("stats");
9000 if (obj) {
9001 fFunctions->Remove(obj);
9002 delete obj;
9003 }
9004 }
9005 }
9006}
9007
9008////////////////////////////////////////////////////////////////////////////////
9009/// Create structure to store sum of squares of weights.
9010///
9011/// if histogram is already filled, the sum of squares of weights
9012/// is filled with the existing bin contents
9013///
9014/// The error per bin will be computed as sqrt(sum of squares of weight)
9015/// for each bin.
9016///
9017/// This function is automatically called when the histogram is created
9018/// if the static function TH1::SetDefaultSumw2 has been called before.
9019/// If flag = false the structure containing the sum of the square of weights
9020/// is rest and it will be empty, but it is not deleted (i.e. GetSumw2()->fN = 0)
9021
9023{
9024 if (!flag) {
9025 // clear the array if existing - do nothing otherwise
9026 if (fSumw2.fN > 0 ) fSumw2.Set(0);
9027 return;
9028 }
9029
9030 if (fSumw2.fN == fNcells) {
9031 if (!fgDefaultSumw2 )
9032 Warning("Sumw2","Sum of squares of weights structure already created");
9033 return;
9034 }
9035
9037
9038 if (fEntries > 0)
9039 for (Int_t i = 0; i < fNcells; ++i)
9041}
9042
9043////////////////////////////////////////////////////////////////////////////////
9044/// Return pointer to function with name.
9045///
9046///
9047/// Functions such as TH1::Fit store the fitted function in the list of
9048/// functions of this histogram.
9049
9050TF1 *TH1::GetFunction(const char *name) const
9051{
9052 return (TF1*)fFunctions->FindObject(name);
9053}
9054
9055////////////////////////////////////////////////////////////////////////////////
9056/// Return value of error associated to bin number bin.
9057///
9058/// if the sum of squares of weights has been defined (via Sumw2),
9059/// this function returns the sqrt(sum of w2).
9060/// otherwise it returns the sqrt(contents) for this bin.
9061
9063{
9064 if (bin < 0) bin = 0;
9065 if (bin >= fNcells) bin = fNcells-1;
9066 if (fBuffer) ((TH1*)this)->BufferEmpty();
9067 if (fSumw2.fN) return TMath::Sqrt(fSumw2.fArray[bin]);
9068
9070}
9071
9072////////////////////////////////////////////////////////////////////////////////
9073/// Return lower error associated to bin number bin.
9074///
9075/// The error will depend on the statistic option used will return
9076/// the binContent - lower interval value
9077
9079{
9080 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9081 // in case of weighted histogram check if it is really weighted
9082 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9083
9084 if (bin < 0) bin = 0;
9085 if (bin >= fNcells) bin = fNcells-1;
9086 if (fBuffer) ((TH1*)this)->BufferEmpty();
9087
9088 Double_t alpha = 1.- 0.682689492;
9089 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9090
9092 Int_t n = int(c);
9093 if (n < 0) {
9094 Warning("GetBinErrorLow","Histogram has negative bin content-force usage to normal errors");
9095 ((TH1*)this)->fBinStatErrOpt = kNormal;
9096 return GetBinError(bin);
9097 }
9098
9099 if (n == 0) return 0;
9100 return c - ROOT::Math::gamma_quantile( alpha/2, n, 1.);
9101}
9102
9103////////////////////////////////////////////////////////////////////////////////
9104/// Return upper error associated to bin number bin.
9105///
9106/// The error will depend on the statistic option used will return
9107/// the binContent - upper interval value
9108
9110{
9111 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9112 // in case of weighted histogram check if it is really weighted
9113 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9114 if (bin < 0) bin = 0;
9115 if (bin >= fNcells) bin = fNcells-1;
9116 if (fBuffer) ((TH1*)this)->BufferEmpty();
9117
9118 Double_t alpha = 1.- 0.682689492;
9119 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9120
9122 Int_t n = int(c);
9123 if (n < 0) {
9124 Warning("GetBinErrorUp","Histogram has negative bin content-force usage to normal errors");
9125 ((TH1*)this)->fBinStatErrOpt = kNormal;
9126 return GetBinError(bin);
9127 }
9128
9129 // for N==0 return an upper limit at 0.68 or (1-alpha)/2 ?
9130 // decide to return always (1-alpha)/2 upper interval
9131 //if (n == 0) return ROOT::Math::gamma_quantile_c(alpha,n+1,1);
9132 return ROOT::Math::gamma_quantile_c( alpha/2, n+1, 1) - c;
9133}
9134
9135//L.M. These following getters are useless and should be probably deprecated
9136////////////////////////////////////////////////////////////////////////////////
9137/// Return bin center for 1D histogram.
9138/// Better to use h1.GetXaxis()->GetBinCenter(bin)
9139
9141{
9142 if (fDimension == 1) return fXaxis.GetBinCenter(bin);
9143 Error("GetBinCenter","Invalid method for a %d-d histogram - return a NaN",fDimension);
9144 return TMath::QuietNaN();
9145}
9146
9147////////////////////////////////////////////////////////////////////////////////
9148/// Return bin lower edge for 1D histogram.
9149/// Better to use h1.GetXaxis()->GetBinLowEdge(bin)
9150
9152{
9153 if (fDimension == 1) return fXaxis.GetBinLowEdge(bin);
9154 Error("GetBinLowEdge","Invalid method for a %d-d histogram - return a NaN",fDimension);
9155 return TMath::QuietNaN();
9156}
9157
9158////////////////////////////////////////////////////////////////////////////////
9159/// Return bin width for 1D histogram.
9160/// Better to use h1.GetXaxis()->GetBinWidth(bin)
9161
9163{
9164 if (fDimension == 1) return fXaxis.GetBinWidth(bin);
9165 Error("GetBinWidth","Invalid method for a %d-d histogram - return a NaN",fDimension);
9166 return TMath::QuietNaN();
9167}
9168
9169////////////////////////////////////////////////////////////////////////////////
9170/// Fill array with center of bins for 1D histogram
9171/// Better to use h1.GetXaxis()->GetCenter(center)
9172
9173void TH1::GetCenter(Double_t *center) const
9174{
9175 if (fDimension == 1) {
9176 fXaxis.GetCenter(center);
9177 return;
9178 }
9179 Error("GetCenter","Invalid method for a %d-d histogram ",fDimension);
9180}
9181
9182////////////////////////////////////////////////////////////////////////////////
9183/// Fill array with low edge of bins for 1D histogram
9184/// Better to use h1.GetXaxis()->GetLowEdge(edge)
9185
9186void TH1::GetLowEdge(Double_t *edge) const
9187{
9188 if (fDimension == 1) {
9190 return;
9191 }
9192 Error("GetLowEdge","Invalid method for a %d-d histogram ",fDimension);
9193}
9194
9195////////////////////////////////////////////////////////////////////////////////
9196/// Set the bin Error
9197/// Note that this resets the bin eror option to be of Normal Type and for the
9198/// non-empty bin the bin error is set by default to the square root of their content.
9199/// Note that in case the user sets after calling SetBinError explicitly a new bin content (e.g. using SetBinContent)
9200/// he needs then to provide also the corresponding bin error (using SetBinError) since the bin error
9201/// will not be recalculated after setting the content and a default error = 0 will be used for those bins.
9202///
9203/// See convention for numbering bins in TH1::GetBin
9204
9205void TH1::SetBinError(Int_t bin, Double_t error)
9206{
9207 if (bin < 0 || bin>= fNcells) return;
9208 if (!fSumw2.fN) Sumw2();
9209 fSumw2.fArray[bin] = error * error;
9210 // reset the bin error option
9212}
9213
9214////////////////////////////////////////////////////////////////////////////////
9215/// Set bin content
9216/// see convention for numbering bins in TH1::GetBin
9217/// In case the bin number is greater than the number of bins and
9218/// the timedisplay option is set or CanExtendAllAxes(),
9219/// the number of bins is automatically doubled to accommodate the new bin
9220
9222{
9223 fEntries++;
9224 fTsumw = 0;
9225 if (bin < 0) return;
9226 if (bin >= fNcells-1) {
9228 while (bin >= fNcells-1) LabelsInflate();
9229 } else {
9230 if (bin == fNcells-1) UpdateBinContent(bin, content);
9231 return;
9232 }
9233 }
9235}
9236
9237////////////////////////////////////////////////////////////////////////////////
9238/// See convention for numbering bins in TH1::GetBin
9239
9241{
9242 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9243 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9244 SetBinError(GetBin(binx, biny), error);
9245}
9246
9247////////////////////////////////////////////////////////////////////////////////
9248/// See convention for numbering bins in TH1::GetBin
9249
9251{
9252 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9253 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9254 if (binz < 0 || binz > fZaxis.GetNbins() + 1) return;
9255 SetBinError(GetBin(binx, biny, binz), error);
9256}
9257
9258////////////////////////////////////////////////////////////////////////////////
9259/// This function calculates the background spectrum in this histogram.
9260/// The background is returned as a histogram.
9261///
9262/// \param[in] niter number of iterations (default value = 2)
9263/// Increasing niter make the result smoother and lower.
9264/// \param[in] option may contain one of the following options
9265/// - to set the direction parameter
9266/// "BackDecreasingWindow". By default the direction is BackIncreasingWindow
9267/// - filterOrder-order of clipping filter (default "BackOrder2")
9268/// possible values= "BackOrder4" "BackOrder6" "BackOrder8"
9269/// - "nosmoothing" - if selected, the background is not smoothed
9270/// By default the background is smoothed.
9271/// - smoothWindow - width of smoothing window, (default is "BackSmoothing3")
9272/// possible values= "BackSmoothing5" "BackSmoothing7" "BackSmoothing9"
9273/// "BackSmoothing11" "BackSmoothing13" "BackSmoothing15"
9274/// - "nocompton" - if selected the estimation of Compton edge
9275/// will be not be included (by default the compton estimation is set)
9276/// - "same" if this option is specified, the resulting background
9277/// histogram is superimposed on the picture in the current pad.
9278/// This option is given by default.
9279///
9280/// NOTE that the background is only evaluated in the current range of this histogram.
9281/// i.e., if this has a bin range (set via h->GetXaxis()->SetRange(binmin, binmax),
9282/// the returned histogram will be created with the same number of bins
9283/// as this input histogram, but only bins from binmin to binmax will be filled
9284/// with the estimated background.
9285
9287{
9288 return (TH1*)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticBackground((TH1*)0x%zx,%d,\"%s\")",
9289 (size_t)this, niter, option).Data());
9290}
9291
9292////////////////////////////////////////////////////////////////////////////////
9293/// Interface to TSpectrum::Search.
9294/// The function finds peaks in this histogram where the width is > sigma
9295/// and the peak maximum greater than threshold*maximum bin content of this.
9296/// For more details see TSpectrum::Search.
9297/// Note the difference in the default value for option compared to TSpectrum::Search
9298/// option="" by default (instead of "goff").
9299
9301{
9302 return (Int_t)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticSearch((TH1*)0x%zx,%g,\"%s\",%g)",
9303 (size_t)this, sigma, option, threshold).Data());
9304}
9305
9306////////////////////////////////////////////////////////////////////////////////
9307/// For a given transform (first parameter), fills the histogram (second parameter)
9308/// with the transform output data, specified in the third parameter
9309/// If the 2nd parameter h_output is empty, a new histogram (TH1D or TH2D) is created
9310/// and the user is responsible for deleting it.
9311///
9312/// Available options:
9313/// - "RE" - real part of the output
9314/// - "IM" - imaginary part of the output
9315/// - "MAG" - magnitude of the output
9316/// - "PH" - phase of the output
9317
9319{
9320 if (!fft || !fft->GetN() ) {
9321 ::Error("TransformHisto","Invalid FFT transform class");
9322 return nullptr;
9323 }
9324
9325 if (fft->GetNdim()>2){
9326 ::Error("TransformHisto","Only 1d and 2D transform are supported");
9327 return nullptr;
9328 }
9329 Int_t binx,biny;
9330 TString opt = option;
9331 opt.ToUpper();
9332 Int_t *n = fft->GetN();
9333 TH1 *hout=nullptr;
9334 if (h_output) {
9335 hout = h_output;
9336 }
9337 else {
9338 TString name = TString::Format("out_%s", opt.Data());
9339 if (fft->GetNdim()==1)
9340 hout = new TH1D(name, name,n[0], 0, n[0]);
9341 else if (fft->GetNdim()==2)
9342 hout = new TH2D(name, name, n[0], 0, n[0], n[1], 0, n[1]);
9343 }
9344 R__ASSERT(hout != nullptr);
9345 TString type=fft->GetType();
9346 Int_t ind[2];
9347 if (opt.Contains("RE")){
9348 if (type.Contains("2C") || type.Contains("2HC")) {
9349 Double_t re, im;
9350 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9351 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9352 ind[0] = binx-1; ind[1] = biny-1;
9353 fft->GetPointComplex(ind, re, im);
9354 hout->SetBinContent(binx, biny, re);
9355 }
9356 }
9357 } else {
9358 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9359 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9360 ind[0] = binx-1; ind[1] = biny-1;
9361 hout->SetBinContent(binx, biny, fft->GetPointReal(ind));
9362 }
9363 }
9364 }
9365 }
9366 if (opt.Contains("IM")) {
9367 if (type.Contains("2C") || type.Contains("2HC")) {
9368 Double_t re, im;
9369 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9370 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9371 ind[0] = binx-1; ind[1] = biny-1;
9372 fft->GetPointComplex(ind, re, im);
9373 hout->SetBinContent(binx, biny, im);
9374 }
9375 }
9376 } else {
9377 ::Error("TransformHisto","No complex numbers in the output");
9378 return nullptr;
9379 }
9380 }
9381 if (opt.Contains("MA")) {
9382 if (type.Contains("2C") || type.Contains("2HC")) {
9383 Double_t re, im;
9384 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9385 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9386 ind[0] = binx-1; ind[1] = biny-1;
9387 fft->GetPointComplex(ind, re, im);
9388 hout->SetBinContent(binx, biny, TMath::Sqrt(re*re + im*im));
9389 }
9390 }
9391 } else {
9392 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9393 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9394 ind[0] = binx-1; ind[1] = biny-1;
9395 hout->SetBinContent(binx, biny, TMath::Abs(fft->GetPointReal(ind)));
9396 }
9397 }
9398 }
9399 }
9400 if (opt.Contains("PH")) {
9401 if (type.Contains("2C") || type.Contains("2HC")){
9402 Double_t re, im, ph;
9403 for (binx = 1; binx<=hout->GetNbinsX(); binx++){
9404 for (biny=1; biny<=hout->GetNbinsY(); biny++){
9405 ind[0] = binx-1; ind[1] = biny-1;
9406 fft->GetPointComplex(ind, re, im);
9407 if (TMath::Abs(re) > 1e-13){
9408 ph = TMath::ATan(im/re);
9409 //find the correct quadrant
9410 if (re<0 && im<0)
9411 ph -= TMath::Pi();
9412 if (re<0 && im>=0)
9413 ph += TMath::Pi();
9414 } else {
9415 if (TMath::Abs(im) < 1e-13)
9416 ph = 0;
9417 else if (im>0)
9418 ph = TMath::Pi()*0.5;
9419 else
9420 ph = -TMath::Pi()*0.5;
9421 }
9422 hout->SetBinContent(binx, biny, ph);
9423 }
9424 }
9425 } else {
9426 printf("Pure real output, no phase");
9427 return nullptr;
9428 }
9429 }
9430
9431 return hout;
9432}
9433
9434////////////////////////////////////////////////////////////////////////////////
9435/// Print value overload
9436
9437std::string cling::printValue(TH1 *val) {
9438 std::ostringstream strm;
9439 strm << cling::printValue((TObject*)val) << " NbinsX: " << val->GetNbinsX();
9440 return strm.str();
9441}
9442
9443//______________________________________________________________________________
9444// TH1C methods
9445// TH1C : histograms with one byte per channel. Maximum bin content = 127
9446//______________________________________________________________________________
9447
9448ClassImp(TH1C);
9449
9450////////////////////////////////////////////////////////////////////////////////
9451/// Constructor.
9452
9453TH1C::TH1C()
9454{
9455 fDimension = 1;
9456 SetBinsLength(3);
9457 if (fgDefaultSumw2) Sumw2();
9458}
9459
9460////////////////////////////////////////////////////////////////////////////////
9461/// Create a 1-Dim histogram with fix bins of type char (one byte per channel)
9462/// (see TH1::TH1 for explanation of parameters)
9463
9464TH1C::TH1C(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9465: TH1(name,title,nbins,xlow,xup)
9466{
9467 fDimension = 1;
9469
9470 if (xlow >= xup) SetBuffer(fgBufferSize);
9471 if (fgDefaultSumw2) Sumw2();
9472}
9473
9474////////////////////////////////////////////////////////////////////////////////
9475/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9476/// (see TH1::TH1 for explanation of parameters)
9477
9478TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9479: TH1(name,title,nbins,xbins)
9480{
9481 fDimension = 1;
9483 if (fgDefaultSumw2) Sumw2();
9484}
9485
9486////////////////////////////////////////////////////////////////////////////////
9487/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9488/// (see TH1::TH1 for explanation of parameters)
9489
9490TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9491: TH1(name,title,nbins,xbins)
9492{
9493 fDimension = 1;
9495 if (fgDefaultSumw2) Sumw2();
9496}
9497
9498////////////////////////////////////////////////////////////////////////////////
9499/// Destructor.
9500
9502{
9503}
9504
9505////////////////////////////////////////////////////////////////////////////////
9506/// Copy constructor.
9507/// The list of functions is not copied. (Use Clone() if needed)
9508
9509TH1C::TH1C(const TH1C &h1c) : TH1(), TArrayC()
9510{
9511 h1c.TH1C::Copy(*this);
9512}
9513
9514////////////////////////////////////////////////////////////////////////////////
9515/// Increment bin content by 1.
9516/// Passing an out-of-range bin leads to undefined behavior
9517
9518void TH1C::AddBinContent(Int_t bin)
9519{
9520 if (fArray[bin] < 127) fArray[bin]++;
9521}
9522
9523////////////////////////////////////////////////////////////////////////////////
9524/// Increment bin content by w.
9525/// \warning The value of w is cast to `Int_t` before being added.
9526/// Passing an out-of-range bin leads to undefined behavior
9527
9529{
9530 Int_t newval = fArray[bin] + Int_t(w);
9531 if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
9532 if (newval < -127) fArray[bin] = -127;
9533 if (newval > 127) fArray[bin] = 127;
9534}
9535
9536////////////////////////////////////////////////////////////////////////////////
9537/// Copy this to newth1
9538
9539void TH1C::Copy(TObject &newth1) const
9540{
9542}
9543
9544////////////////////////////////////////////////////////////////////////////////
9545/// Reset.
9546
9548{
9551}
9552
9553////////////////////////////////////////////////////////////////////////////////
9554/// Set total number of bins including under/overflow
9555/// Reallocate bin contents array
9556
9558{
9559 if (n < 0) n = fXaxis.GetNbins() + 2;
9560 fNcells = n;
9561 TArrayC::Set(n);
9562}
9563
9564////////////////////////////////////////////////////////////////////////////////
9565/// Operator =
9566
9567TH1C& TH1C::operator=(const TH1C &h1)
9568{
9569 if (this != &h1)
9570 h1.TH1C::Copy(*this);
9571 return *this;
9572}
9573
9574////////////////////////////////////////////////////////////////////////////////
9575/// Operator *
9576
9578{
9579 TH1C hnew = h1;
9580 hnew.Scale(c1);
9581 hnew.SetDirectory(nullptr);
9582 return hnew;
9583}
9584
9585////////////////////////////////////////////////////////////////////////////////
9586/// Operator +
9587
9588TH1C operator+(const TH1C &h1, const TH1C &h2)
9589{
9590 TH1C hnew = h1;
9591 hnew.Add(&h2,1);
9592 hnew.SetDirectory(nullptr);
9593 return hnew;
9594}
9595
9596////////////////////////////////////////////////////////////////////////////////
9597/// Operator -
9598
9599TH1C operator-(const TH1C &h1, const TH1C &h2)
9600{
9601 TH1C hnew = h1;
9602 hnew.Add(&h2,-1);
9603 hnew.SetDirectory(nullptr);
9604 return hnew;
9605}
9606
9607////////////////////////////////////////////////////////////////////////////////
9608/// Operator *
9609
9610TH1C operator*(const TH1C &h1, const TH1C &h2)
9611{
9612 TH1C hnew = h1;
9613 hnew.Multiply(&h2);
9614 hnew.SetDirectory(nullptr);
9615 return hnew;
9616}
9617
9618////////////////////////////////////////////////////////////////////////////////
9619/// Operator /
9620
9621TH1C operator/(const TH1C &h1, const TH1C &h2)
9622{
9623 TH1C hnew = h1;
9624 hnew.Divide(&h2);
9625 hnew.SetDirectory(nullptr);
9626 return hnew;
9627}
9628
9629//______________________________________________________________________________
9630// TH1S methods
9631// TH1S : histograms with one short per channel. Maximum bin content = 32767
9632//______________________________________________________________________________
9633
9634ClassImp(TH1S);
9635
9636////////////////////////////////////////////////////////////////////////////////
9637/// Constructor.
9638
9639TH1S::TH1S()
9640{
9641 fDimension = 1;
9642 SetBinsLength(3);
9643 if (fgDefaultSumw2) Sumw2();
9644}
9645
9646////////////////////////////////////////////////////////////////////////////////
9647/// Create a 1-Dim histogram with fix bins of type short
9648/// (see TH1::TH1 for explanation of parameters)
9649
9650TH1S::TH1S(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9651: TH1(name,title,nbins,xlow,xup)
9652{
9653 fDimension = 1;
9655
9656 if (xlow >= xup) SetBuffer(fgBufferSize);
9657 if (fgDefaultSumw2) Sumw2();
9658}
9659
9660////////////////////////////////////////////////////////////////////////////////
9661/// Create a 1-Dim histogram with variable bins of type short
9662/// (see TH1::TH1 for explanation of parameters)
9663
9664TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9665: TH1(name,title,nbins,xbins)
9666{
9667 fDimension = 1;
9669 if (fgDefaultSumw2) Sumw2();
9670}
9671
9672////////////////////////////////////////////////////////////////////////////////
9673/// Create a 1-Dim histogram with variable bins of type short
9674/// (see TH1::TH1 for explanation of parameters)
9675
9676TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9677: TH1(name,title,nbins,xbins)
9678{
9679 fDimension = 1;
9681 if (fgDefaultSumw2) Sumw2();
9682}
9683
9684////////////////////////////////////////////////////////////////////////////////
9685/// Destructor.
9686
9688{
9689}
9690
9691////////////////////////////////////////////////////////////////////////////////
9692/// Copy constructor.
9693/// The list of functions is not copied. (Use Clone() if needed)
9694
9695TH1S::TH1S(const TH1S &h1s) : TH1(), TArrayS()
9696{
9697 h1s.TH1S::Copy(*this);
9698}
9699
9700////////////////////////////////////////////////////////////////////////////////
9701/// Increment bin content by 1.
9702/// Passing an out-of-range bin leads to undefined behavior
9703
9704void TH1S::AddBinContent(Int_t bin)
9705{
9706 if (fArray[bin] < 32767) fArray[bin]++;
9707}
9708
9709////////////////////////////////////////////////////////////////////////////////
9710/// Increment bin content by w.
9711/// \warning The value of w is cast to `Int_t` before being added.
9712/// Passing an out-of-range bin leads to undefined behavior
9713
9715{
9716 Int_t newval = fArray[bin] + Int_t(w);
9717 if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
9718 if (newval < -32767) fArray[bin] = -32767;
9719 if (newval > 32767) fArray[bin] = 32767;
9720}
9721
9722////////////////////////////////////////////////////////////////////////////////
9723/// Copy this to newth1
9724
9725void TH1S::Copy(TObject &newth1) const
9726{
9728}
9729
9730////////////////////////////////////////////////////////////////////////////////
9731/// Reset.
9732
9734{
9737}
9738
9739////////////////////////////////////////////////////////////////////////////////
9740/// Set total number of bins including under/overflow
9741/// Reallocate bin contents array
9742
9744{
9745 if (n < 0) n = fXaxis.GetNbins() + 2;
9746 fNcells = n;
9747 TArrayS::Set(n);
9748}
9749
9750////////////////////////////////////////////////////////////////////////////////
9751/// Operator =
9752
9753TH1S& TH1S::operator=(const TH1S &h1)
9754{
9755 if (this != &h1)
9756 h1.TH1S::Copy(*this);
9757 return *this;
9758}
9759
9760////////////////////////////////////////////////////////////////////////////////
9761/// Operator *
9762
9764{
9765 TH1S hnew = h1;
9766 hnew.Scale(c1);
9767 hnew.SetDirectory(nullptr);
9768 return hnew;
9769}
9770
9771////////////////////////////////////////////////////////////////////////////////
9772/// Operator +
9773
9774TH1S operator+(const TH1S &h1, const TH1S &h2)
9775{
9776 TH1S hnew = h1;
9777 hnew.Add(&h2,1);
9778 hnew.SetDirectory(nullptr);
9779 return hnew;
9780}
9781
9782////////////////////////////////////////////////////////////////////////////////
9783/// Operator -
9784
9785TH1S operator-(const TH1S &h1, const TH1S &h2)
9786{
9787 TH1S hnew = h1;
9788 hnew.Add(&h2,-1);
9789 hnew.SetDirectory(nullptr);
9790 return hnew;
9791}
9792
9793////////////////////////////////////////////////////////////////////////////////
9794/// Operator *
9795
9796TH1S operator*(const TH1S &h1, const TH1S &h2)
9797{
9798 TH1S hnew = h1;
9799 hnew.Multiply(&h2);
9800 hnew.SetDirectory(nullptr);
9801 return hnew;
9802}
9803
9804////////////////////////////////////////////////////////////////////////////////
9805/// Operator /
9806
9807TH1S operator/(const TH1S &h1, const TH1S &h2)
9808{
9809 TH1S hnew = h1;
9810 hnew.Divide(&h2);
9811 hnew.SetDirectory(nullptr);
9812 return hnew;
9813}
9814
9815//______________________________________________________________________________
9816// TH1I methods
9817// TH1I : histograms with one int per channel. Maximum bin content = 2147483647
9818// 2147483647 = INT_MAX
9819//______________________________________________________________________________
9820
9821ClassImp(TH1I);
9822
9823////////////////////////////////////////////////////////////////////////////////
9824/// Constructor.
9825
9826TH1I::TH1I()
9827{
9828 fDimension = 1;
9829 SetBinsLength(3);
9830 if (fgDefaultSumw2) Sumw2();
9831}
9832
9833////////////////////////////////////////////////////////////////////////////////
9834/// Create a 1-Dim histogram with fix bins of type integer
9835/// (see TH1::TH1 for explanation of parameters)
9836
9837TH1I::TH1I(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9838: TH1(name,title,nbins,xlow,xup)
9839{
9840 fDimension = 1;
9842
9843 if (xlow >= xup) SetBuffer(fgBufferSize);
9844 if (fgDefaultSumw2) Sumw2();
9845}
9846
9847////////////////////////////////////////////////////////////////////////////////
9848/// Create a 1-Dim histogram with variable bins of type integer
9849/// (see TH1::TH1 for explanation of parameters)
9850
9851TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9852: TH1(name,title,nbins,xbins)
9853{
9854 fDimension = 1;
9856 if (fgDefaultSumw2) Sumw2();
9857}
9858
9859////////////////////////////////////////////////////////////////////////////////
9860/// Create a 1-Dim histogram with variable bins of type integer
9861/// (see TH1::TH1 for explanation of parameters)
9862
9863TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9864: TH1(name,title,nbins,xbins)
9865{
9866 fDimension = 1;
9868 if (fgDefaultSumw2) Sumw2();
9869}
9870
9871////////////////////////////////////////////////////////////////////////////////
9872/// Destructor.
9873
9875{
9876}
9877
9878////////////////////////////////////////////////////////////////////////////////
9879/// Copy constructor.
9880/// The list of functions is not copied. (Use Clone() if needed)
9881
9882TH1I::TH1I(const TH1I &h1i) : TH1(), TArrayI()
9883{
9884 h1i.TH1I::Copy(*this);
9885}
9886
9887////////////////////////////////////////////////////////////////////////////////
9888/// Increment bin content by 1.
9889/// Passing an out-of-range bin leads to undefined behavior
9890
9891void TH1I::AddBinContent(Int_t bin)
9892{
9893 if (fArray[bin] < INT_MAX) fArray[bin]++;
9894}
9895
9896////////////////////////////////////////////////////////////////////////////////
9897/// Increment bin content by w
9898/// \warning The value of w is cast to `Long64_t` before being added.
9899/// Passing an out-of-range bin leads to undefined behavior
9900
9902{
9903 Long64_t newval = fArray[bin] + Long64_t(w);
9904 if (newval > -INT_MAX && newval < INT_MAX) {fArray[bin] = Int_t(newval); return;}
9905 if (newval < -INT_MAX) fArray[bin] = -INT_MAX;
9906 if (newval > INT_MAX) fArray[bin] = INT_MAX;
9907}
9908
9909////////////////////////////////////////////////////////////////////////////////
9910/// Copy this to newth1
9911
9912void TH1I::Copy(TObject &newth1) const
9913{
9915}
9916
9917////////////////////////////////////////////////////////////////////////////////
9918/// Reset.
9919
9921{
9924}
9925
9926////////////////////////////////////////////////////////////////////////////////
9927/// Set total number of bins including under/overflow
9928/// Reallocate bin contents array
9929
9931{
9932 if (n < 0) n = fXaxis.GetNbins() + 2;
9933 fNcells = n;
9934 TArrayI::Set(n);
9935}
9936
9937////////////////////////////////////////////////////////////////////////////////
9938/// Operator =
9939
9940TH1I& TH1I::operator=(const TH1I &h1)
9941{
9942 if (this != &h1)
9943 h1.TH1I::Copy(*this);
9944 return *this;
9945}
9946
9947
9948////////////////////////////////////////////////////////////////////////////////
9949/// Operator *
9950
9952{
9953 TH1I hnew = h1;
9954 hnew.Scale(c1);
9955 hnew.SetDirectory(nullptr);
9956 return hnew;
9957}
9958
9959////////////////////////////////////////////////////////////////////////////////
9960/// Operator +
9961
9962TH1I operator+(const TH1I &h1, const TH1I &h2)
9963{
9964 TH1I hnew = h1;
9965 hnew.Add(&h2,1);
9966 hnew.SetDirectory(nullptr);
9967 return hnew;
9968}
9969
9970////////////////////////////////////////////////////////////////////////////////
9971/// Operator -
9972
9973TH1I operator-(const TH1I &h1, const TH1I &h2)
9974{
9975 TH1I hnew = h1;
9976 hnew.Add(&h2,-1);
9977 hnew.SetDirectory(nullptr);
9978 return hnew;
9979}
9980
9981////////////////////////////////////////////////////////////////////////////////
9982/// Operator *
9983
9984TH1I operator*(const TH1I &h1, const TH1I &h2)
9985{
9986 TH1I hnew = h1;
9987 hnew.Multiply(&h2);
9988 hnew.SetDirectory(nullptr);
9989 return hnew;
9990}
9991
9992////////////////////////////////////////////////////////////////////////////////
9993/// Operator /
9994
9995TH1I operator/(const TH1I &h1, const TH1I &h2)
9996{
9997 TH1I hnew = h1;
9998 hnew.Divide(&h2);
9999 hnew.SetDirectory(nullptr);
10000 return hnew;
10001}
10002
10003//______________________________________________________________________________
10004// TH1L methods
10005// TH1L : histograms with one long64 per channel. Maximum bin content = 9223372036854775807
10006// 9223372036854775807 = LLONG_MAX
10007//______________________________________________________________________________
10008
10009ClassImp(TH1L);
10010
10011////////////////////////////////////////////////////////////////////////////////
10012/// Constructor.
10013
10014TH1L::TH1L()
10015{
10016 fDimension = 1;
10017 SetBinsLength(3);
10018 if (fgDefaultSumw2) Sumw2();
10019}
10020
10021////////////////////////////////////////////////////////////////////////////////
10022/// Create a 1-Dim histogram with fix bins of type long64
10023/// (see TH1::TH1 for explanation of parameters)
10024
10025TH1L::TH1L(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10026: TH1(name,title,nbins,xlow,xup)
10027{
10028 fDimension = 1;
10030
10031 if (xlow >= xup) SetBuffer(fgBufferSize);
10032 if (fgDefaultSumw2) Sumw2();
10033}
10034
10035////////////////////////////////////////////////////////////////////////////////
10036/// Create a 1-Dim histogram with variable bins of type long64
10037/// (see TH1::TH1 for explanation of parameters)
10038
10039TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10040: TH1(name,title,nbins,xbins)
10041{
10042 fDimension = 1;
10044 if (fgDefaultSumw2) Sumw2();
10045}
10046
10047////////////////////////////////////////////////////////////////////////////////
10048/// Create a 1-Dim histogram with variable bins of type long64
10049/// (see TH1::TH1 for explanation of parameters)
10050
10051TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10052: TH1(name,title,nbins,xbins)
10053{
10054 fDimension = 1;
10056 if (fgDefaultSumw2) Sumw2();
10057}
10058
10059////////////////////////////////////////////////////////////////////////////////
10060/// Destructor.
10061
10063{
10064}
10065
10066////////////////////////////////////////////////////////////////////////////////
10067/// Copy constructor.
10068/// The list of functions is not copied. (Use Clone() if needed)
10069
10070TH1L::TH1L(const TH1L &h1l) : TH1(), TArrayL64()
10071{
10072 h1l.TH1L::Copy(*this);
10073}
10074
10075////////////////////////////////////////////////////////////////////////////////
10076/// Increment bin content by 1.
10077/// Passing an out-of-range bin leads to undefined behavior
10078
10079void TH1L::AddBinContent(Int_t bin)
10080{
10081 if (fArray[bin] < LLONG_MAX) fArray[bin]++;
10082}
10083
10084////////////////////////////////////////////////////////////////////////////////
10085/// Increment bin content by w.
10086/// \warning The value of w is cast to `Long64_t` before being added.
10087/// Passing an out-of-range bin leads to undefined behavior
10088
10090{
10091 Long64_t newval = fArray[bin] + Long64_t(w);
10092 if (newval > -LLONG_MAX && newval < LLONG_MAX) {fArray[bin] = newval; return;}
10093 if (newval < -LLONG_MAX) fArray[bin] = -LLONG_MAX;
10094 if (newval > LLONG_MAX) fArray[bin] = LLONG_MAX;
10095}
10096
10097////////////////////////////////////////////////////////////////////////////////
10098/// Copy this to newth1
10099
10100void TH1L::Copy(TObject &newth1) const
10101{
10103}
10104
10105////////////////////////////////////////////////////////////////////////////////
10106/// Reset.
10107
10109{
10112}
10113
10114////////////////////////////////////////////////////////////////////////////////
10115/// Set total number of bins including under/overflow
10116/// Reallocate bin contents array
10117
10119{
10120 if (n < 0) n = fXaxis.GetNbins() + 2;
10121 fNcells = n;
10123}
10124
10125////////////////////////////////////////////////////////////////////////////////
10126/// Operator =
10127
10128TH1L& TH1L::operator=(const TH1L &h1)
10129{
10130 if (this != &h1)
10131 h1.TH1L::Copy(*this);
10132 return *this;
10133}
10134
10135
10136////////////////////////////////////////////////////////////////////////////////
10137/// Operator *
10138
10140{
10141 TH1L hnew = h1;
10142 hnew.Scale(c1);
10143 hnew.SetDirectory(nullptr);
10144 return hnew;
10145}
10146
10147////////////////////////////////////////////////////////////////////////////////
10148/// Operator +
10149
10150TH1L operator+(const TH1L &h1, const TH1L &h2)
10151{
10152 TH1L hnew = h1;
10153 hnew.Add(&h2,1);
10154 hnew.SetDirectory(nullptr);
10155 return hnew;
10156}
10157
10158////////////////////////////////////////////////////////////////////////////////
10159/// Operator -
10160
10161TH1L operator-(const TH1L &h1, const TH1L &h2)
10162{
10163 TH1L hnew = h1;
10164 hnew.Add(&h2,-1);
10165 hnew.SetDirectory(nullptr);
10166 return hnew;
10167}
10168
10169////////////////////////////////////////////////////////////////////////////////
10170/// Operator *
10171
10172TH1L operator*(const TH1L &h1, const TH1L &h2)
10173{
10174 TH1L hnew = h1;
10175 hnew.Multiply(&h2);
10176 hnew.SetDirectory(nullptr);
10177 return hnew;
10178}
10179
10180////////////////////////////////////////////////////////////////////////////////
10181/// Operator /
10182
10183TH1L operator/(const TH1L &h1, const TH1L &h2)
10184{
10185 TH1L hnew = h1;
10186 hnew.Divide(&h2);
10187 hnew.SetDirectory(nullptr);
10188 return hnew;
10189}
10190
10191//______________________________________________________________________________
10192// TH1F methods
10193// TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216
10194//______________________________________________________________________________
10195
10196ClassImp(TH1F);
10197
10198////////////////////////////////////////////////////////////////////////////////
10199/// Constructor.
10200
10201TH1F::TH1F()
10202{
10203 fDimension = 1;
10204 SetBinsLength(3);
10205 if (fgDefaultSumw2) Sumw2();
10206}
10207
10208////////////////////////////////////////////////////////////////////////////////
10209/// Create a 1-Dim histogram with fix bins of type float
10210/// (see TH1::TH1 for explanation of parameters)
10211
10212TH1F::TH1F(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10213: TH1(name,title,nbins,xlow,xup)
10214{
10215 fDimension = 1;
10217
10218 if (xlow >= xup) SetBuffer(fgBufferSize);
10219 if (fgDefaultSumw2) Sumw2();
10220}
10221
10222////////////////////////////////////////////////////////////////////////////////
10223/// Create a 1-Dim histogram with variable bins of type float
10224/// (see TH1::TH1 for explanation of parameters)
10225
10226TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10227: TH1(name,title,nbins,xbins)
10228{
10229 fDimension = 1;
10231 if (fgDefaultSumw2) Sumw2();
10232}
10233
10234////////////////////////////////////////////////////////////////////////////////
10235/// Create a 1-Dim histogram with variable bins of type float
10236/// (see TH1::TH1 for explanation of parameters)
10237
10238TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10239: TH1(name,title,nbins,xbins)
10240{
10241 fDimension = 1;
10243 if (fgDefaultSumw2) Sumw2();
10244}
10245
10246////////////////////////////////////////////////////////////////////////////////
10247/// Create a histogram from a TVectorF
10248/// by default the histogram name is "TVectorF" and title = ""
10249
10250TH1F::TH1F(const TVectorF &v)
10251: TH1("TVectorF","",v.GetNrows(),0,v.GetNrows())
10252{
10254 fDimension = 1;
10255 Int_t ivlow = v.GetLwb();
10256 for (Int_t i=0;i<fNcells-2;i++) {
10257 SetBinContent(i+1,v(i+ivlow));
10258 }
10260 if (fgDefaultSumw2) Sumw2();
10261}
10262
10263////////////////////////////////////////////////////////////////////////////////
10264/// Copy Constructor.
10265/// The list of functions is not copied. (Use Clone() if needed)
10266
10267TH1F::TH1F(const TH1F &h1f) : TH1(), TArrayF()
10268{
10269 h1f.TH1F::Copy(*this);
10270}
10271
10272////////////////////////////////////////////////////////////////////////////////
10273/// Destructor.
10274
10276{
10277}
10278
10279////////////////////////////////////////////////////////////////////////////////
10280/// Copy this to newth1.
10281
10282void TH1F::Copy(TObject &newth1) const
10283{
10285}
10286
10287////////////////////////////////////////////////////////////////////////////////
10288/// Reset.
10289
10291{
10294}
10295
10296////////////////////////////////////////////////////////////////////////////////
10297/// Set total number of bins including under/overflow
10298/// Reallocate bin contents array
10299
10301{
10302 if (n < 0) n = fXaxis.GetNbins() + 2;
10303 fNcells = n;
10304 TArrayF::Set(n);
10305}
10306
10307////////////////////////////////////////////////////////////////////////////////
10308/// Operator =
10309
10311{
10312 if (this != &h1f)
10313 h1f.TH1F::Copy(*this);
10314 return *this;
10315}
10316
10317////////////////////////////////////////////////////////////////////////////////
10318/// Operator *
10319
10321{
10322 TH1F hnew = h1;
10323 hnew.Scale(c1);
10324 hnew.SetDirectory(nullptr);
10325 return hnew;
10326}
10327
10328////////////////////////////////////////////////////////////////////////////////
10329/// Operator +
10330
10331TH1F operator+(const TH1F &h1, const TH1F &h2)
10332{
10333 TH1F hnew = h1;
10334 hnew.Add(&h2,1);
10335 hnew.SetDirectory(nullptr);
10336 return hnew;
10337}
10338
10339////////////////////////////////////////////////////////////////////////////////
10340/// Operator -
10341
10342TH1F operator-(const TH1F &h1, const TH1F &h2)
10343{
10344 TH1F hnew = h1;
10345 hnew.Add(&h2,-1);
10346 hnew.SetDirectory(nullptr);
10347 return hnew;
10348}
10349
10350////////////////////////////////////////////////////////////////////////////////
10351/// Operator *
10352
10353TH1F operator*(const TH1F &h1, const TH1F &h2)
10354{
10355 TH1F hnew = h1;
10356 hnew.Multiply(&h2);
10357 hnew.SetDirectory(nullptr);
10358 return hnew;
10359}
10360
10361////////////////////////////////////////////////////////////////////////////////
10362/// Operator /
10363
10364TH1F operator/(const TH1F &h1, const TH1F &h2)
10365{
10366 TH1F hnew = h1;
10367 hnew.Divide(&h2);
10368 hnew.SetDirectory(nullptr);
10369 return hnew;
10370}
10371
10372//______________________________________________________________________________
10373// TH1D methods
10374// TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992
10375//______________________________________________________________________________
10376
10377ClassImp(TH1D);
10378
10379////////////////////////////////////////////////////////////////////////////////
10380/// Constructor.
10381
10382TH1D::TH1D()
10383{
10384 fDimension = 1;
10385 SetBinsLength(3);
10386 if (fgDefaultSumw2) Sumw2();
10387}
10388
10389////////////////////////////////////////////////////////////////////////////////
10390/// Create a 1-Dim histogram with fix bins of type double
10391/// (see TH1::TH1 for explanation of parameters)
10392
10393TH1D::TH1D(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10394: TH1(name,title,nbins,xlow,xup)
10395{
10396 fDimension = 1;
10398
10399 if (xlow >= xup) SetBuffer(fgBufferSize);
10400 if (fgDefaultSumw2) Sumw2();
10401}
10402
10403////////////////////////////////////////////////////////////////////////////////
10404/// Create a 1-Dim histogram with variable bins of type double
10405/// (see TH1::TH1 for explanation of parameters)
10406
10407TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10408: TH1(name,title,nbins,xbins)
10409{
10410 fDimension = 1;
10412 if (fgDefaultSumw2) Sumw2();
10413}
10414
10415////////////////////////////////////////////////////////////////////////////////
10416/// Create a 1-Dim histogram with variable bins of type double
10417/// (see TH1::TH1 for explanation of parameters)
10418
10419TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10420: TH1(name,title,nbins,xbins)
10421{
10422 fDimension = 1;
10424 if (fgDefaultSumw2) Sumw2();
10425}
10426
10427////////////////////////////////////////////////////////////////////////////////
10428/// Create a histogram from a TVectorD
10429/// by default the histogram name is "TVectorD" and title = ""
10430
10431TH1D::TH1D(const TVectorD &v)
10432: TH1("TVectorD","",v.GetNrows(),0,v.GetNrows())
10433{
10435 fDimension = 1;
10436 Int_t ivlow = v.GetLwb();
10437 for (Int_t i=0;i<fNcells-2;i++) {
10438 SetBinContent(i+1,v(i+ivlow));
10439 }
10441 if (fgDefaultSumw2) Sumw2();
10442}
10443
10444////////////////////////////////////////////////////////////////////////////////
10445/// Destructor.
10446
10448{
10449}
10450
10451////////////////////////////////////////////////////////////////////////////////
10452/// Constructor.
10453
10454TH1D::TH1D(const TH1D &h1d) : TH1(), TArrayD()
10455{
10456 // intentially call virtual method to warn if TProfile is copying
10457 h1d.Copy(*this);
10458}
10459
10460////////////////////////////////////////////////////////////////////////////////
10461/// Copy this to newth1
10462
10463void TH1D::Copy(TObject &newth1) const
10464{
10466}
10467
10468////////////////////////////////////////////////////////////////////////////////
10469/// Reset.
10470
10472{
10475}
10476
10477////////////////////////////////////////////////////////////////////////////////
10478/// Set total number of bins including under/overflow
10479/// Reallocate bin contents array
10480
10482{
10483 if (n < 0) n = fXaxis.GetNbins() + 2;
10484 fNcells = n;
10485 TArrayD::Set(n);
10486}
10487
10488////////////////////////////////////////////////////////////////////////////////
10489/// Operator =
10490
10492{
10493 // intentially call virtual method to warn if TProfile is copying
10494 if (this != &h1d)
10495 h1d.Copy(*this);
10496 return *this;
10497}
10498
10499////////////////////////////////////////////////////////////////////////////////
10500/// Operator *
10501
10503{
10504 TH1D hnew = h1;
10505 hnew.Scale(c1);
10506 hnew.SetDirectory(nullptr);
10507 return hnew;
10508}
10509
10510////////////////////////////////////////////////////////////////////////////////
10511/// Operator +
10512
10513TH1D operator+(const TH1D &h1, const TH1D &h2)
10514{
10515 TH1D hnew = h1;
10516 hnew.Add(&h2,1);
10517 hnew.SetDirectory(nullptr);
10518 return hnew;
10519}
10520
10521////////////////////////////////////////////////////////////////////////////////
10522/// Operator -
10523
10524TH1D operator-(const TH1D &h1, const TH1D &h2)
10525{
10526 TH1D hnew = h1;
10527 hnew.Add(&h2,-1);
10528 hnew.SetDirectory(nullptr);
10529 return hnew;
10530}
10531
10532////////////////////////////////////////////////////////////////////////////////
10533/// Operator *
10534
10535TH1D operator*(const TH1D &h1, const TH1D &h2)
10536{
10537 TH1D hnew = h1;
10538 hnew.Multiply(&h2);
10539 hnew.SetDirectory(nullptr);
10540 return hnew;
10541}
10542
10543////////////////////////////////////////////////////////////////////////////////
10544/// Operator /
10545
10546TH1D operator/(const TH1D &h1, const TH1D &h2)
10547{
10548 TH1D hnew = h1;
10549 hnew.Divide(&h2);
10550 hnew.SetDirectory(nullptr);
10551 return hnew;
10552}
10553
10554////////////////////////////////////////////////////////////////////////////////
10555///return pointer to histogram with name
10556///hid if id >=0
10557///h_id if id <0
10558
10559TH1 *R__H(Int_t hid)
10560{
10561 TString hname;
10562 if(hid >= 0) hname.Form("h%d",hid);
10563 else hname.Form("h_%d",hid);
10564 return (TH1*)gDirectory->Get(hname);
10565}
10566
10567////////////////////////////////////////////////////////////////////////////////
10568///return pointer to histogram with name hname
10569
10570TH1 *R__H(const char * hname)
10571{
10572 return (TH1*)gDirectory->Get(hname);
10573}
10574
10575
10576/// \fn void TH1::SetBarOffset(Float_t offset)
10577/// Set the bar offset as fraction of the bin width for drawing mode "B".
10578/// This shifts bars to the right on the x axis, and helps to draw bars next to each other.
10579/// \see THistPainter, SetBarWidth()
10580
10581/// \fn void TH1::SetBarWidth(Float_t width)
10582/// Set the width of bars as fraction of the bin width for drawing mode "B".
10583/// This allows for making bars narrower than the bin width. With SetBarOffset(), this helps to draw multiple bars next to each other.
10584/// \see THistPainter, SetBarOffset()
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
#define a(i)
Definition RSha256.hxx:99
#define s1(x)
Definition RSha256.hxx:91
#define h(i)
Definition RSha256.hxx:106
#define e(i)
Definition RSha256.hxx:103
short Style_t
Definition RtypesCore.h:82
bool Bool_t
Definition RtypesCore.h:63
int Int_t
Definition RtypesCore.h:45
short Color_t
Definition RtypesCore.h:85
short Version_t
Definition RtypesCore.h:65
char Char_t
Definition RtypesCore.h:37
float Float_t
Definition RtypesCore.h:57
short Short_t
Definition RtypesCore.h:39
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
double Double_t
Definition RtypesCore.h:59
long long Long64_t
Definition RtypesCore.h:69
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:374
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gDirectory
Definition TDirectory.h:384
R__EXTERN TEnv * gEnv
Definition TEnv.h:170
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t option
Option_t Option_t SetLineWidth
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t SetFillStyle
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t del
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t SetLineColor
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t SetFillColor
Option_t Option_t SetMarkerStyle
Option_t Option_t width
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
Definition TH1.cxx:5885
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
Definition TH1.cxx:4833
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
Definition TH1.cxx:4668
void H1InitExpo()
Compute Initial values of parameters for an exponential.
Definition TH1.cxx:4724
TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
Definition TH1.cxx:9586
TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
Definition TH1.cxx:9597
TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
Definition TH1.cxx:9619
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
Definition TH1.cxx:4879
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
Definition TH1.cxx:5868
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
Definition TH1.cxx:5876
TF1 * gF1
Definition TH1.cxx:584
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
Definition TH1.cxx:10557
TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
Definition TH1.cxx:9575
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
Definition TH1.cxx:4774
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
Definition TH1.cxx:4744
float xmin
int nentries
float ymin
float xmax
float ymax
#define gInterpreter
Int_t gDebug
Definition TROOT.cxx:622
R__EXTERN TVirtualMutex * gROOTMutex
Definition TROOT.h:63
#define gROOT
Definition TROOT.h:414
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
void Printf(const char *fmt,...)
Formats a string in a circular formatting buffer and prints the string.
Definition TString.cxx:2503
R__EXTERN TStyle * gStyle
Definition TStyle.h:442
#define R__LOCKGUARD(mutex)
#define gPad
#define R__WRITE_LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition BinData.h:52
class describing the range in the coordinates it supports multiple range in a coordinate.
Definition DataRange.h:35
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 2-Sample Test.
Definition GoFTest.cxx:646
const_iterator begin() const
const_iterator end() const
Array of chars or bytes (8 bits per element).
Definition TArrayC.h:27
Char_t * fArray
Definition TArrayC.h:30
void Reset(Char_t val=0)
Definition TArrayC.h:47
void Set(Int_t n) override
Set size of this array to n chars.
Definition TArrayC.cxx:105
Array of doubles (64 bits per element).
Definition TArrayD.h:27
Double_t * fArray
Definition TArrayD.h:30
void Streamer(TBuffer &) override
Stream a TArrayD object.
Definition TArrayD.cxx:149
void Copy(TArrayD &array) const
Definition TArrayD.h:42
void Set(Int_t n) override
Set size of this array to n doubles.
Definition TArrayD.cxx:106
const Double_t * GetArray() const
Definition TArrayD.h:43
void Reset()
Definition TArrayD.h:47
Array of floats (32 bits per element).
Definition TArrayF.h:27
void Reset()
Definition TArrayF.h:47
void Set(Int_t n) override
Set size of this array to n floats.
Definition TArrayF.cxx:105
Array of integers (32 bits per element).
Definition TArrayI.h:27
Int_t * fArray
Definition TArrayI.h:30
void Set(Int_t n) override
Set size of this array to n ints.
Definition TArrayI.cxx:105
void Reset()
Definition TArrayI.h:47
Array of long64s (64 bits per element).
Definition TArrayL64.h:27
Long64_t * fArray
Definition TArrayL64.h:30
void Set(Int_t n) override
Set size of this array to n long64s.
void Reset()
Definition TArrayL64.h:47
Array of shorts (16 bits per element).
Definition TArrayS.h:27
void Set(Int_t n) override
Set size of this array to n shorts.
Definition TArrayS.cxx:105
void Reset()
Definition TArrayS.h:47
Short_t * fArray
Definition TArrayS.h:30
Abstract array base class.
Definition TArray.h:31
Int_t fN
Definition TArray.h:38
virtual void Set(Int_t n)=0
virtual Color_t GetTitleColor() const
Definition TAttAxis.h:47
virtual Color_t GetLabelColor() const
Definition TAttAxis.h:39
virtual Int_t GetNdivisions() const
Definition TAttAxis.h:37
virtual Color_t GetAxisColor() const
Definition TAttAxis.h:38
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:280
virtual Style_t GetTitleFont() const
Definition TAttAxis.h:48
virtual Float_t GetLabelOffset() const
Definition TAttAxis.h:41
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition TAttAxis.cxx:142
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
Definition TAttAxis.cxx:185
virtual Style_t GetLabelFont() const
Definition TAttAxis.h:40
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition TAttAxis.cxx:309
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels.
Definition TAttAxis.cxx:173
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
Definition TAttAxis.cxx:162
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title.
Definition TAttAxis.cxx:291
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition TAttAxis.cxx:300
virtual Float_t GetTitleSize() const
Definition TAttAxis.h:45
virtual Float_t GetLabelSize() const
Definition TAttAxis.h:42
virtual Float_t GetTickLength() const
Definition TAttAxis.h:46
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
Definition TAttAxis.cxx:79
virtual Float_t GetTitleOffset() const
Definition TAttAxis.h:44
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length.
Definition TAttAxis.cxx:266
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition TAttAxis.cxx:215
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition TAttAxis.cxx:152
virtual void Streamer(TBuffer &)
virtual Color_t GetFillColor() const
Return the fill area color.
Definition TAttFill.h:31
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition TAttFill.cxx:207
virtual Style_t GetFillStyle() const
Return the fill area style.
Definition TAttFill.h:32
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition TAttFill.cxx:239
virtual void Streamer(TBuffer &)
virtual Color_t GetLineColor() const
Return the line color.
Definition TAttLine.h:35
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition TAttLine.h:44
virtual Width_t GetLineWidth() const
Return the line width.
Definition TAttLine.h:37
virtual Style_t GetLineStyle() const
Return the line style.
Definition TAttLine.h:36
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition TAttLine.cxx:177
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition TAttLine.cxx:275
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition TAttMarker.h:33
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:39
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition TAttMarker.h:32
virtual Size_t GetMarkerSize() const
Return the marker size.
Definition TAttMarker.h:34
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:41
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void Streamer(TBuffer &)
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Definition TAttMarker.h:46
Class to manage histogram axis.
Definition TAxis.h:32
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
Definition TAxis.cxx:558
virtual Bool_t GetTimeDisplay() const
Definition TAxis.h:133
Bool_t IsAlphanumeric() const
Definition TAxis.h:90
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:482
Bool_t CanExtend() const
Definition TAxis.h:88
virtual void SetParent(TObject *obj)
Definition TAxis.h:169
const TArrayD * GetXbins() const
Definition TAxis.h:138
void SetCanExtend(Bool_t canExtend)
Definition TAxis.h:92
void Copy(TObject &axis) const override
Copy axis structure to another axis.
Definition TAxis.cxx:211
Double_t GetXmax() const
Definition TAxis.h:142
@ kLabelsUp
Definition TAxis.h:75
@ kLabelsDown
Definition TAxis.h:74
@ kLabelsHori
Definition TAxis.h:72
@ kAxisRange
Definition TAxis.h:66
@ kLabelsVert
Definition TAxis.h:73
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:296
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition TAxis.cxx:522
virtual void SetTimeDisplay(Int_t value)
Definition TAxis.h:173
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition TAxis.cxx:784
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x
Definition TAxis.cxx:423
void SaveAttributes(std::ostream &out, const char *name, const char *subname) override
Save axis attributes as C++ statement(s) on output stream out.
Definition TAxis.cxx:715
Int_t GetLast() const
Return last bin on the axis i.e.
Definition TAxis.cxx:473
virtual void SetLimits(Double_t xmin, Double_t xmax)
Definition TAxis.h:166
Double_t GetXmin() const
Definition TAxis.h:141
void Streamer(TBuffer &) override
Stream an object of class TAxis.
Definition TAxis.cxx:1209
Int_t GetNbins() const
Definition TAxis.h:127
virtual void GetLowEdge(Double_t *edge) const
Return an array with the low edge of all bins.
Definition TAxis.cxx:567
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis using bin numbers.
Definition TAxis.cxx:1046
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition TAxis.cxx:546
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition TAxis.cxx:532
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition TAxis.cxx:462
THashList * GetLabels() const
Definition TAxis.h:123
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Buffer base class used for serializing objects.
Definition TBuffer.h:43
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
Definition TClass.cxx:5118
ROOT::NewFunc_t GetNew() const
Return the wrapper around new ThisClass().
Definition TClass.cxx:7637
Collection abstract base class.
Definition TCollection.h:65
virtual bool UseRWLock(Bool_t enable=true)
Set this collection to use a RW lock upon access, making it thread safe.
TObject * Clone(const char *newname="") const override
Make a clone of an collection using the Streamer facility.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Describe directory structure in memory.
Definition TDirectory.h:45
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
Definition TEnv.cxx:491
1-Dim function class
Definition TF1.h:234
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
Definition TF1.cxx:3700
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
Definition TF1.cxx:1612
static TClass * Class()
virtual Int_t GetNpar() const
Definition TF1.h:513
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition TF1.cxx:2557
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
Definition TF1.cxx:2508
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition TF1.cxx:2307
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
Evaluate function with given coordinates and parameters.
Definition TF1.cxx:1476
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
Definition TF1.cxx:3539
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
Definition TF1.cxx:3709
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1447
virtual void SetParameter(Int_t param, Double_t value)
Definition TF1.h:675
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
Definition TF1.h:634
A 2-Dim function with parameters.
Definition TF2.h:29
A 3-Dim function with parameters.
Definition TF3.h:28
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
1-D histogram with a byte per channel (see TH1 documentation)
Definition TH1.h:713
~TH1C() override
Destructor.
Definition TH1.cxx:9499
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9555
TH1C & operator=(const TH1C &h1)
Operator =.
Definition TH1.cxx:9565
TH1C()
Constructor.
Definition TH1.cxx:9451
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9537
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9516
void Reset(Option_t *option="") override
Reset.
Definition TH1.cxx:9545
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:925
~TH1D() override
Destructor.
Definition TH1.cxx:10445
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10479
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10461
TH1D()
Constructor.
Definition TH1.cxx:10380
TH1D & operator=(const TH1D &h1)
Operator =.
Definition TH1.cxx:10489
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:877
Double_t RetrieveBinContent(Int_t bin) const override
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition TH1.h:911
TH1F & operator=(const TH1F &h1)
Operator =.
Definition TH1.cxx:10308
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10280
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10298
~TH1F() override
Destructor.
Definition TH1.cxx:10273
TH1F()
Constructor.
Definition TH1.cxx:10199
1-D histogram with an int per channel (see TH1 documentation)
Definition TH1.h:795
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9928
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9889
~TH1I() override
Destructor.
Definition TH1.cxx:9872
TH1I()
Constructor.
Definition TH1.cxx:9824
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9910
TH1I & operator=(const TH1I &h1)
Operator =.
Definition TH1.cxx:9938
1-D histogram with a long64 per channel (see TH1 documentation)
Definition TH1.h:836
TH1L & operator=(const TH1L &h1)
Operator =.
Definition TH1.cxx:10126
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:10077
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10116
~TH1L() override
Destructor.
Definition TH1.cxx:10060
TH1L()
Constructor.
Definition TH1.cxx:10012
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10098
1-D histogram with a short per channel (see TH1 documentation)
Definition TH1.h:754
TH1S & operator=(const TH1S &h1)
Operator =.
Definition TH1.cxx:9751
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9723
TH1S()
Constructor.
Definition TH1.cxx:9637
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9741
~TH1S() override
Destructor.
Definition TH1.cxx:9685
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9702
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:108
~TH1() override
Histogram default destructor.
Definition TH1.cxx:631
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
Definition TH1.cxx:8951
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8937
virtual void FitPanel()
Display a panel with all histogram fit options.
Definition TH1.cxx:4266
Double_t * fBuffer
[fBufferSize] entry buffer
Definition TH1.h:168
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
Definition TH1.cxx:1313
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition TH1.cxx:4430
char * GetObjectInfo(Int_t px, Int_t py) const override
Redefines TObject::GetObjectInfo.
Definition TH1.cxx:4484
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
Definition TH1.cxx:6886
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:9138
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
Definition TH1.cxx:7094
virtual void SetBarOffset(Float_t offset=0.25)
Set the bar offset as fraction of the bin width for drawing mode "B".
Definition TH1.h:611
static Bool_t fgStatOverflows
! Flag to use under/overflows in statistics
Definition TH1.h:177
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
Definition TH1.cxx:3779
TAxis * GetZaxis()
Definition TH1.h:573
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
Definition TH1.cxx:2799
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition TH1.cxx:6056
@ kXaxis
Definition TH1.h:122
@ kNoAxis
NOTE: Must always be 0 !!!
Definition TH1.h:121
@ kZaxis
Definition TH1.h:124
@ kYaxis
Definition TH1.h:123
Int_t fNcells
Number of bins(1D), cells (2D) +U/Overflows.
Definition TH1.h:149
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition TH1.cxx:7828
void Copy(TObject &hnew) const override
Copy this histogram structure to newth1.
Definition TH1.cxx:2647
void SetTitle(const char *title) override
Change/set the title.
Definition TH1.cxx:6725
Double_t fTsumw
Total Sum of weights.
Definition TH1.h:156
virtual Float_t GetBarWidth() const
Definition TH1.h:501
Double_t fTsumw2
Total Sum of squares of weights.
Definition TH1.h:157
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
Definition TH1.cxx:6932
virtual Float_t GetBarOffset() const
Definition TH1.h:500
TList * fFunctions
->Pointer to list of functions (fits and user)
Definition TH1.h:166
static Bool_t fgAddDirectory
! Flag to add histograms to the directory
Definition TH1.h:176
static TClass * Class()
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
Definition TH1.cxx:4388
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition TH1.cxx:7977
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition TH1.h:159
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition TH1.cxx:7602
TH1()
Histogram default constructor.
Definition TH1.cxx:603
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition TH1.cxx:9316
void UseCurrentStyle() override
Copy current attributes from/to current style.
Definition TH1.cxx:7464
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Sort bins with labels or set option(s) to draw axis with labels.
Definition TH1.cxx:5389
virtual Int_t GetNbinsY() const
Definition TH1.h:542
Short_t fBarOffset
(1000*offset) for bar charts or legos
Definition TH1.h:153
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=nullptr) const
The computation routine of the Chisquare test.
Definition TH1.cxx:2039
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
Definition TH1.cxx:1511
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:9060
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
Definition TH1.cxx:4659
virtual Int_t GetNbinsZ() const
Definition TH1.h:543
virtual Double_t GetNormFactor() const
Definition TH1.h:545
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition TH1.cxx:7530
virtual Double_t GetSkewness(Int_t axis=1) const
Definition TH1.cxx:7666
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
Definition TH1.cxx:2493
virtual void FillRandom(TF1 *f1, Int_t ntimes=5000, TRandom *rng=nullptr)
Definition TH1.cxx:3504
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
Definition TH1.cxx:8440
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
Definition TH1.cxx:3120
@ kNeutral
Adapt to the global flag.
Definition TH1.h:132
virtual Int_t GetDimension() const
Definition TH1.h:527
void Streamer(TBuffer &) override
Stream a class object.
Definition TH1.cxx:6940
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1264
Double_t GetSumOfAllWeights(const bool includeOverflow) const
Return the sum of all weights.
Definition TH1.cxx:7914
@ kIsAverage
Bin contents are average (used by Add)
Definition TH1.h:409
@ kUserContour
User specified contour levels.
Definition TH1.h:404
@ kNoStats
Don't draw stats box.
Definition TH1.h:403
@ kAutoBinPTwo
different than 1.
Definition TH1.h:412
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted.
Definition TH1.h:410
@ kIsHighlight
bit set if histo is highlight
Definition TH1.h:413
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
Definition TH1.cxx:8522
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition TH1.cxx:6643
TDirectory * fDirectory
! Pointer to directory holding this histogram
Definition TH1.h:169
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition TH1.cxx:7110
void SetNameTitle(const char *name, const char *title) override
Change the name and title of this histogram.
Definition TH1.cxx:8974
TAxis * GetXaxis()
Definition TH1.h:571
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
Definition TH1.cxx:4981
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to a histogram containing the cumulative content.
Definition TH1.cxx:2592
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxiliary function to get the power of 2 next (larger) or previous (smaller) a given x.
Definition TH1.cxx:1278
virtual Int_t GetNcells() const
Definition TH1.h:544
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
Definition TH1.cxx:9298
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
Definition TH1.cxx:5915
virtual Double_t GetSumOfWeights() const
Return the sum of weights across all bins excluding under/overflows.
Definition TH1.h:559
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition TH1.cxx:7879
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition TH1.cxx:4493
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
Definition TH1.cxx:3839
void Print(Option_t *option="") const override
Print some global quantities for this histogram.
Definition TH1.cxx:7016
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
Definition TH1.cxx:4397
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
Definition TH1.cxx:3716
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition TH1.cxx:3880
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition TH1.cxx:4968
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
Definition TH1.cxx:8545
virtual Int_t GetNbinsX() const
Definition TH1.h:541
virtual void SetMaximum(Double_t maximum=-1111)
Definition TH1.h:651
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition TH1.cxx:3260
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
Definition TH1.cxx:5322
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition TH1.cxx:9284
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
Definition TH1.cxx:5905
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:814
Double_t fMaximum
Maximum value for plotting.
Definition TH1.h:160
Int_t fBufferSize
fBuffer size
Definition TH1.h:167
TString ProvideSaveName(Option_t *option, Bool_t testfdir=kFALSE)
Provide variable name for histogram for saving as primitive Histogram pointer has by default the hist...
Definition TH1.cxx:7249
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
Definition TH1.cxx:7968
Int_t fDimension
! Histogram dimension (1, 2 or 3 dim)
Definition TH1.h:170
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition TH1.cxx:9203
EBinErrorOpt fBinStatErrOpt
Option for bin statistical errors.
Definition TH1.h:173
static Int_t fgBufferSize
! Default buffer size for automatic histograms
Definition TH1.h:175
virtual void SetBinsLength(Int_t=-1)
Definition TH1.h:627
Double_t fNormFactor
Normalization factor.
Definition TH1.h:162
@ kFullyConsistent
Definition TH1.h:138
@ kDifferentNumberOfBins
Definition TH1.h:142
@ kDifferentDimensions
Definition TH1.h:143
@ kDifferentBinLimits
Definition TH1.h:140
@ kDifferentAxisLimits
Definition TH1.h:141
@ kDifferentLabels
Definition TH1.h:139
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3320
TAxis * GetYaxis()
Definition TH1.h:572
TArrayD fContour
Array to display contour levels.
Definition TH1.h:163
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
Definition TH1.cxx:9076
void Browse(TBrowser *b) override
Browse the Histogram object.
Definition TH1.cxx:750
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
Definition TH1.cxx:8398
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3042
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Definition TH1.cxx:7376
Short_t fBarWidth
(1000*width) for bar charts or legos
Definition TH1.h:154
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition TH1.h:704
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
Definition Haxis.cxx:14
virtual void SetMinimum(Double_t minimum=-1111)
Definition TH1.h:652
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5221
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
Definition TH1.cxx:7271
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
Definition TH1.cxx:1538
virtual Double_t Interpolate(Double_t x) const
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
Definition TH1.cxx:5122
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6710
virtual void SetBuffer(Int_t bufsize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition TH1.cxx:8458
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5189
UInt_t GetAxisLabelStatus() const
Internal function used in TH1::Fill to see which axis is full alphanumeric, i.e.
Definition TH1.cxx:6682
Double_t * fIntegral
! Integral of bins used by GetRandom
Definition TH1.h:171
Double_t fMinimum
Minimum value for plotting.
Definition TH1.h:161
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition TH1.cxx:7941
static void SetDefaultBufferSize(Int_t bufsize=1000)
Static function to set the default buffer size for automatic histograms.
Definition TH1.cxx:6700
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9219
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
Definition TH1.cxx:2777
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis()->GetLowEdge(edge)
Definition TH1.cxx:9184
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition TH1.cxx:9149
void Build()
Creates histogram basic data structure.
Definition TH1.cxx:759
virtual Double_t GetEntries() const
Return the current number of entries.
Definition TH1.cxx:4405
virtual Double_t RetrieveBinContent(Int_t bin) const =0
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
Definition TH1.cxx:9048
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=nullptr)
Rebin this histogram.
Definition TH1.cxx:6282
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
Definition TH1.cxx:1476
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff.
Definition TH1.cxx:5093
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
Definition TH1.cxx:6656
TList * GetListOfFunctions() const
Definition TH1.h:488
void SetName(const char *name) override
Change the name of this histogram.
Definition TH1.cxx:8960
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
Definition TH1.cxx:3089
Bool_t IsEmpty() const
Check if a histogram is empty (this is a protected method used mainly by TH1Merger )
Definition TH1.cxx:5171
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
Definition TH1.cxx:7570
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
Definition TH1.cxx:6213
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
Definition TH1.cxx:8062
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculated from bin cont...
Definition TH1.cxx:7897
virtual void SetBinErrorOption(EBinErrorOpt type)
Definition TH1.h:628
virtual void DrawPanel()
Display a panel with all histogram drawing options.
Definition TH1.cxx:3151
virtual Double_t GetRandom(TRandom *rng=nullptr) const
Return a random number distributed according the histogram bin contents.
Definition TH1.cxx:5017
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
Definition TH1.cxx:2472
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms.
Definition TH1.cxx:1980
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
Definition TH1.cxx:3449
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
Definition TH1.cxx:8731
@ kNstat
Size of statistics data (up to TProfile3D)
Definition TH1.h:422
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
Definition TH1.cxx:8577
static Int_t AutoP2GetBins(Int_t n)
Auxiliary function to get the next power of 2 integer value larger then n.
Definition TH1.cxx:1291
Double_t fEntries
Number of entries.
Definition TH1.h:155
virtual Long64_t Merge(TCollection *list)
Definition TH1.h:592
virtual void SetColors(Color_t linecolor=-1, Color_t markercolor=-1, Color_t fillcolor=-1)
Shortcut to set the three histogram colors with a single call.
Definition TH1.cxx:4449
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
Definition TH1.cxx:3216
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
Definition TH1.cxx:2562
TAxis fZaxis
Z axis descriptor.
Definition TH1.h:152
EStatOverflows fStatOverflows
Per object flag to use under/overflows in statistics.
Definition TH1.h:174
TClass * IsA() const override
Definition TH1.h:692
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
Definition TH1.cxx:3423
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
Definition TH1.cxx:1581
@ kPoisson2
Errors from Poisson interval at 95% CL (~ 2 sigma)
Definition TH1.h:116
@ kNormal
Errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
Definition TH1.h:114
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5068
virtual Int_t GetContour(Double_t *levels=nullptr)
Return contour values into array levels if pointer levels is non zero.
Definition TH1.cxx:8411
TAxis fXaxis
X axis descriptor.
Definition TH1.h:150
virtual Bool_t IsHighlight() const
Definition TH1.h:585
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition TH1.cxx:6511
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition TH1.cxx:9160
TArrayD fSumw2
Array of sum of squares of weights.
Definition TH1.h:164
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return a histogram containing the asymmetry of this histogram with h2, where the asymmetry is defined...
Definition TH1.cxx:4321
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
Definition TH1.cxx:8430
virtual void SetContour(Int_t nlevels, const Double_t *levels=nullptr)
Set the number and values of contour levels.
Definition TH1.cxx:8483
virtual void SetHighlight(Bool_t set=kTRUE)
Set highlight (enable/disable) mode for the histogram by default highlight mode is disable.
Definition TH1.cxx:4464
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
Definition TH1.cxx:9107
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition TH1.cxx:6611
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
Definition TH1.cxx:8665
virtual Int_t GetSumw2N() const
Definition TH1.h:562
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3654
Bool_t GetStatOverflowsBehaviour() const
Definition TH1.h:391
void SaveAs(const char *filename="hist", Option_t *option="") const override
Save the histogram as .csv, .tsv or .txt.
Definition TH1.cxx:7188
virtual Int_t GetQuantiles(Int_t n, Double_t *xp, const Double_t *p=nullptr)
Compute Quantiles for this histogram.
Definition TH1.cxx:4597
virtual void AddBinContent(Int_t bin)=0
Increment bin content by 1.
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
Definition TH1.cxx:2728
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
Definition TH1.cxx:7650
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:2816
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
Definition TH1.cxx:8635
int LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge=false) const
Definition TH1.cxx:871
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
Definition TH1.cxx:1610
static Int_t CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
Definition TH1.cxx:1649
void RecursiveRemove(TObject *obj) override
Recursively remove object from the list of functions.
Definition TH1.cxx:6583
TAxis fYaxis
Y axis descriptor.
Definition TH1.h:151
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
Definition TH1.cxx:8178
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F.
Definition TH1.cxx:6775
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis()->GetCenter(center)
Definition TH1.cxx:9171
TVirtualHistPainter * fPainter
! Pointer to histogram painter
Definition TH1.h:172
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition TH1.cxx:8767
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3687
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition TH1.cxx:9020
virtual void SetEntries(Double_t n)
Definition TH1.h:638
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
Definition TH1.cxx:6467
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
Definition TH1.cxx:1567
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition TH1.cxx:742
static Bool_t fgDefaultSumw2
! Flag to call TH1::Sumw2 automatically at histogram creation time
Definition TH1.h:178
static void SavePrimitiveFunctions(std::ostream &out, const char *varname, TList *lst)
Save list of functions Also can be used by TGraph classes.
Definition TH1.cxx:7430
virtual void UpdateBinContent(Int_t bin, Double_t content)=0
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Double_t fTsumwx
Total Sum of weight*X.
Definition TH1.h:158
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label.
Definition TH1.cxx:5252
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (normalized cumulative sum of bins) w/o under/overflows The result is stored in fInt...
Definition TH1.cxx:2513
TString fOption
Histogram options.
Definition TH1.h:165
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
Definition TH1.cxx:3168
virtual void SetBarWidth(Float_t width=0.5)
Set the width of bars as fraction of the bin width for drawing mode "B".
Definition TH1.h:612
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition TH1.cxx:1384
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:8990
virtual Double_t GetKurtosis(Int_t axis=1) const
Definition TH1.cxx:7739
2-D histogram with a double per channel (see TH1 documentation)
Definition TH2.h:356
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition THashList.h:34
void Clear(Option_t *option="") override
Remove all objects from the list.
A doubly linked list.
Definition TList.h:38
void Streamer(TBuffer &) override
Stream all objects in the collection to or from the I/O buffer.
Definition TList.cxx:1192
TObject * FindObject(const char *name) const override
Find an object in this list using its name.
Definition TList.cxx:576
void RecursiveRemove(TObject *obj) override
Remove object from this collection and recursively remove the object from all other objects (and coll...
Definition TList.cxx:762
void Add(TObject *obj) override
Definition TList.h:81
TObject * Remove(TObject *obj) override
Remove object from the list.
Definition TList.cxx:820
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
Definition TList.cxx:657
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
Definition TList.cxx:468
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
Definition TList.cxx:355
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
void Copy(TObject &named) const override
Copy this to obj.
Definition TNamed.cxx:94
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:174
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
void Streamer(TBuffer &) override
Stream an object of class TObject.
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
TString fTitle
Definition TNamed.h:33
TString fName
Definition TNamed.h:32
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:150
Mother of all ROOT objects.
Definition TObject.h:41
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:457
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition TObject.h:205
virtual UInt_t GetUniqueID() const
Return the unique object id.
Definition TObject.cxx:475
static TString SavePrimitiveVector(std::ostream &out, const char *prefix, Int_t len, Double_t *arr, Bool_t empty_line=kFALSE)
Save array in the output stream "out" as vector.
Definition TObject.cxx:788
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:226
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
Definition TObject.cxx:885
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:1057
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition TObject.cxx:203
virtual void SaveAs(const char *filename="", Option_t *option="") const
Save this object in the file specified by filename.
Definition TObject.cxx:705
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition TObject.cxx:864
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition TObject.cxx:543
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1071
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
Definition TObject.cxx:875
static void SavePrimitiveDraw(std::ostream &out, const char *variable_name, Option_t *option=nullptr)
Save invocation of primitive Draw() method Skipped if option contains "nodraw" string.
Definition TObject.cxx:822
void ResetBit(UInt_t f)
Definition TObject.h:204
@ kCanDelete
if object in a list can be deleted
Definition TObject.h:68
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition TObject.h:78
@ kMustCleanup
if object destructor must call RecursiveRemove()
Definition TObject.h:70
Longptr_t ExecPlugin(int nargs)
Int_t LoadPlugin()
Load the plugin library for this handler.
static TClass * Class()
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:559
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Definition TRandom.cxx:461
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:404
Basic string class.
Definition TString.h:139
Ssiz_t Length() const
Definition TString.h:417
void ToLower()
Change string to lower-case.
Definition TString.cxx:1182
TString & ReplaceSpecialCppChars()
Find special characters which are typically used in printf() calls and replace them by appropriate es...
Definition TString.cxx:1114
const char * Data() const
Definition TString.h:376
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition TString.h:704
void ToUpper()
Change string to upper case.
Definition TString.cxx:1195
Bool_t IsNull() const
Definition TString.h:414
virtual void Streamer(TBuffer &)
Stream a string object.
Definition TString.cxx:1412
TString & Append(const char *cs)
Definition TString.h:572
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2378
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:632
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition TString.h:651
Int_t GetOptStat() const
Definition TStyle.h:247
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition TStyle.cxx:1642
void SetHistFillColor(Color_t color=1)
Definition TStyle.h:383
Color_t GetHistLineColor() const
Definition TStyle.h:235
Bool_t IsReading() const
Definition TStyle.h:300
Float_t GetBarOffset() const
Definition TStyle.h:184
void SetHistLineStyle(Style_t styl=0)
Definition TStyle.h:386
Style_t GetHistFillStyle() const
Definition TStyle.h:236
Color_t GetHistFillColor() const
Definition TStyle.h:234
Float_t GetBarWidth() const
Definition TStyle.h:185
Bool_t GetCanvasPreferGL() const
Definition TStyle.h:189
void SetHistLineColor(Color_t color=1)
Definition TStyle.h:384
void SetBarOffset(Float_t baroff=0.5)
Definition TStyle.h:339
Style_t GetHistLineStyle() const
Definition TStyle.h:237
void SetBarWidth(Float_t barwidth=0.5)
Definition TStyle.h:340
void SetHistFillStyle(Style_t styl=0)
Definition TStyle.h:385
Width_t GetHistLineWidth() const
Definition TStyle.h:238
Int_t GetOptFit() const
Definition TStyle.h:246
void SetHistLineWidth(Width_t width=1)
Definition TStyle.h:387
TVectorT.
Definition TVectorT.h:29
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition TVirtualFFT.h:88
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
Abstract Base Class for Fitting.
static TVirtualFitter * GetFitter()
static: return the current Fitter
Abstract interface to a histogram painter.
virtual void DrawPanel()=0
Int_t DistancetoPrimitive(Int_t px, Int_t py) override=0
Computes distance from point (px,py) to the object.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override=0
Execute action corresponding to an event at (px,py).
virtual void SetHighlight()=0
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
void Paint(Option_t *option="") override=0
This method must be overridden if a class wants to paint itself.
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
const Double_t sigma
std::ostream & Info()
Definition hadd.cxx:171
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
TH1F * h1
Definition legend1.C:5
TF1 * f1
Definition legend1.C:11
return c2
Definition legend2.C:14
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Definition TObject.h:408
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
Definition HFitImpl.cxx:977
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, EChisquareType type)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
Definition HFitImpl.cxx:685
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
R__EXTERN TVirtualRWMutex * gCoreMutex
Bool_t IsNaN(Double_t x)
Definition TMath.h:896
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Definition TMath.h:697
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Definition TMathBase.h:250
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition TMath.cxx:637
Double_t Median(Long64_t n, const T *a, const Double_t *w=nullptr, Long64_t *work=nullptr)
Same as RMS.
Definition TMath.h:1352
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Definition TMath.h:906
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Definition TMath.h:684
Double_t ATan(Double_t)
Returns the principal value of the arc tangent of x, expressed in radians.
Definition TMath.h:644
Double_t Ceil(Double_t x)
Rounds x upward, returning the smallest integral value that is not less than x.
Definition TMath.h:672
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
Definition TMath.h:964
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:760
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:666
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Definition TMathBase.h:198
constexpr Double_t Pi()
Definition TMath.h:37
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Definition TMath.h:426
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
Definition TMath.h:418
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
Definition TMath.cxx:679
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Definition TMathBase.h:431
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Definition TMathBase.h:347
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Definition TMath.h:766
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
Definition TMath.h:921
th1 Draw()
TMarker m
Definition textangle.C:8
TLine l
Definition textangle.C:4
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345