Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.13 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0142 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 21.0596
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.966012 0.906443 0.105812 0.0103785 12574.2 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.700504 0.823048 0.104364 0.0102853 12755.2 0
: 3 | 0.59466 0.841724 0.106739 0.00983314 12383.2 1
: 4 Minimum Test error found - save the configuration
: 4 | 0.534024 0.800347 0.104996 0.0102675 12667.8 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.491516 0.730402 0.105624 0.0103609 12596.6 0
: 6 | 0.418814 0.831187 0.104162 0.0100157 12746.1 1
: 7 | 0.372343 0.833053 0.108415 0.0109581 12313.2 2
: 8 | 0.323805 0.874697 0.112648 0.00993447 11683 3
: 9 | 0.276718 0.842253 0.105782 0.0101996 12554.6 4
: 10 | 0.251075 0.860046 0.105766 0.0101203 12546.3 5
:
: Elapsed time for training with 1600 events: 1.09 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0534 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 36.2064
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.45102 0.792618 0.823444 0.0707125 1594.19 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.791061 0.723173 0.789027 0.0706211 1670.36 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.729075 0.711001 0.794695 0.0667624 1648.5 0
: 4 | 0.717432 0.719588 0.77456 0.0662227 1694.11 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.685024 0.692525 0.778284 0.0680586 1689.6 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.663116 0.675595 0.799602 0.0693097 1643.18 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.651495 0.665287 0.803298 0.0709832 1638.64 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.638501 0.65674 0.835833 0.0702572 1567.45 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.614314 0.641295 0.839399 0.0728695 1565.5 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.59967 0.632711 0.851797 0.0778785 1550.55 0
:
: Elapsed time for training with 1600 events: 8.16 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.433 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.758e-03
: 2 : vars : 8.669e-03
: 3 : vars : 8.373e-03
: 4 : vars : 7.966e-03
: 5 : vars : 7.910e-03
: 6 : vars : 7.542e-03
: 7 : vars : 7.388e-03
: 8 : vars : 7.325e-03
: 9 : vars : 7.187e-03
: 10 : vars : 7.104e-03
: 11 : vars : 7.088e-03
: 12 : vars : 6.994e-03
: 13 : vars : 6.918e-03
: 14 : vars : 6.824e-03
: 15 : vars : 6.781e-03
: 16 : vars : 6.776e-03
: 17 : vars : 6.666e-03
: 18 : vars : 6.666e-03
: 19 : vars : 6.647e-03
: 20 : vars : 6.629e-03
: 21 : vars : 6.561e-03
: 22 : vars : 6.530e-03
: 23 : vars : 6.487e-03
: 24 : vars : 6.472e-03
: 25 : vars : 6.429e-03
: 26 : vars : 6.378e-03
: 27 : vars : 6.370e-03
: 28 : vars : 6.353e-03
: 29 : vars : 6.332e-03
: 30 : vars : 6.283e-03
: 31 : vars : 6.242e-03
: 32 : vars : 6.231e-03
: 33 : vars : 6.133e-03
: 34 : vars : 6.055e-03
: 35 : vars : 6.031e-03
: 36 : vars : 5.979e-03
: 37 : vars : 5.974e-03
: 38 : vars : 5.931e-03
: 39 : vars : 5.911e-03
: 40 : vars : 5.805e-03
: 41 : vars : 5.782e-03
: 42 : vars : 5.726e-03
: 43 : vars : 5.635e-03
: 44 : vars : 5.623e-03
: 45 : vars : 5.603e-03
: 46 : vars : 5.603e-03
: 47 : vars : 5.592e-03
: 48 : vars : 5.582e-03
: 49 : vars : 5.519e-03
: 50 : vars : 5.506e-03
: 51 : vars : 5.486e-03
: 52 : vars : 5.475e-03
: 53 : vars : 5.466e-03
: 54 : vars : 5.410e-03
: 55 : vars : 5.393e-03
: 56 : vars : 5.298e-03
: 57 : vars : 5.276e-03
: 58 : vars : 5.266e-03
: 59 : vars : 5.255e-03
: 60 : vars : 5.253e-03
: 61 : vars : 5.250e-03
: 62 : vars : 5.242e-03
: 63 : vars : 5.236e-03
: 64 : vars : 5.235e-03
: 65 : vars : 5.221e-03
: 66 : vars : 5.218e-03
: 67 : vars : 5.191e-03
: 68 : vars : 5.178e-03
: 69 : vars : 5.158e-03
: 70 : vars : 5.152e-03
: 71 : vars : 5.136e-03
: 72 : vars : 5.119e-03
: 73 : vars : 5.102e-03
: 74 : vars : 5.086e-03
: 75 : vars : 5.079e-03
: 76 : vars : 5.052e-03
: 77 : vars : 5.039e-03
: 78 : vars : 4.987e-03
: 79 : vars : 4.984e-03
: 80 : vars : 4.976e-03
: 81 : vars : 4.968e-03
: 82 : vars : 4.929e-03
: 83 : vars : 4.895e-03
: 84 : vars : 4.880e-03
: 85 : vars : 4.831e-03
: 86 : vars : 4.826e-03
: 87 : vars : 4.826e-03
: 88 : vars : 4.817e-03
: 89 : vars : 4.811e-03
: 90 : vars : 4.808e-03
: 91 : vars : 4.766e-03
: 92 : vars : 4.702e-03
: 93 : vars : 4.702e-03
: 94 : vars : 4.683e-03
: 95 : vars : 4.683e-03
: 96 : vars : 4.637e-03
: 97 : vars : 4.637e-03
: 98 : vars : 4.633e-03
: 99 : vars : 4.633e-03
: 100 : vars : 4.574e-03
: 101 : vars : 4.567e-03
: 102 : vars : 4.494e-03
: 103 : vars : 4.452e-03
: 104 : vars : 4.452e-03
: 105 : vars : 4.399e-03
: 106 : vars : 4.392e-03
: 107 : vars : 4.379e-03
: 108 : vars : 4.377e-03
: 109 : vars : 4.350e-03
: 110 : vars : 4.344e-03
: 111 : vars : 4.288e-03
: 112 : vars : 4.257e-03
: 113 : vars : 4.249e-03
: 114 : vars : 4.227e-03
: 115 : vars : 4.198e-03
: 116 : vars : 4.144e-03
: 117 : vars : 4.126e-03
: 118 : vars : 4.085e-03
: 119 : vars : 4.064e-03
: 120 : vars : 4.048e-03
: 121 : vars : 4.046e-03
: 122 : vars : 4.039e-03
: 123 : vars : 4.022e-03
: 124 : vars : 4.018e-03
: 125 : vars : 4.003e-03
: 126 : vars : 3.963e-03
: 127 : vars : 3.962e-03
: 128 : vars : 3.904e-03
: 129 : vars : 3.894e-03
: 130 : vars : 3.876e-03
: 131 : vars : 3.868e-03
: 132 : vars : 3.855e-03
: 133 : vars : 3.854e-03
: 134 : vars : 3.831e-03
: 135 : vars : 3.785e-03
: 136 : vars : 3.784e-03
: 137 : vars : 3.780e-03
: 138 : vars : 3.776e-03
: 139 : vars : 3.773e-03
: 140 : vars : 3.738e-03
: 141 : vars : 3.733e-03
: 142 : vars : 3.641e-03
: 143 : vars : 3.609e-03
: 144 : vars : 3.598e-03
: 145 : vars : 3.591e-03
: 146 : vars : 3.590e-03
: 147 : vars : 3.583e-03
: 148 : vars : 3.578e-03
: 149 : vars : 3.545e-03
: 150 : vars : 3.540e-03
: 151 : vars : 3.535e-03
: 152 : vars : 3.527e-03
: 153 : vars : 3.519e-03
: 154 : vars : 3.482e-03
: 155 : vars : 3.466e-03
: 156 : vars : 3.459e-03
: 157 : vars : 3.447e-03
: 158 : vars : 3.431e-03
: 159 : vars : 3.425e-03
: 160 : vars : 3.365e-03
: 161 : vars : 3.318e-03
: 162 : vars : 3.278e-03
: 163 : vars : 3.268e-03
: 164 : vars : 3.259e-03
: 165 : vars : 3.202e-03
: 166 : vars : 3.194e-03
: 167 : vars : 3.187e-03
: 168 : vars : 3.175e-03
: 169 : vars : 3.150e-03
: 170 : vars : 3.150e-03
: 171 : vars : 3.139e-03
: 172 : vars : 3.087e-03
: 173 : vars : 3.080e-03
: 174 : vars : 3.055e-03
: 175 : vars : 3.043e-03
: 176 : vars : 3.002e-03
: 177 : vars : 3.001e-03
: 178 : vars : 2.997e-03
: 179 : vars : 2.991e-03
: 180 : vars : 2.958e-03
: 181 : vars : 2.955e-03
: 182 : vars : 2.946e-03
: 183 : vars : 2.941e-03
: 184 : vars : 2.924e-03
: 185 : vars : 2.904e-03
: 186 : vars : 2.886e-03
: 187 : vars : 2.864e-03
: 188 : vars : 2.850e-03
: 189 : vars : 2.785e-03
: 190 : vars : 2.750e-03
: 191 : vars : 2.703e-03
: 192 : vars : 2.685e-03
: 193 : vars : 2.683e-03
: 194 : vars : 2.682e-03
: 195 : vars : 2.638e-03
: 196 : vars : 2.634e-03
: 197 : vars : 2.605e-03
: 198 : vars : 2.600e-03
: 199 : vars : 2.600e-03
: 200 : vars : 2.580e-03
: 201 : vars : 2.571e-03
: 202 : vars : 2.559e-03
: 203 : vars : 2.432e-03
: 204 : vars : 2.430e-03
: 205 : vars : 2.415e-03
: 206 : vars : 2.378e-03
: 207 : vars : 2.368e-03
: 208 : vars : 2.360e-03
: 209 : vars : 2.296e-03
: 210 : vars : 2.202e-03
: 211 : vars : 2.174e-03
: 212 : vars : 2.083e-03
: 213 : vars : 2.061e-03
: 214 : vars : 2.012e-03
: 215 : vars : 1.968e-03
: 216 : vars : 1.919e-03
: 217 : vars : 1.919e-03
: 218 : vars : 1.887e-03
: 219 : vars : 1.884e-03
: 220 : vars : 1.799e-03
: 221 : vars : 1.797e-03
: 222 : vars : 1.782e-03
: 223 : vars : 1.764e-03
: 224 : vars : 1.761e-03
: 225 : vars : 1.677e-03
: 226 : vars : 1.666e-03
: 227 : vars : 1.658e-03
: 228 : vars : 1.566e-03
: 229 : vars : 1.561e-03
: 230 : vars : 1.525e-03
: 231 : vars : 1.464e-03
: 232 : vars : 1.262e-03
: 233 : vars : 1.262e-03
: 234 : vars : 1.211e-03
: 235 : vars : 1.059e-03
: 236 : vars : 9.633e-04
: 237 : vars : 9.000e-04
: 238 : vars : 8.597e-04
: 239 : vars : 1.448e-04
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.92947
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 8.3432
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.54071
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.91053
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00377 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0129 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0916 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.762
: dataset TMVA_CNN_CPU : 0.730
: dataset TMVA_DNN_CPU : 0.635
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.035 (0.295) 0.415 (0.703) 0.684 (0.907)
: dataset TMVA_CNN_CPU : 0.070 (0.085) 0.275 (0.423) 0.638 (0.751)
: dataset TMVA_DNN_CPU : 0.010 (0.097) 0.245 (0.438) 0.500 (0.693)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m