Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.14 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0144 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 69.579
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.873128 0.941402 0.102782 0.0102765 12972.2 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.635567 0.819135 0.107158 0.011849 12590.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.537781 0.745329 0.109561 0.0113391 12217.2 0
: 4 | 0.460883 0.759305 0.111523 0.0101993 11843.3 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.407905 0.723241 0.10582 0.0102729 12559.3 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.3263 0.705143 0.105148 0.0107381 12710.5 0
: 7 | 0.297156 0.712782 0.106582 0.0106444 12508.2 1
: 8 | 0.247655 0.718987 0.10756 0.0104258 12354.1 2
: 9 | 0.211806 0.721717 0.106275 0.00997478 12461 3
: 10 | 0.197259 0.719016 0.107539 0.0125447 12632.3 4
:
: Elapsed time for training with 1600 events: 1.09 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0539 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 105.42
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.83416 0.949322 0.782649 0.0714884 1687.38 0
: 2 | 1.0644 0.980757 0.798286 0.0750015 1659.1 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.841859 0.7782 0.811331 0.0736516 1626.72 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.727217 0.744553 0.804214 0.076017 1647.9 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.68554 0.718767 0.804983 0.0705829 1633.99 0
: 6 | 0.658985 0.720116 0.812371 0.068634 1613.47 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.637181 0.714507 0.809213 0.0735538 1631.19 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.621757 0.705299 0.818326 0.073024 1610.08 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.603387 0.699222 0.808948 0.0733057 1631.23 0
: 10 | 0.595365 0.703681 0.808743 0.0705696 1625.63 1
:
: Elapsed time for training with 1600 events: 8.14 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.366 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.008e-02
: 2 : vars : 9.995e-03
: 3 : vars : 9.039e-03
: 4 : vars : 8.186e-03
: 5 : vars : 7.997e-03
: 6 : vars : 7.722e-03
: 7 : vars : 7.459e-03
: 8 : vars : 7.329e-03
: 9 : vars : 7.293e-03
: 10 : vars : 7.218e-03
: 11 : vars : 7.212e-03
: 12 : vars : 7.115e-03
: 13 : vars : 6.979e-03
: 14 : vars : 6.976e-03
: 15 : vars : 6.951e-03
: 16 : vars : 6.927e-03
: 17 : vars : 6.853e-03
: 18 : vars : 6.834e-03
: 19 : vars : 6.788e-03
: 20 : vars : 6.723e-03
: 21 : vars : 6.706e-03
: 22 : vars : 6.685e-03
: 23 : vars : 6.645e-03
: 24 : vars : 6.630e-03
: 25 : vars : 6.571e-03
: 26 : vars : 6.463e-03
: 27 : vars : 6.417e-03
: 28 : vars : 6.213e-03
: 29 : vars : 6.135e-03
: 30 : vars : 6.116e-03
: 31 : vars : 6.093e-03
: 32 : vars : 6.062e-03
: 33 : vars : 5.992e-03
: 34 : vars : 5.987e-03
: 35 : vars : 5.950e-03
: 36 : vars : 5.929e-03
: 37 : vars : 5.919e-03
: 38 : vars : 5.909e-03
: 39 : vars : 5.813e-03
: 40 : vars : 5.701e-03
: 41 : vars : 5.691e-03
: 42 : vars : 5.678e-03
: 43 : vars : 5.661e-03
: 44 : vars : 5.660e-03
: 45 : vars : 5.653e-03
: 46 : vars : 5.647e-03
: 47 : vars : 5.643e-03
: 48 : vars : 5.640e-03
: 49 : vars : 5.629e-03
: 50 : vars : 5.629e-03
: 51 : vars : 5.610e-03
: 52 : vars : 5.603e-03
: 53 : vars : 5.592e-03
: 54 : vars : 5.496e-03
: 55 : vars : 5.444e-03
: 56 : vars : 5.414e-03
: 57 : vars : 5.358e-03
: 58 : vars : 5.336e-03
: 59 : vars : 5.314e-03
: 60 : vars : 5.304e-03
: 61 : vars : 5.284e-03
: 62 : vars : 5.201e-03
: 63 : vars : 5.173e-03
: 64 : vars : 5.147e-03
: 65 : vars : 5.138e-03
: 66 : vars : 5.126e-03
: 67 : vars : 5.122e-03
: 68 : vars : 5.115e-03
: 69 : vars : 5.085e-03
: 70 : vars : 5.051e-03
: 71 : vars : 5.041e-03
: 72 : vars : 4.934e-03
: 73 : vars : 4.924e-03
: 74 : vars : 4.919e-03
: 75 : vars : 4.903e-03
: 76 : vars : 4.864e-03
: 77 : vars : 4.854e-03
: 78 : vars : 4.829e-03
: 79 : vars : 4.827e-03
: 80 : vars : 4.827e-03
: 81 : vars : 4.754e-03
: 82 : vars : 4.746e-03
: 83 : vars : 4.739e-03
: 84 : vars : 4.737e-03
: 85 : vars : 4.731e-03
: 86 : vars : 4.722e-03
: 87 : vars : 4.703e-03
: 88 : vars : 4.689e-03
: 89 : vars : 4.635e-03
: 90 : vars : 4.622e-03
: 91 : vars : 4.616e-03
: 92 : vars : 4.564e-03
: 93 : vars : 4.544e-03
: 94 : vars : 4.537e-03
: 95 : vars : 4.483e-03
: 96 : vars : 4.434e-03
: 97 : vars : 4.434e-03
: 98 : vars : 4.402e-03
: 99 : vars : 4.389e-03
: 100 : vars : 4.379e-03
: 101 : vars : 4.375e-03
: 102 : vars : 4.364e-03
: 103 : vars : 4.359e-03
: 104 : vars : 4.335e-03
: 105 : vars : 4.317e-03
: 106 : vars : 4.317e-03
: 107 : vars : 4.292e-03
: 108 : vars : 4.284e-03
: 109 : vars : 4.279e-03
: 110 : vars : 4.257e-03
: 111 : vars : 4.241e-03
: 112 : vars : 4.199e-03
: 113 : vars : 4.165e-03
: 114 : vars : 4.145e-03
: 115 : vars : 4.144e-03
: 116 : vars : 4.122e-03
: 117 : vars : 4.082e-03
: 118 : vars : 4.079e-03
: 119 : vars : 4.073e-03
: 120 : vars : 4.047e-03
: 121 : vars : 4.031e-03
: 122 : vars : 4.023e-03
: 123 : vars : 3.961e-03
: 124 : vars : 3.957e-03
: 125 : vars : 3.948e-03
: 126 : vars : 3.943e-03
: 127 : vars : 3.914e-03
: 128 : vars : 3.893e-03
: 129 : vars : 3.888e-03
: 130 : vars : 3.887e-03
: 131 : vars : 3.876e-03
: 132 : vars : 3.875e-03
: 133 : vars : 3.871e-03
: 134 : vars : 3.863e-03
: 135 : vars : 3.841e-03
: 136 : vars : 3.838e-03
: 137 : vars : 3.832e-03
: 138 : vars : 3.828e-03
: 139 : vars : 3.808e-03
: 140 : vars : 3.720e-03
: 141 : vars : 3.708e-03
: 142 : vars : 3.700e-03
: 143 : vars : 3.690e-03
: 144 : vars : 3.644e-03
: 145 : vars : 3.567e-03
: 146 : vars : 3.536e-03
: 147 : vars : 3.512e-03
: 148 : vars : 3.480e-03
: 149 : vars : 3.465e-03
: 150 : vars : 3.426e-03
: 151 : vars : 3.365e-03
: 152 : vars : 3.326e-03
: 153 : vars : 3.316e-03
: 154 : vars : 3.291e-03
: 155 : vars : 3.289e-03
: 156 : vars : 3.272e-03
: 157 : vars : 3.264e-03
: 158 : vars : 3.234e-03
: 159 : vars : 3.184e-03
: 160 : vars : 3.162e-03
: 161 : vars : 3.134e-03
: 162 : vars : 3.132e-03
: 163 : vars : 3.086e-03
: 164 : vars : 3.084e-03
: 165 : vars : 3.069e-03
: 166 : vars : 3.065e-03
: 167 : vars : 3.059e-03
: 168 : vars : 3.048e-03
: 169 : vars : 3.039e-03
: 170 : vars : 3.037e-03
: 171 : vars : 3.028e-03
: 172 : vars : 3.026e-03
: 173 : vars : 3.001e-03
: 174 : vars : 3.000e-03
: 175 : vars : 2.999e-03
: 176 : vars : 2.955e-03
: 177 : vars : 2.947e-03
: 178 : vars : 2.934e-03
: 179 : vars : 2.913e-03
: 180 : vars : 2.847e-03
: 181 : vars : 2.837e-03
: 182 : vars : 2.797e-03
: 183 : vars : 2.795e-03
: 184 : vars : 2.764e-03
: 185 : vars : 2.756e-03
: 186 : vars : 2.721e-03
: 187 : vars : 2.692e-03
: 188 : vars : 2.691e-03
: 189 : vars : 2.684e-03
: 190 : vars : 2.682e-03
: 191 : vars : 2.663e-03
: 192 : vars : 2.650e-03
: 193 : vars : 2.574e-03
: 194 : vars : 2.572e-03
: 195 : vars : 2.569e-03
: 196 : vars : 2.546e-03
: 197 : vars : 2.540e-03
: 198 : vars : 2.531e-03
: 199 : vars : 2.528e-03
: 200 : vars : 2.493e-03
: 201 : vars : 2.459e-03
: 202 : vars : 2.438e-03
: 203 : vars : 2.404e-03
: 204 : vars : 2.402e-03
: 205 : vars : 2.400e-03
: 206 : vars : 2.345e-03
: 207 : vars : 2.316e-03
: 208 : vars : 2.303e-03
: 209 : vars : 2.258e-03
: 210 : vars : 2.253e-03
: 211 : vars : 2.249e-03
: 212 : vars : 2.249e-03
: 213 : vars : 2.186e-03
: 214 : vars : 2.128e-03
: 215 : vars : 2.098e-03
: 216 : vars : 2.061e-03
: 217 : vars : 2.048e-03
: 218 : vars : 2.042e-03
: 219 : vars : 2.023e-03
: 220 : vars : 2.005e-03
: 221 : vars : 1.944e-03
: 222 : vars : 1.929e-03
: 223 : vars : 1.909e-03
: 224 : vars : 1.836e-03
: 225 : vars : 1.817e-03
: 226 : vars : 1.791e-03
: 227 : vars : 1.725e-03
: 228 : vars : 1.721e-03
: 229 : vars : 1.721e-03
: 230 : vars : 1.663e-03
: 231 : vars : 1.612e-03
: 232 : vars : 1.581e-03
: 233 : vars : 1.578e-03
: 234 : vars : 1.569e-03
: 235 : vars : 1.565e-03
: 236 : vars : 1.490e-03
: 237 : vars : 1.476e-03
: 238 : vars : 1.307e-03
: 239 : vars : 1.291e-03
: 240 : vars : 7.728e-04
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.19544
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.56606
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 10.2698
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.71442
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00352 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0127 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0922 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.794
: dataset TMVA_DNN_CPU : 0.679
: dataset TMVA_CNN_CPU : 0.651
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.175 (0.410) 0.555 (0.662) 0.703 (0.854)
: dataset TMVA_DNN_CPU : 0.015 (0.217) 0.230 (0.528) 0.550 (0.773)
: dataset TMVA_CNN_CPU : 0.025 (0.042) 0.133 (0.217) 0.485 (0.568)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m