Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.38 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0143 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 25.8273
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.927814 0.93673 0.112877 0.010425 11712.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.706295 0.775779 0.104168 0.0104409 12803.2 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.61956 0.746522 0.104568 0.0105647 12765.5 0
: 4 | 0.547966 0.805004 0.104698 0.0100839 12683.2 1
: 5 | 0.498365 0.74697 0.104812 0.0100536 12663.7 2
: 6 | 0.435851 0.765542 0.105373 0.0100281 12585.9 3
: 7 Minimum Test error found - save the configuration
: 7 | 0.399826 0.722323 0.103896 0.0103492 12827.8 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.349765 0.686644 0.10473 0.0103623 12716.3 0
: 9 | 0.303213 0.708834 0.104216 0.00995073 12730.1 1
: 10 | 0.284291 0.734492 0.104058 0.00996683 12753.6 2
:
: Elapsed time for training with 1600 events: 1.08 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.053 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 29.36
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.00977 0.820883 0.784488 0.0733281 1687.38 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.893713 0.718738 0.753531 0.0696573 1754.71 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.74352 0.709386 0.72713 0.0686596 1822.4 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.704295 0.709336 0.736753 0.0679559 1794.27 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.674121 0.690505 0.778502 0.0679866 1688.92 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.660984 0.68784 0.754785 0.080481 1779.61 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.650834 0.687509 0.771702 0.070049 1710.25 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.63514 0.67987 0.755087 0.0676564 1745.63 0
: 9 | 0.621969 0.689622 0.752024 0.0694635 1758.09 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.620204 0.674316 0.770338 0.0691753 1711.44 0
:
: Elapsed time for training with 1600 events: 7.66 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.368 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.447e-03
: 2 : vars : 8.449e-03
: 3 : vars : 8.235e-03
: 4 : vars : 8.213e-03
: 5 : vars : 7.897e-03
: 6 : vars : 7.765e-03
: 7 : vars : 7.428e-03
: 8 : vars : 7.361e-03
: 9 : vars : 7.294e-03
: 10 : vars : 7.166e-03
: 11 : vars : 6.834e-03
: 12 : vars : 6.694e-03
: 13 : vars : 6.693e-03
: 14 : vars : 6.553e-03
: 15 : vars : 6.459e-03
: 16 : vars : 6.452e-03
: 17 : vars : 6.364e-03
: 18 : vars : 6.288e-03
: 19 : vars : 6.258e-03
: 20 : vars : 6.232e-03
: 21 : vars : 6.172e-03
: 22 : vars : 6.162e-03
: 23 : vars : 6.147e-03
: 24 : vars : 6.134e-03
: 25 : vars : 6.022e-03
: 26 : vars : 6.008e-03
: 27 : vars : 5.958e-03
: 28 : vars : 5.931e-03
: 29 : vars : 5.888e-03
: 30 : vars : 5.883e-03
: 31 : vars : 5.879e-03
: 32 : vars : 5.858e-03
: 33 : vars : 5.760e-03
: 34 : vars : 5.757e-03
: 35 : vars : 5.737e-03
: 36 : vars : 5.692e-03
: 37 : vars : 5.653e-03
: 38 : vars : 5.624e-03
: 39 : vars : 5.611e-03
: 40 : vars : 5.586e-03
: 41 : vars : 5.583e-03
: 42 : vars : 5.572e-03
: 43 : vars : 5.542e-03
: 44 : vars : 5.528e-03
: 45 : vars : 5.510e-03
: 46 : vars : 5.499e-03
: 47 : vars : 5.496e-03
: 48 : vars : 5.401e-03
: 49 : vars : 5.398e-03
: 50 : vars : 5.396e-03
: 51 : vars : 5.367e-03
: 52 : vars : 5.359e-03
: 53 : vars : 5.343e-03
: 54 : vars : 5.274e-03
: 55 : vars : 5.231e-03
: 56 : vars : 5.119e-03
: 57 : vars : 5.083e-03
: 58 : vars : 5.081e-03
: 59 : vars : 5.039e-03
: 60 : vars : 5.033e-03
: 61 : vars : 5.022e-03
: 62 : vars : 5.018e-03
: 63 : vars : 4.953e-03
: 64 : vars : 4.932e-03
: 65 : vars : 4.922e-03
: 66 : vars : 4.916e-03
: 67 : vars : 4.913e-03
: 68 : vars : 4.883e-03
: 69 : vars : 4.883e-03
: 70 : vars : 4.882e-03
: 71 : vars : 4.865e-03
: 72 : vars : 4.865e-03
: 73 : vars : 4.854e-03
: 74 : vars : 4.822e-03
: 75 : vars : 4.822e-03
: 76 : vars : 4.774e-03
: 77 : vars : 4.745e-03
: 78 : vars : 4.713e-03
: 79 : vars : 4.701e-03
: 80 : vars : 4.699e-03
: 81 : vars : 4.678e-03
: 82 : vars : 4.647e-03
: 83 : vars : 4.624e-03
: 84 : vars : 4.610e-03
: 85 : vars : 4.609e-03
: 86 : vars : 4.595e-03
: 87 : vars : 4.586e-03
: 88 : vars : 4.573e-03
: 89 : vars : 4.565e-03
: 90 : vars : 4.507e-03
: 91 : vars : 4.492e-03
: 92 : vars : 4.486e-03
: 93 : vars : 4.475e-03
: 94 : vars : 4.470e-03
: 95 : vars : 4.468e-03
: 96 : vars : 4.466e-03
: 97 : vars : 4.456e-03
: 98 : vars : 4.452e-03
: 99 : vars : 4.445e-03
: 100 : vars : 4.439e-03
: 101 : vars : 4.424e-03
: 102 : vars : 4.395e-03
: 103 : vars : 4.392e-03
: 104 : vars : 4.379e-03
: 105 : vars : 4.374e-03
: 106 : vars : 4.361e-03
: 107 : vars : 4.355e-03
: 108 : vars : 4.352e-03
: 109 : vars : 4.314e-03
: 110 : vars : 4.296e-03
: 111 : vars : 4.286e-03
: 112 : vars : 4.165e-03
: 113 : vars : 4.163e-03
: 114 : vars : 4.154e-03
: 115 : vars : 4.147e-03
: 116 : vars : 4.123e-03
: 117 : vars : 4.109e-03
: 118 : vars : 4.081e-03
: 119 : vars : 4.073e-03
: 120 : vars : 4.066e-03
: 121 : vars : 4.061e-03
: 122 : vars : 4.047e-03
: 123 : vars : 4.029e-03
: 124 : vars : 4.018e-03
: 125 : vars : 4.010e-03
: 126 : vars : 3.970e-03
: 127 : vars : 3.953e-03
: 128 : vars : 3.924e-03
: 129 : vars : 3.914e-03
: 130 : vars : 3.908e-03
: 131 : vars : 3.895e-03
: 132 : vars : 3.885e-03
: 133 : vars : 3.884e-03
: 134 : vars : 3.878e-03
: 135 : vars : 3.865e-03
: 136 : vars : 3.863e-03
: 137 : vars : 3.857e-03
: 138 : vars : 3.849e-03
: 139 : vars : 3.812e-03
: 140 : vars : 3.782e-03
: 141 : vars : 3.774e-03
: 142 : vars : 3.753e-03
: 143 : vars : 3.725e-03
: 144 : vars : 3.716e-03
: 145 : vars : 3.710e-03
: 146 : vars : 3.654e-03
: 147 : vars : 3.627e-03
: 148 : vars : 3.624e-03
: 149 : vars : 3.621e-03
: 150 : vars : 3.607e-03
: 151 : vars : 3.593e-03
: 152 : vars : 3.587e-03
: 153 : vars : 3.565e-03
: 154 : vars : 3.507e-03
: 155 : vars : 3.490e-03
: 156 : vars : 3.457e-03
: 157 : vars : 3.452e-03
: 158 : vars : 3.444e-03
: 159 : vars : 3.403e-03
: 160 : vars : 3.382e-03
: 161 : vars : 3.374e-03
: 162 : vars : 3.343e-03
: 163 : vars : 3.343e-03
: 164 : vars : 3.342e-03
: 165 : vars : 3.336e-03
: 166 : vars : 3.322e-03
: 167 : vars : 3.319e-03
: 168 : vars : 3.247e-03
: 169 : vars : 3.232e-03
: 170 : vars : 3.225e-03
: 171 : vars : 3.186e-03
: 172 : vars : 3.148e-03
: 173 : vars : 3.145e-03
: 174 : vars : 3.074e-03
: 175 : vars : 3.052e-03
: 176 : vars : 3.045e-03
: 177 : vars : 3.008e-03
: 178 : vars : 3.004e-03
: 179 : vars : 2.986e-03
: 180 : vars : 2.973e-03
: 181 : vars : 2.962e-03
: 182 : vars : 2.934e-03
: 183 : vars : 2.921e-03
: 184 : vars : 2.910e-03
: 185 : vars : 2.909e-03
: 186 : vars : 2.880e-03
: 187 : vars : 2.865e-03
: 188 : vars : 2.827e-03
: 189 : vars : 2.821e-03
: 190 : vars : 2.820e-03
: 191 : vars : 2.808e-03
: 192 : vars : 2.796e-03
: 193 : vars : 2.782e-03
: 194 : vars : 2.775e-03
: 195 : vars : 2.745e-03
: 196 : vars : 2.727e-03
: 197 : vars : 2.726e-03
: 198 : vars : 2.717e-03
: 199 : vars : 2.711e-03
: 200 : vars : 2.707e-03
: 201 : vars : 2.688e-03
: 202 : vars : 2.677e-03
: 203 : vars : 2.636e-03
: 204 : vars : 2.622e-03
: 205 : vars : 2.614e-03
: 206 : vars : 2.603e-03
: 207 : vars : 2.584e-03
: 208 : vars : 2.549e-03
: 209 : vars : 2.512e-03
: 210 : vars : 2.491e-03
: 211 : vars : 2.461e-03
: 212 : vars : 2.450e-03
: 213 : vars : 2.439e-03
: 214 : vars : 2.411e-03
: 215 : vars : 2.375e-03
: 216 : vars : 2.370e-03
: 217 : vars : 2.335e-03
: 218 : vars : 2.315e-03
: 219 : vars : 2.207e-03
: 220 : vars : 2.058e-03
: 221 : vars : 2.026e-03
: 222 : vars : 2.020e-03
: 223 : vars : 2.000e-03
: 224 : vars : 1.959e-03
: 225 : vars : 1.949e-03
: 226 : vars : 1.948e-03
: 227 : vars : 1.931e-03
: 228 : vars : 1.920e-03
: 229 : vars : 1.909e-03
: 230 : vars : 1.883e-03
: 231 : vars : 1.879e-03
: 232 : vars : 1.800e-03
: 233 : vars : 1.787e-03
: 234 : vars : 1.778e-03
: 235 : vars : 1.776e-03
: 236 : vars : 1.708e-03
: 237 : vars : 1.704e-03
: 238 : vars : 1.570e-03
: 239 : vars : 1.468e-03
: 240 : vars : 1.196e-03
: 241 : vars : 1.015e-03
: 242 : vars : 8.374e-04
: 243 : vars : 7.196e-04
: 244 : vars : 2.421e-04
: 245 : vars : 2.020e-04
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.07295
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.62884
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.21455
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.06801
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0037 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0127 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0958 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.777
: dataset TMVA_DNN_CPU : 0.697
: dataset TMVA_CNN_CPU : 0.590
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.050 (0.330) 0.455 (0.700) 0.708 (0.877)
: dataset TMVA_DNN_CPU : 0.038 (0.202) 0.225 (0.544) 0.590 (0.776)
: dataset TMVA_CNN_CPU : 0.015 (0.065) 0.155 (0.281) 0.385 (0.517)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m