protected:
TRotation TRotation(Double_t, Double_t, Double_t, Double_t, Double_t, Double_t, Double_t, Double_t, Double_t) public:
TRotation TRotation() TRotation TRotation(const TRotation&) TRotation operator*(const TRotation&) const TRotation Inverse() const void ~TRotation() void AngleAxis(Double_t&, TVector3&) const static TClass* Class() TRotation& Invert() virtual TClass* IsA() const Bool_t IsIdentity() const Bool_t operator!=(const TRotation& m) const Double_t operator()(int, int) const TVector3 operator*(const TVector3& p) const TRotation& operator*=(const TRotation& m) TRotation& operator=(const TRotation& m) Bool_t operator==(const TRotation& m) const TRotation::TRotationRow operator[](int i) const Double_t PhiX() const Double_t PhiY() const Double_t PhiZ() const TRotation& Rotate(Double_t, const TVector3&) TRotation& Rotate(Double_t psi, const TVector3* p) TRotation& RotateAxes(const TVector3& newX, const TVector3& newY, const TVector3& newZ) TRotation& RotateX(Double_t) TRotation& RotateY(Double_t) TRotation& RotateZ(Double_t) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) Double_t ThetaX() const Double_t ThetaY() const Double_t ThetaZ() const TRotation& Transform(const TRotation& m) Double_t XX() const Double_t XY() const Double_t XZ() const Double_t YX() const Double_t YY() const Double_t YZ() const Double_t ZX() const Double_t ZY() const Double_t ZZ() const
protected:
Double_t fxx Double_t fxy Double_t fxz Double_t fyx Double_t fyy Double_t fyz Double_t fzx Double_t fzy Double_t fzz
*-*-*-*-*-*-*-*-*-*-*-*The Physics Vector package *-*-*-*-*-*-*-*-*-*-*-* *-* ========================== * *-* The Physics Vector package consists of five classes: * *-* - TVector2 * *-* - TVector3 * *-* - TRotation * *-* - TLorentzVector * *-* - TLorentzRotation * *-* It is a combination of CLHEPs Vector package written by * *-* Leif Lonnblad, Andreas Nilsson and Evgueni Tcherniaev * *-* and a ROOT package written by Pasha Murat. * *-* for CLHEP see: http://wwwinfo.cern.ch/asd/lhc++/clhep/ * *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* /*TRotation
The TRotation class describes a rotation of objects of the TVector3 class. It is a 3*3 matrix of Double_t:| xx xy xz |
| yx yy yz |
| zx zy zz |It describes a socalled active rotation, i.e. rotation of objects inside a static system of coordinates. In case you want to rotate the frame and want to know the coordinates of objects in the rotated system, you should apply the inverse rotation to the objects. If you want to transform coordinates from the rotated frame to the original frame you have to apply the direct transformation.
A rotation around a specified axis means counterclockwise rotation around the positive direction of the axis.
Declaration, Access, Comparisons
TRotation r; // r initialized as identity
TRotation m(r); // m = rThere is no direct way to to set the matrix elements - to ensure that a TRotation object always describes a real rotation. But you can get the values by the member functions XX()..ZZ() or the (,) operator:
Double_t xx = r.XX(); // the same as xx=r(0,0)
xx = r(0,0);if (r==m) {...} // test for equality
if (r!=m) {..} // test for inequality
if (r.IsIdentity()) {...} // test for identity
Rotation around axes
The following matrices desrcibe counterclockwise rotations around coordinate axes| 1 0 0 |
Rx(a) = | 1 cos(a) -sin(a) |
| 0 sin(a) cos(a) || cos(a) 0 sin(a) |
Ry(a) = | 0 1 0 |
| -sin(a) 0 cos(a) || cos(a) -sin(a) 0 |
Rz(a) = | sin(a) cos(a) 0 |
| 0 0 1 |
and are implemented as member functions RotateX(), RotateY() and RotateZ():r.RotateX(TMath::Pi()); // rotation around the x-axis
Rotation around arbitary axis
The member function Rotate() allows to rotate around an arbitary vector (not neccessary a unit one) and returns the result.r.Rotate(TMath::Pi()/3,TVector3(3,4,5));
It is possible to find a unit vector and an angle, which describe the same rotation as the current one:
Double_t angle;
TVector3 axis;
r.GetAngleAxis(angle,axis);Rotation of local axes
Member function RotateAxes() adds a rotation of local axes to the current rotation and returns the result:TVector3 newX(0,1,0);
TVector3 newY(0,0,1);
TVector3 newZ(1,0,0);
a.RotateAxes(newX,newX,newZ);Memberfunctions ThetaX(), ThetaY(), ThetaZ(), PhiX(), PhiY(),PhiZ() return azimuth and polar angles of the rotated axes:
Double_t tx,ty,tz,px,py,pz;
tx= a.ThetaX();
...
pz= a.PhiZ();Inverse rotation
TRotation a,b;
...
b = a.Inverse(); // b is inverse of a, a is unchanged
b = a.Invert(); // invert a and set b = aCompound Rotations
The operator * has been implemented in a way that follows the mathematical notation of a product of the two matrices which describe the two consecutiv rotations. Therefore the second rotation should be placed first:r = r2 * r1;
Rotation of TVector3
The TRotation class provides an operator * which allows to express a rotation of a TVector3 analog to the mathematical notation| x' | | xx xy xz | | x |
| y' | = | yx yy yz | | y |
| z' | | zx zy zz | | z |e.g.:
TVector3 v(1,1,1);
v = r * v;You can also use the Transform() member function or the operator *= of the
TVector3 class:TVector3 v;
TRotation r;
v.Transform(r);
v *= r; //Attention v = r * v */
Double_t XX() const Double_t XY() const Double_t XZ() const Double_t YX() const Double_t YY() const Double_t YZ() const Double_t ZX() const Double_t ZY() const Double_t ZZ() const TRotation::TRotationRow operator[](int i) const Double_t operator()(int, int) const TRotation& operator=(const TRotation& m) Bool_t operator==(const TRotation& m) const Bool_t operator!=(const TRotation& m) const Bool_t IsIdentity() const TVector3 operator*(const TVector3& p) const TRotation operator*(const TRotation&) const TRotation& operator*=(const TRotation& m) TRotation& Transform(const TRotation& m) TRotation Inverse() const TRotation& Invert() TRotation& Rotate(Double_t psi, const TVector3* p) TClass* Class() TClass* IsA() const void ShowMembers(TMemberInspector& insp, char* parent) void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) void ~TRotation()