// @(#)root/hist:$Name: $:$Id: TH2.cxx,v 1.33 2002/09/17 08:31:47 brun Exp $
// Author: Rene Brun 26/12/94
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TH2.h"
#include "TVirtualPad.h"
#include "TF2.h"
#include "TProfile.h"
#include "TRandom.h"
#include "TMatrix.h"
#include "TMatrixD.h"
#include "THLimitsFinder.h"
ClassImp(TH2)
//______________________________________________________________________________
//
// Service class for 2-Dim histogram classes
//
// TH2C a 2-D histogram with one byte per cell (char)
// TH2S a 2-D histogram with two bytes per cell (short integer)
// TH2F a 2-D histogram with four bytes per cell (float)
// TH2D a 2-D histogram with eight bytes per cell (double)
//
//______________________________________________________________________________
TH2::TH2()
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH1(name,title,nbinsx,xlow,xup)
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
fYaxis.Set(nbinsy,ylow,yup);
fNcells = (nbinsx+2)*(nbinsy+2);
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH1(name,title,nbinsx,xbins)
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
fYaxis.Set(nbinsy,ylow,yup);
fNcells = (nbinsx+2)*(nbinsy+2);
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH1(name,title,nbinsx,xlow,xup)
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
fNcells = (nbinsx+2)*(nbinsy+2);
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH1(name,title,nbinsx,xbins)
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
fNcells = (nbinsx+2)*(nbinsy+2);
}
//______________________________________________________________________________
TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH1(name,title,nbinsx,xbins)
{
fDimension = 2;
fScalefactor = 1;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
if (nbinsy <= 0) nbinsy = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
fNcells = (nbinsx+2)*(nbinsy+2);
}
//______________________________________________________________________________
TH2::~TH2()
{
}
//______________________________________________________________________________
Int_t TH2::BufferEmpty(Bool_t deleteBuffer)
{
// Fill histogram with all entries in the buffer.
// The buffer is deleted if deleteBuffer is true.
// do we need to compute the bin size?
Int_t nbentries = (Int_t)fBuffer[0];
if (!nbentries) return 0;
if (fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
//find min, max of entries in buffer
Double_t xmin = fBuffer[2];
Double_t xmax = xmin;
Double_t ymin = fBuffer[3];
Double_t ymax = ymin;
for (Int_t i=1;i<nbentries;i++) {
Double_t x = fBuffer[3*i+2];
if (x < xmin) xmin = x;
if (x > xmax) xmax = x;
Double_t y = fBuffer[3*i+3];
if (y < ymin) ymin = y;
if (y > ymax) ymax = y;
}
THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this,xmin,xmax,ymin,ymax);
}
Double_t *buffer = fBuffer; fBuffer = 0;
for (Int_t i=0;i<nbentries;i++) {
Fill(buffer[3*i+2],buffer[3*i+3],buffer[3*i+1]);
}
if (deleteBuffer) { delete buffer; fBufferSize = 0;}
else { fBuffer = buffer; fBuffer[0] = 0;}
return nbentries;
}
//______________________________________________________________________________
Int_t TH2::BufferFill(Axis_t x, Axis_t y, Stat_t w)
{
// accumulate arguments in buffer. When buffer is full, empty the buffer
// fBuffer[0] = number of entries in buffer
// fBuffer[1] = w of first entry
// fBuffer[2] = x of first entry
// fBuffer[3] = y of first entry
Int_t nbentries = (Int_t)fBuffer[0];
if (3*nbentries+3 >= fBufferSize) {
BufferEmpty(kTRUE);
return Fill(x,y,w);
}
fBuffer[3*nbentries+1] = w;
fBuffer[3*nbentries+2] = x;
fBuffer[3*nbentries+3] = y;
fBuffer[0] += 1;
return -3;
}
//______________________________________________________________________________
void TH2::Copy(TObject &obj)
{
TH1::Copy(obj);
((TH2&)obj).fScalefactor = fScalefactor;
((TH2&)obj).fTsumwy = fTsumwy;
((TH2&)obj).fTsumwy2 = fTsumwy2;
((TH2&)obj).fTsumwxy = fTsumwxy;
}
//______________________________________________________________________________
Int_t TH2::Fill(Axis_t x,Axis_t y)
{
//*-*-*-*-*-*-*-*-*-*-*Increment cell defined by x,y by 1*-*-*-*-*-*-*-*-*-*
//*-* ==================================
//*-*
//*-* if x or/and y is less than the low-edge of the corresponding axis first bin,
//*-* the Underflow cell is incremented.
//*-* if x or/and y is greater than the upper edge of corresponding axis last bin,
//*-* the Overflow cell is incremented.
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by 1in the cell corresponding to x,y.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
if (fBuffer) BufferFill(x,y,1);
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin);
if (fSumw2.fN) ++fSumw2.fArray[bin];
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
++fTsumw;
++fTsumw2;
fTsumwx += x;
fTsumwx2 += x*x;
fTsumwy += y;
fTsumwy2 += y*y;
fTsumwxy += x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(Axis_t x, Axis_t y, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*-*Increment cell defined by x,y by a weight w*-*-*-*-*-*
//*-* ===========================================
//*-*
//*-* if x or/and y is less than the low-edge of the corresponding axis first bin,
//*-* the Underflow cell is incremented.
//*-* if x or/and y is greater than the upper edge of corresponding axis last bin,
//*-* the Overflow cell is incremented.
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by w^2 in the cell corresponding to x,y.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
if (fBuffer) BufferFill(x,y,w);
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(const char *namex, const char *namey, Stat_t w)
{
// Increment cell defined by namex,namey by a weight w
//
// if x or/and y is less than the low-edge of the corresponding axis first bin,
// the Underflow cell is incremented.
// if x or/and y is greater than the upper edge of corresponding axis last bin,
// the Overflow cell is incremented.
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y.
//
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(namey);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
Axis_t x = fXaxis.GetBinCenter(binx);
Axis_t y = fYaxis.GetBinCenter(biny);
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(const char *namex, Axis_t y, Stat_t w)
{
// Increment cell defined by namex,y by a weight w
//
// if x or/and y is less than the low-edge of the corresponding axis first bin,
// the Underflow cell is incremented.
// if x or/and y is greater than the upper edge of corresponding axis last bin,
// the Overflow cell is incremented.
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y.
//
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(y);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
Axis_t x = fXaxis.GetBinCenter(binx);
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
Int_t TH2::Fill(Axis_t x, const char *namey, Stat_t w)
{
// Increment cell defined by x,namey by a weight w
//
// if x or/and y is less than the low-edge of the corresponding axis first bin,
// the Underflow cell is incremented.
// if x or/and y is greater than the upper edge of corresponding axis last bin,
// the Overflow cell is incremented.
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y.
//
Int_t binx, biny, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(namey);
bin = biny*(fXaxis.GetNbins()+2) + binx;
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
Axis_t y = fYaxis.GetBinCenter(biny);
Stat_t z= (w > 0 ? w : -w);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x;
fTsumwx2 += z*x*x;
fTsumwy += z*y;
fTsumwy2 += z*y*y;
fTsumwxy += z*x*y;
return bin;
}
//______________________________________________________________________________
void TH2::FillN(Int_t ntimes, const Axis_t *x, const Axis_t *y, const Double_t *w, Int_t stride)
{
//*-*-*-*-*-*-*Fill a 2-D histogram with an array of values and weights*-*-*-*
//*-* ========================================================
//*-*
//*-* ntimes: number of entries in arrays x and w (array size must be ntimes*stride)
//*-* x: array of x values to be histogrammed
//*-* y: array of y values to be histogrammed
//*-* w: array of weights
//*-* stride: step size through arrays x, y and w
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by w[i]^2 in the cell corresponding to x[i],y[i].
//*-* if w is NULL each entry is assumed a weight=1
//*-*
//*-* NB: function only valid for a TH2x object
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Int_t binx, biny, bin, i;
fEntries += ntimes;
Double_t ww = 1;
ntimes *= stride;
for (i=0;i<ntimes;i+=stride) {
binx = fXaxis.FindBin(x[i]);
biny = fYaxis.FindBin(y[i]);
bin = biny*(fXaxis.GetNbins()+2) + binx;
if (w) ww = w[i];
AddBinContent(bin,ww);
if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
if (binx == 0 || binx > fXaxis.GetNbins()) continue;
if (biny == 0 || biny > fYaxis.GetNbins()) continue;
Stat_t z= (ww > 0 ? ww : -ww);
fTsumw += z;
fTsumw2 += z*z;
fTsumwx += z*x[i];
fTsumwx2 += z*x[i]*x[i];
fTsumwy += z*y[i];
fTsumwy2 += z*y[i]*y[i];
fTsumwxy += z*x[i]*y[i];
}
}
//______________________________________________________________________________
void TH2::FillRandom(const char *fname, Int_t ntimes)
{
//*-*-*-*-*-*-*Fill histogram following distribution in function fname*-*-*-*
//*-* =======================================================
//*-*
//*-* The distribution contained in the function fname (TF2) is integrated
//*-* over the channel contents.
//*-* It is normalized to 1.
//*-* Getting one random number implies:
//*-* - Generating a random number between 0 and 1 (say r1)
//*-* - Look in which bin in the normalized integral r1 corresponds to
//*-* - Fill histogram channel
//*-* ntimes random numbers are generated
//*-*
//*-* One can also call TF2::GetRandom2 to get a random variate from a function.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*
Int_t bin, binx, biny, ibin, loop;
Double_t r1, x, y, xv[2];
//*-*- Search for fname in the list of ROOT defined functions
TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
//*-*- Allocate temporary space to store the integral and compute integral
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbins = nbinsx*nbinsy;
Double_t *integral = new Double_t[nbins+1];
ibin = 0;
integral[ibin] = 0;
for (biny=1;biny<=nbinsy;biny++) {
xv[1] = fYaxis.GetBinCenter(biny);
for (binx=1;binx<=nbinsx;binx++) {
xv[0] = fXaxis.GetBinCenter(binx);
ibin++;
integral[ibin] = integral[ibin-1] + f1->Eval(xv[0],xv[1]);
}
}
//*-*- Normalize integral to 1
if (integral[nbins] == 0 ) {
Error("FillRandom", "Integral = zero"); return;
}
for (bin=1;bin<=nbins;bin++) integral[bin] /= integral[nbins];
//*-*--------------Start main loop ntimes
for (loop=0;loop<ntimes;loop++) {
r1 = gRandom->Rndm(loop);
ibin = TMath::BinarySearch(nbins,&integral[0],r1);
biny = ibin/nbinsx;
binx = 1 + ibin - nbinsx*biny;
biny++;
x = fXaxis.GetBinCenter(binx);
y = fYaxis.GetBinCenter(biny);
Fill(x,y, 1.);
}
delete [] integral;
}
//______________________________________________________________________________
void TH2::FillRandom(TH1 *h, Int_t ntimes)
{
//*-*-*-*-*-*-*Fill histogram following distribution in histogram h*-*-*-*
//*-* ====================================================
//*-*
//*-* The distribution contained in the histogram h (TH1) is integrated
//*-* over the channel contents.
//*-* It is normalized to 1.
//*-* Getting one random number implies:
//*-* - Generating a random number between 0 and 1 (say r1)
//*-* - Look in which bin in the normalized integral r1 corresponds to
//*-* - Fill histogram channel
//*-* ntimes random numbers are generated
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*
if (!h) { Error("FillRandom", "Null histogram"); return; }
if (fDimension != h->GetDimension()) {
Error("FillRandom", "Histograms with different dimensions"); return;
}
if (h->ComputeIntegral() == 0) return;
Int_t loop;
Axis_t x,y;
TH2 *h2 = (TH2*)h;
for (loop=0;loop<ntimes;loop++) {
h2->GetRandom2(x,y);
Fill(x,y,1.);
}
}
//______________________________________________________________________________
void TH2::FitSlicesX(TF1 *f1, Int_t binmin, Int_t binmax, Int_t cut, Option_t *option)
{
// Project slices along X in case of a 2-D histogram, then fit each slice
// with function f1 and make a histogram for each fit parameter
// Only bins along Y between binmin and binmax are considered.
// if f1=0, a gaussian is assumed
// Before invoking this function, one can set a subrange to be fitted along X
// via f1->SetRange(xmin,xmax)
// The argument option (default="QNR") can be used to change the fit options.
// "Q" means Quiet mode
// "N" means do not show the result of the fit
// "R" means fit the function in the specified function range
//
// Note that the generated histograms are added to the list of objects
// in the current directory. It is the user's responsability to delete
// these histograms.
//
// Example: Assume a 2-d histogram h2
// Root > h2->FitSlicesX(); produces 4 TH1D histograms
// with h2_0 containing parameter 0(Constant) for a Gaus fit
// of each bin in Y projected along X
// with h2_1 containing parameter 1(Mean) for a gaus fit
// with h2_2 containing parameter 2(RMS) for a gaus fit
// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
//
// Root > h2->FitSlicesX(0,15,22,10);
// same as above, but only for bins 15 to 22 along Y
// and only for bins in Y for which the corresponding projection
// along X has more than cut bins filled.
//
// NOTE: To access the generated histograms in the current directory, do eg:
// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
Int_t nbins = fYaxis.GetNbins();
if (binmin < 1) binmin = 1;
if (binmax > nbins) binmax = nbins;
if (binmax < binmin) {binmin = 1; binmax = nbins;}
//default is to fit with a gaussian
if (f1 == 0) {
f1 = (TF1*)gROOT->GetFunction("gaus");
if (f1 == 0) f1 = new TF1("gaus","gaus",fXaxis.GetXmin(),fXaxis.GetXmax());
else f1->SetRange(fXaxis.GetXmin(),fXaxis.GetXmax());
}
const char *fname = f1->GetName();
Int_t npar = f1->GetNpar();
Double_t *parsave = new Double_t[npar];
f1->GetParameters(parsave);
//Create one histogram for each function parameter
Int_t ipar;
char name[80], title[80];
TH1D *hlist[25];
const TArrayD *bins = fYaxis.GetXbins();
for (ipar=0;ipar<npar;ipar++) {
sprintf(name,"%s_%d",GetName(),ipar);
sprintf(title,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
if (bins->fN == 0) {
hlist[ipar] = new TH1D(name,title, nbins, fYaxis.GetXmin(), fYaxis.GetXmax());
} else {
hlist[ipar] = new TH1D(name,title, nbins,bins->fArray);
}
hlist[ipar]->GetXaxis()->SetTitle(fYaxis.GetTitle());
}
sprintf(name,"%s_chi2",GetName());
TH1D *hchi2 = new TH1D(name,"chisquare", nbins, fYaxis.GetXmin(), fYaxis.GetXmax());
hchi2->GetXaxis()->SetTitle(fYaxis.GetTitle());
//Loop on all bins in Y, generate a projection along X
Int_t bin;
Int_t nentries;
for (bin=binmin;bin<=binmax;bin++) {
TH1D *hpx = ProjectionX("_temp",bin,bin,"e");
if (hpx == 0) continue;
nentries = Int_t(hpx->GetEntries());
if (nentries == 0 || nentries < cut) {delete hpx; continue;}
f1->SetParameters(parsave);
hpx->Fit(fname,option);
Int_t npfits = f1->GetNumberFitPoints();
if (npfits > npar && npfits >= cut) {
for (ipar=0;ipar<npar;ipar++) {
hlist[ipar]->Fill(fYaxis.GetBinCenter(bin),f1->GetParameter(ipar));
hlist[ipar]->SetBinError(bin,f1->GetParError(ipar));
}
hchi2->Fill(fYaxis.GetBinCenter(bin),f1->GetChisquare()/(npfits-npar));
}
delete hpx;
}
delete [] parsave;
}
//______________________________________________________________________________
void TH2::FitSlicesY(TF1 *f1, Int_t binmin, Int_t binmax, Int_t cut, Option_t *option)
{
// Project slices along Y in case of a 2-D histogram, then fit each slice
// with function f1 and make a histogram for each fit parameter
// Only bins along X between binmin and binmax are considered.
// if f1=0, a gaussian is assumed
// Before invoking this function, one can set a subrange to be fitted along Y
// via f1->SetRange(ymin,ymax)
// The argument option (default="QNR") can be used to change the fit options.
// "Q" means Quiet mode
// "N" means do not show the result of the fit
// "R" means fit the function in the specified function range
//
// Note that the generated histograms are added to the list of objects
// in the current directory. It is the user's responsability to delete
// these histograms.
//
// Example: Assume a 2-d histogram h2
// Root > h2->FitSlicesY(); produces 4 TH1D histograms
// with h2_0 containing parameter 0(Constant) for a Gaus fit
// of each bin in X projected along Y
// with h2_1 containing parameter 1(Mean) for a gaus fit
// with h2_2 containing parameter 2(RMS) for a gaus fit
// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
//
// Root > h2->FitSlicesY(0,15,22,10);
// same as above, but only for bins 15 to 22 along X
// and only for bins in X for which the corresponding projection
// along Y has more than cut bins filled.
//
// NOTE: To access the generated histograms in the current directory, do eg:
// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
//
// A complete example of this function is given in tutorial:fitslicesy.C
// with the following output:
//
/*
*/
//
Int_t nbins = fXaxis.GetNbins();
if (binmin < 1) binmin = 1;
if (binmax > nbins) binmax = nbins;
if (binmax < binmin) {binmin = 1; binmax = nbins;}
//default is to fit with a gaussian
if (f1 == 0) {
f1 = (TF1*)gROOT->GetFunction("gaus");
if (f1 == 0) f1 = new TF1("gaus","gaus",fYaxis.GetXmin(),fYaxis.GetXmax());
else f1->SetRange(fYaxis.GetXmin(),fYaxis.GetXmax());
}
const char *fname = f1->GetName();
Int_t npar = f1->GetNpar();
Double_t *parsave = new Double_t[npar];
f1->GetParameters(parsave);
//Create one histogram for each function parameter
Int_t ipar;
char name[80], title[80];
TH1D *hlist[25];
const TArrayD *bins = fXaxis.GetXbins();
for (ipar=0;ipar<npar;ipar++) {
sprintf(name,"%s_%d",GetName(),ipar);
sprintf(title,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
if (bins->fN == 0) {
hlist[ipar] = new TH1D(name,title, nbins, fXaxis.GetXmin(), fXaxis.GetXmax());
} else {
hlist[ipar] = new TH1D(name,title, nbins,bins->fArray);
}
hlist[ipar]->GetXaxis()->SetTitle(fXaxis.GetTitle());
}
sprintf(name,"%s_chi2",GetName());
TH1D *hchi2 = new TH1D(name,"chisquare", nbins, fXaxis.GetXmin(), fXaxis.GetXmax());
hchi2->GetXaxis()->SetTitle(fXaxis.GetTitle());
//Loop on all bins in X, generate a projection along Y
Int_t bin;
Int_t nentries;
for (bin=binmin;bin<=binmax;bin++) {
TH1D *hpy = ProjectionY("_temp",bin,bin,"e");
if (hpy == 0) continue;
nentries = Int_t(hpy->GetEntries());
if (nentries == 0 || nentries < cut) {delete hpy; continue;}
f1->SetParameters(parsave);
hpy->Fit(fname,option);
Int_t npfits = f1->GetNumberFitPoints();
if (npfits > npar && npfits >= cut) {
for (ipar=0;ipar<npar;ipar++) {
hlist[ipar]->Fill(fXaxis.GetBinCenter(bin),f1->GetParameter(ipar));
hlist[ipar]->SetBinError(bin,f1->GetParError(ipar));
}
hchi2->Fill(fXaxis.GetBinCenter(bin),f1->GetChisquare()/(npfits-npar));
}
delete hpy;
}
delete [] parsave;
}
//______________________________________________________________________________
Stat_t TH2::GetCorrelationFactor(Int_t axis1, Int_t axis2) const
{
//*-*-*-*-*-*-*-*Return correlation factor between axis1 and axis2*-*-*-*-*
//*-* ====================================================
if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
Error("GetCorrelationFactor","Wrong parameters");
return 0;
}
if (axis1 == axis2) return 1;
Stat_t rms1 = GetRMS(axis1);
if (rms1 == 0) return 0;
Stat_t rms2 = GetRMS(axis2);
if (rms2 == 0) return 0;
return GetCovariance(axis1,axis2)/rms1/rms2;
}
//______________________________________________________________________________
Stat_t TH2::GetCovariance(Int_t axis1, Int_t axis2) const
{
//*-*-*-*-*-*-*-*Return covariance between axis1 and axis2*-*-*-*-*
//*-* ====================================================
if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
Error("GetCovariance","Wrong parameters");
return 0;
}
Stat_t stats[7];
GetStats(stats);
Stat_t sumw = stats[0];
Stat_t sumw2 = stats[1];
Stat_t sumwx = stats[2];
Stat_t sumwx2 = stats[3];
Stat_t sumwy = stats[4];
Stat_t sumwy2 = stats[5];
Stat_t sumwxy = stats[6];
if (sumw == 0) return 0;
if (axis1 == 1 && axis2 == 1) {
return TMath::Abs(sumwx2/sumw - sumwx*sumwx/sumw2);
}
if (axis1 == 2 && axis2 == 2) {
return TMath::Abs(sumwy2/sumw - sumwy*sumwy/sumw2);
}
return sumwxy/sumw - sumwx/sumw*sumwy/sumw;
}
//______________________________________________________________________________
void TH2::GetRandom2(Axis_t &x, Axis_t &y)
{
// return 2 random numbers along axis x and y distributed according
// the cellcontents of a 2-dim histogram
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbins = nbinsx*nbinsy;
Double_t integral;
if (fIntegral) {
if (fIntegral[nbins+1] != fEntries) integral = ComputeIntegral();
} else {
integral = ComputeIntegral();
if (integral == 0 || fIntegral == 0) return;
}
Float_t r1 = gRandom->Rndm();
Int_t ibin = TMath::BinarySearch(nbins,&fIntegral[0],r1);
Int_t biny = ibin/nbinsx;
Int_t binx = ibin - nbinsx*biny;
x = fXaxis.GetBinLowEdge(binx+1)
+fXaxis.GetBinWidth(binx+1)*(fIntegral[ibin+1]-r1)/(fIntegral[ibin+1] - fIntegral[ibin]);
y = fYaxis.GetBinLowEdge(biny+1) + fYaxis.GetBinWidth(biny+1)*gRandom->Rndm();
}
//______________________________________________________________________________
void TH2::GetStats(Stat_t *stats) const
{
// fill the array stats from the contents of this histogram
// The array stats must be correctly dimensionned in the calling program.
// stats[0] = sumw
// stats[1] = sumw2
// stats[2] = sumwx
// stats[3] = sumwx2
// stats[4] = sumwy
// stats[5] = sumwy2
// stats[6] = sumwxy
if (fBuffer) ((TH2*)this)->BufferEmpty();
Int_t bin, binx, biny;
Stat_t w;
Float_t x,y;
if (fTsumw == 0 || fXaxis.TestBit(TAxis::kAxisRange) || fYaxis.TestBit(TAxis::kAxisRange)) {
for (bin=0;bin<7;bin++) stats[bin] = 0;
for (biny=fYaxis.GetFirst();biny<=fYaxis.GetLast();biny++) {
y = fYaxis.GetBinCenter(biny);
for (binx=fXaxis.GetFirst();binx<=fXaxis.GetLast();binx++) {
bin = GetBin(binx,biny);
x = fXaxis.GetBinCenter(binx);
w = TMath::Abs(GetBinContent(bin));
stats[0] += w;
stats[1] += w*w;
stats[2] += w*x;
stats[3] += w*x*x;
stats[4] += w*y;
stats[5] += w*y*y;
stats[6] += w*x*y;
}
}
} else {
stats[0] = fTsumw;
stats[1] = fTsumw2;
stats[2] = fTsumwx;
stats[3] = fTsumwx2;
stats[4] = fTsumwy;
stats[5] = fTsumwy2;
stats[6] = fTsumwxy;
}
}
//______________________________________________________________________________
Stat_t TH2::Integral(Option_t *option) const
{
//Return integral of bin contents. Only bins in the bins range are considered.
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x and in y.
return Integral(fXaxis.GetFirst(),fXaxis.GetLast(),
fYaxis.GetFirst(),fYaxis.GetLast(),option);
}
//______________________________________________________________________________
Stat_t TH2::Integral(Int_t binx1, Int_t binx2, Int_t biny1, Int_t biny2, Option_t *option) const
{
//Return integral of bin contents in range [binx1,binx2],[biny1,biny2]
// for a 2-D histogram
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x and in y.
if (fBuffer) ((TH2*)this)->BufferEmpty();
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
if (binx1 < 0) binx1 = 0;
if (binx2 > nbinsx+1) binx2 = nbinsx+1;
if (binx2 < binx1) binx2 = nbinsx;
if (biny1 < 0) biny1 = 0;
if (biny2 > nbinsy+1) biny2 = nbinsy+1;
if (biny2 < biny1) biny2 = nbinsy;
Stat_t integral = 0;
//*-*- Loop on bins in specified range
TString opt = option;
opt.ToLower();
Bool_t width = kFALSE;
if (opt.Contains("width")) width = kTRUE;
Int_t bin, binx, biny;
for (biny=biny1;biny<=biny2;biny++) {
for (binx=binx1;binx<=binx2;binx++) {
bin = binx +(nbinsx+2)*biny;
if (width) integral += GetBinContent(bin)*fXaxis.GetBinWidth(binx)*fYaxis.GetBinWidth(biny);
else integral += GetBinContent(bin);
}
}
return integral;
}
//______________________________________________________________________________
Double_t TH2::KolmogorovTest(TH1 *h2, Option_t *option)
{
// Statistical test of compatibility in shape between
// THIS histogram and h2, using Kolmogorov test.
// Default: Ignore under- and overflow bins in comparison
//
// option is a character string to specify options
// "U" include Underflows in test
// "O" include Overflows
// "N" include comparison of normalizations
// "D" Put out a line of "Debug" printout
//
// The returned function value is the probability of test
// (much less than one means NOT compatible)
//
// Code adapted by Rene Brun from original HBOOK routine HDIFF
TString opt = option;
opt.ToUpper();
Double_t prb = 0;
TH1 *h1 = this;
if (h2 == 0) return 0;
TAxis *xaxis1 = h1->GetXaxis();
TAxis *xaxis2 = h2->GetXaxis();
TAxis *yaxis1 = h1->GetYaxis();
TAxis *yaxis2 = h2->GetYaxis();
Int_t ncx1 = xaxis1->GetNbins();
Int_t ncx2 = xaxis2->GetNbins();
Int_t ncy1 = yaxis1->GetNbins();
Int_t ncy2 = yaxis2->GetNbins();
// Check consistency of dimensions
if (h1->GetDimension() != 2 || h2->GetDimension() != 2) {
Error("KolmogorovTest","Histograms must be 2-Dn");
return 0;
}
// Check consistency in number of channels
if (ncx1 != ncx2) {
Error("KolmogorovTest","Number of channels in X is different, %d and %dn",ncx1,ncx2);
return 0;
}
if (ncy1 != ncy2) {
Error("KolmogorovTest","Number of channels in Y is different, %d and %dn",ncy1,ncy2);
return 0;
}
// Check consistency in channel edges
Bool_t afunc1 = kFALSE;
Bool_t afunc2 = kFALSE;
Double_t difprec = 1e-5;
Double_t diff1 = TMath::Abs(xaxis1->GetXmin() - xaxis2->GetXmin());
Double_t diff2 = TMath::Abs(xaxis1->GetXmax() - xaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along X");
return 0;
}
diff1 = TMath::Abs(yaxis1->GetXmin() - yaxis2->GetXmin());
diff2 = TMath::Abs(yaxis1->GetXmax() - yaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along Y");
return 0;
}
// Should we include Uflows, Oflows?
Int_t ibeg = 1, jbeg = 1;
Int_t iend = ncx1, jend = ncy1;
if (opt.Contains("U")) {ibeg = 0; jbeg = 0;}
if (opt.Contains("O")) {iend = ncx1+1; jend = ncy1+1;}
Int_t i,j;
Double_t hsav;
Double_t sum1 = 0;
Double_t tsum1 = 0;
for (i=0;i<=ncx1+1;i++) {
for (j=0;j<=ncy1+1;j++) {
hsav = h1->GetCellContent(i,j);
tsum1 += hsav;
if (i >= ibeg && i <= iend && j >= jbeg && j <= jend) sum1 += hsav;
}
}
Double_t sum2 = 0;
Double_t tsum2 = 0;
for (i=0;i<=ncx1+1;i++) {
for (j=0;j<=ncy1+1;j++) {
hsav = h2->GetCellContent(i,j);
tsum2 += hsav;
if (i >= ibeg && i <= iend && j >= jbeg && j <= jend) sum2 += hsav;
}
}
// Check that both scatterplots contain events
if (sum1 == 0) {
Error("KolmogorovTest","Integral is zero for h1=%sn",h1->GetName());
return 0;
}
if (sum2 == 0) {
Error("KolmogorovTest","Integral is zero for h2=%sn",h2->GetName());
return 0;
}
// Check that scatterplots are not weighted or saturated
Double_t num1 = h1->GetEntries();
Double_t num2 = h2->GetEntries();
if (num1 != tsum1) {
Warning("KolmogorovTest","Saturation or weighted events for h1=%s, num1=%g, tsum1=%gn",h1->GetName(),num1,tsum1);
}
if (num2 != tsum2) {
Warning("KolmogorovTest","Saturation or weighted events for h2=%s, num2=%g, tsum2=%gn",h2->GetName(),num2,tsum2);
}
// Find first Kolmogorov distance
Double_t s1 = 1/sum1;
Double_t s2 = 1/sum2;
Double_t dfmax = 0;
Double_t rsum1=0, rsum2=0;
for (i=ibeg;i<=iend;i++) {
for (j=jbeg;j<=jend;j++) {
rsum1 += s1*h1->GetCellContent(i,j);
rsum2 += s2*h2->GetCellContent(i,j);
dfmax = TMath::Max(dfmax, TMath::Abs(rsum1-rsum2));
}
}
// Find second Kolmogorov distance
Double_t dfmax2 = 0;
rsum1=0, rsum2=0;
for (j=jbeg;j<=jend;j++) {
for (i=ibeg;i<=iend;i++) {
rsum1 += s1*h1->GetCellContent(i,j);
rsum2 += s2*h2->GetCellContent(i,j);
dfmax2 = TMath::Max(dfmax2, TMath::Abs(rsum1-rsum2));
}
}
// Get Kolmogorov probability
Double_t factnm;
if (afunc1) factnm = TMath::Sqrt(sum2);
else if (afunc2) factnm = TMath::Sqrt(sum1);
else factnm = TMath::Sqrt(sum1*sum2/(sum1+sum2));
Double_t z = dfmax*factnm;
Double_t z2 = dfmax2*factnm;
prb = TMath::KolmogorovProb(0.5*(z+z2));
Double_t prb1=0, prb2=0;
Double_t resum1, resum2, chi2, d12;
if (opt.Contains("N")) { //Combine probabilities for shape and normalization,
prb1 = prb;
resum1 = sum1; if (afunc1) resum1 = 0;
resum2 = sum2; if (afunc2) resum2 = 0;
d12 = sum1-sum2;
chi2 = d12*d12/(resum1+resum2);
prb2 = TMath::Prob(chi2,1);
// see Eadie et al., section 11.6.2
if (prb > 0 && prb2 > 0) prb = prb*prb2*(1-TMath::Log(prb*prb2));
else prb = 0;
}
// debug printout
if (opt.Contains("D")) {
printf(" Kolmo Prob h1 = %s, sum1=%gn",h1->GetName(),sum1);
printf(" Kolmo Prob h2 = %s, sum2=%gn",h2->GetName(),sum2);
printf(" Kolmo Probabil = %f, Max Dist = %gn",prb,dfmax);
if (opt.Contains("N"))
printf(" Kolmo Probabil = %f for shape alone, =%f for normalisation alonen",prb1,prb2);
}
// This numerical error condition should never occur:
if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%sn",h1->GetName());
if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%sn",h2->GetName());
return prb;
}
//______________________________________________________________________________
Int_t TH2::Merge(TCollection *list)
{
//Add all histograms in the collection to this histogram.
//This function computes the min/max for the axes,
//compute a new number of bins, if necessary,
//add bin contents, errors and statistics.
//The function returns the merged number of entries if the merge is
//successfull, -1 otherwise.
//
//IMPORTANT remark. The 2 axis x and y may have different number
//of bins and different limits, BUT the largest bin width must be
//a multiple of the smallest bin width.
if (!list) return 0;
TIter next(list);
Double_t umin,umax,vmin,vmax;
Int_t nx,ny;
Double_t xmin = fXaxis.GetXmin();
Double_t xmax = fXaxis.GetXmax();
Double_t ymin = fYaxis.GetXmin();
Double_t ymax = fYaxis.GetXmax();
Double_t bwix = fXaxis.GetBinWidth(1);
Double_t bwiy = fYaxis.GetBinWidth(1);
Int_t nbix = fXaxis.GetNbins();
Int_t nbiy = fYaxis.GetNbins();
const Int_t kNstat = 7;
Stat_t stats[kNstat], totstats[kNstat];
TH2 *h;
Int_t i, nentries=(Int_t)fEntries;
for (i=0;i<kNstat;i++) {totstats[i] = stats[i] = 0;}
GetStats(totstats);
Bool_t same = kTRUE;
while ((h=(TH2*)next())) {
if (!h->InheritsFrom(TH2::Class())) {
Error("Add","Attempt to add object of class: %s to a %s",h->ClassName(),this->ClassName());
return -1;
}
//import statistics
h->GetStats(stats);
for (i=0;i<kNstat;i++) totstats[i] += stats[i];
nentries += (Int_t)h->GetEntries();
// find min/max of the axes
umin = h->GetXaxis()->GetXmin();
umax = h->GetXaxis()->GetXmax();
vmin = h->GetYaxis()->GetXmin();
vmax = h->GetYaxis()->GetXmax();
nx = h->GetXaxis()->GetNbins();
ny = h->GetYaxis()->GetNbins();
if (nx != nbix || ny != nbiy ||
umin != xmin || umax != xmax || vmin != ymin || vmax != ymax) {
same = kFALSE;
if (umin < xmin) xmin = umin;
if (umax > xmax) xmax = umax;
if (vmin < ymin) ymin = vmin;
if (vmax > ymax) ymax = vmax;
if (h->GetXaxis()->GetBinWidth(1) > bwix) bwix = h->GetXaxis()->GetBinWidth(1);
if (h->GetYaxis()->GetBinWidth(1) > bwiy) bwiy = h->GetYaxis()->GetBinWidth(1);
}
}
// if different binning compute best binning
if (!same) {
nbix = (Int_t) ((xmax-xmin)/bwix +0.1); while(nbix > 100) nbix /= 2;
nbiy = (Int_t) ((ymax-ymin)/bwiy +0.1); while(nbiy > 100) nbiy /= 2;
SetBins(nbix,xmin,xmax,nbiy,ymin,ymax);
}
//merge bin contents and errors
next.Reset();
Int_t ibin, bin, binx, biny, ix, iy;
Double_t cu;
while ((h=(TH2*)next())) {
nx = h->GetXaxis()->GetNbins();
ny = h->GetYaxis()->GetNbins();
for (biny=0;biny<=ny+1;biny++) {
iy = fYaxis.FindBin(h->GetYaxis()->GetBinCenter(biny));
for (binx=0;binx<=nx+1;binx++) {
ix = fXaxis.FindBin(h->GetXaxis()->GetBinCenter(binx));
bin = binx +(nx+2)*biny;
ibin = ix +(nbix+2)*iy;
cu = h->GetBinContent(bin);
AddBinContent(ibin,cu);
if (fSumw2.fN) {
Double_t error1 = h->GetBinError(bin);
fSumw2.fArray[ibin] += error1*error1;
}
}
}
}
//copy merged stats
PutStats(totstats);
SetEntries(nentries);
return nentries;
}
//______________________________________________________________________________
TProfile *TH2::ProfileX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a profile histogram along X*-*-*-*-*-*
//*-* ========================================================
//
// The projection is made from the channels along the Y axis
// ranging from firstybin to lastybin included.
// By default, bins 1 to ny are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstybin < 0) firstybin = 1;
if (lastybin < 0) lastybin = ny;
if (lastybin > ny+1) lastybin = ny;
// Create the profile histogram
char *pname = (char*)name;
if (strcmp(name,"_pfx") == 0) {
Int_t nch = strlen(GetName()) + 5;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TProfile *h1;
const TArrayD *bins = fXaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TProfile(pname,GetTitle(),nx,fXaxis.GetXmin(),fXaxis.GetXmax(),option);
} else {
h1 = new TProfile(pname,GetTitle(),nx,bins->fArray,option);
}
if (pname != name) delete [] pname;
// Fill the profile histogram
Double_t cont;
for (Int_t binx =0;binx<=nx+1;binx++) {
for (Int_t biny=firstybin;biny<=lastybin;biny++) {
cont = GetCellContent(binx,biny);
if (cont) {
h1->Fill(fXaxis.GetBinCenter(binx),fYaxis.GetBinCenter(biny), cont);
}
}
}
if (firstybin <=1 && lastybin >= ny) h1->SetEntries(fEntries);
return h1;
}
//______________________________________________________________________________
TProfile *TH2::ProfileY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a profile histogram along Y*-*-*-*-*-*
//*-* ========================================================
//
// The projection is made from the channels along the X axis
// ranging from firstxbin to lastxbin included.
// By default, bins 1 to nx are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstxbin < 0) firstxbin = 1;
if (lastxbin < 0) lastxbin = nx;
if (lastxbin > nx+1) lastxbin = nx;
// Create the projection histogram
char *pname = (char*)name;
if (strcmp(name,"_pfy") == 0) {
Int_t nch = strlen(GetName()) + 5;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TProfile *h1;
const TArrayD *bins = fYaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TProfile(pname,GetTitle(),ny,fYaxis.GetXmin(),fYaxis.GetXmax(),option);
} else {
h1 = new TProfile(pname,GetTitle(),ny,bins->fArray,option);
}
if (pname != name) delete [] pname;
// Fill the profile histogram
Double_t cont;
for (Int_t biny =0;biny<=ny+1;biny++) {
for (Int_t binx=firstxbin;binx<=lastxbin;binx++) {
cont = GetCellContent(binx,biny);
if (cont) {
h1->Fill(fYaxis.GetBinCenter(biny),fXaxis.GetBinCenter(binx), cont);
}
}
}
if (firstxbin <=1 && lastxbin >= nx) h1->SetEntries(fEntries);
return h1;
}
//______________________________________________________________________________
TH1D *TH2::ProjectionX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a 1-D histogram along X*-*-*-*-*-*-*
//*-* ====================================================
//
// The projection is always of the type TH1D.
// The projection is made from the channels along the Y axis
// ranging from firstybin to lastybin included.
// By default, bins 1 to ny are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
// To make the projection in X of the underflow bin in Y, use firstybin=lastybin=0;
// To make the projection in X of the overflow bin in Y, use firstybin=lastybin=ny+1;
//
// if option "e" is specified, the errors are computed.
// if option "d" is specified, the projection is drawn in the current pad.
//
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstybin < 0) firstybin = 1;
if (lastybin < 0) lastybin = ny;
if (lastybin > ny+1) lastybin = ny;
// Create the projection histogram
char *pname = (char*)name;
if (strcmp(name,"_px") == 0) {
Int_t nch = strlen(GetName()) + 4;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TH1D *h1;
const TArrayD *bins = fXaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(pname,GetTitle(),nx,fXaxis.GetXmin(),fXaxis.GetXmax());
} else {
h1 = new TH1D(pname,GetTitle(),nx,bins->fArray);
}
Bool_t computeErrors = kFALSE;
if (opt.Contains("e")) {h1->Sumw2(); computeErrors = kTRUE;}
if (pname != name) delete [] pname;
// Fill the projected histogram
Double_t cont,err2;
for (Int_t binx =0;binx<=nx+1;binx++) {
err2 = 0;
for (Int_t biny=firstybin;biny<=lastybin;biny++) {
cont = GetCellContent(binx,biny);
err2 += cont*cont;
if (cont) {
h1->Fill(fXaxis.GetBinCenter(binx), cont);
}
}
if (computeErrors) h1->SetBinError(binx,TMath::Sqrt(err2));
}
if (firstybin <=1 && lastybin >= ny) h1->SetEntries(fEntries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
h1->Draw(option);
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
TH1D *TH2::ProjectionY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
{
//*-*-*-*-*Project a 2-D histogram into a 1-D histogram along Y*-*-*-*-*-*-*
//*-* ====================================================
//
// The projection is always of the type TH1D.
// The projection is made from the channels along the X axis
// ranging from firstxbin to lastxbin included.
// By default, bins 1 to nx are included
// When all bins are included, the number of entries in the projection
// is set to the number of entries of the 2-D histogram, otherwise
// the number of entries is incremented by 1 for all non empty cells.
//
// To make the projection in Y of the underflow bin in X, use firstxbin=lastxbin=0;
// To make the projection in Y of the overflow bin in X, use firstxbin=lastxbin=nx+1;
//
// if option "e" is specified, the errors are computed.
// if option "d" is specified, the projection is drawn in the current pad.
//
TString opt = option;
opt.ToLower();
Int_t nx = fXaxis.GetNbins();
Int_t ny = fYaxis.GetNbins();
if (firstxbin < 0) firstxbin = 1;
if (lastxbin < 0) lastxbin = nx;
if (lastxbin > nx+1) lastxbin = nx;
// Create the projection histogram
char *pname = (char*)name;
if (strcmp(name,"_py") == 0) {
Int_t nch = strlen(GetName()) + 4;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TH1D *h1;
const TArrayD *bins = fYaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(pname,GetTitle(),ny,fYaxis.GetXmin(),fYaxis.GetXmax());
} else {
h1 = new TH1D(pname,GetTitle(),ny,bins->fArray);
}
Bool_t computeErrors = kFALSE;
if (opt.Contains("e")) {h1->Sumw2(); computeErrors = kTRUE;}
if (pname != name) delete [] pname;
// Fill the projected histogram
Double_t cont,err2;
for (Int_t biny =0;biny<=ny+1;biny++) {
err2 = 0;
for (Int_t binx=firstxbin;binx<=lastxbin;binx++) {
cont = GetCellContent(binx,biny);
err2 += cont*cont;
if (cont) {
h1->Fill(fYaxis.GetBinCenter(biny), cont);
}
}
if (computeErrors) h1->SetBinError(biny,TMath::Sqrt(err2));
}
if (firstxbin <=1 && lastxbin >= nx) h1->SetEntries(fEntries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
h1->Draw(option);
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
void TH2::PutStats(Stat_t *stats)
{
// Replace current statistics with the values in array stats
TH1::PutStats(stats);
fTsumwy = stats[4];
fTsumwy2 = stats[5];
fTsumwxy = stats[6];
}
//______________________________________________________________________________
void TH2::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH1::Reset(option);
fTsumwy = 0;
fTsumwy2 = 0;
fTsumwxy = 0;
}
//______________________________________________________________________________
void TH2::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
TH1::Streamer(R__b);
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
//====end of old versions
} else {
TH2::Class()->WriteBuffer(R__b,this);
}
}
ClassImp(TH2C)
//______________________________________________________________________________
// TH2C methods
//______________________________________________________________________________
TH2C::TH2C(): TH2()
{
}
//______________________________________________________________________________
TH2C::~TH2C()
{
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH2C::TH2C(const TH2C &h2c) : TH2(), TArrayC()
{
((TH2C&)h2c).Copy(*this);
}
//______________________________________________________________________________
void TH2C::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 127) fArray[bin]++;
}
//______________________________________________________________________________
void TH2C::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
if (newval < -127) fArray[bin] = -127;
if (newval > 127) fArray[bin] = 127;
}
//______________________________________________________________________________
void TH2C::Copy(TObject &newth2)
{
TH2::Copy((TH2C&)newth2);
TArrayC::Copy((TH2C&)newth2);
}
//______________________________________________________________________________
TH1 *TH2C::DrawCopy(Option_t *option)
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2C *newth2 = (TH2C*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2C::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2C::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayC::Reset();
}
//______________________________________________________________________________
void TH2C::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayC::Set(n);
}
//______________________________________________________________________________
void TH2C::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2C.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2C::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayC::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayC::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2C::IsA());
}
//====end of old versions
} else {
TH2C::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2C& TH2C::operator=(const TH2C &h1)
{
if (this != &h1) ((TH2C&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2C operator*(Float_t c1, TH2C &h1)
{
TH2C hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator+(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator-(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator*(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2C operator/(TH2C &h1, TH2C &h2)
{
TH2C hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2S)
//______________________________________________________________________________
// TH2S methods
//______________________________________________________________________________
TH2S::TH2S(): TH2()
{
}
//______________________________________________________________________________
TH2S::~TH2S()
{
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayS::Set(fNcells);
}
//______________________________________________________________________________
TH2S::TH2S(const TH2S &h2s) : TH2(), TArrayS()
{
((TH2S&)h2s).Copy(*this);
}
//______________________________________________________________________________
void TH2S::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 32767) fArray[bin]++;
}
//______________________________________________________________________________
void TH2S::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
if (newval < -32767) fArray[bin] = -32767;
if (newval > 32767) fArray[bin] = 32767;
}
//______________________________________________________________________________
void TH2S::Copy(TObject &newth2)
{
TH2::Copy((TH2S&)newth2);
TArrayS::Copy((TH2S&)newth2);
}
//______________________________________________________________________________
TH1 *TH2S::DrawCopy(Option_t *option)
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2S *newth2 = (TH2S*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2S::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2S::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayS::Reset();
}
//______________________________________________________________________________
void TH2S::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayS::Set(n);
}
//______________________________________________________________________________
void TH2S::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2S.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2S::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayS::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayS::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2S::IsA());
}
//====end of old versions
} else {
TH2S::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2S& TH2S::operator=(const TH2S &h1)
{
if (this != &h1) ((TH2S&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2S operator*(Float_t c1, TH2S &h1)
{
TH2S hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator+(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator-(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator*(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2S operator/(TH2S &h1, TH2S &h2)
{
TH2S hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2F)
//______________________________________________________________________________
// TH2F methods
//______________________________________________________________________________
TH2F::TH2F(): TH2()
{
}
//______________________________________________________________________________
TH2F::~TH2F()
{
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH2F::TH2F(const TMatrix &m)
:TH2("TMatrix","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
{
TArrayF::Set(fNcells);
Int_t ilow = m.GetRowLwb();
Int_t iup = m.GetRowUpb();
Int_t jlow = m.GetColLwb();
Int_t jup = m.GetColUpb();
for (Int_t i=ilow;i<=iup;i++) {
for (Int_t j=jlow;j<=jup;j++) {
SetCellContent(j-jlow+1,i-ilow+1,m(i,j));
}
}
}
//______________________________________________________________________________
TH2F::TH2F(const TH2F &h2f) : TH2(), TArrayF()
{
((TH2F&)h2f).Copy(*this);
}
//______________________________________________________________________________
void TH2F::Copy(TObject &newth2)
{
TH2::Copy((TH2F&)newth2);
TArrayF::Copy((TH2F&)newth2);
}
//______________________________________________________________________________
TH1 *TH2F::DrawCopy(Option_t *option)
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2F *newth2 = (TH2F*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2F::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2F::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayF::Reset();
}
//______________________________________________________________________________
void TH2F::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayF::Set(n);
}
//______________________________________________________________________________
void TH2F::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2F.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2F::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayF::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayF::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2F::IsA());
}
//====end of old versions
} else {
TH2F::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2F& TH2F::operator=(const TH2F &h1)
{
if (this != &h1) ((TH2F&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2F operator*(Float_t c1, TH2F &h1)
{
TH2F hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator*(TH2F &h1, Float_t c1)
{
TH2F hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator+(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator-(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator*(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2F operator/(TH2F &h1, TH2F &h2)
{
TH2F hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH2D)
//______________________________________________________________________________
// TH2D methods
//______________________________________________________________________________
TH2D::TH2D(): TH2()
{
}
//______________________________________________________________________________
TH2D::~TH2D()
{
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,Axis_t ylow,Axis_t yup)
:TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins)
:TH2(name,title,nbinsx,xbins,nbinsy,ybins)
{
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH2D::TH2D(const TMatrixD &m)
:TH2("TMatrixD","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
{
TArrayD::Set(fNcells);
Int_t ilow = m.GetRowLwb();
Int_t iup = m.GetRowUpb();
Int_t jlow = m.GetColLwb();
Int_t jup = m.GetColUpb();
for (Int_t i=ilow;i<=iup;i++) {
for (Int_t j=jlow;j<=jup;j++) {
SetCellContent(j-jlow+1,i-ilow+1,m(i,j));
}
}
}
//______________________________________________________________________________
TH2D::TH2D(const TH2D &h2d) : TH2(), TArrayD()
{
((TH2D&)h2d).Copy(*this);
}
//______________________________________________________________________________
void TH2D::Copy(TObject &newth2)
{
TH2::Copy((TH2D&)newth2);
TArrayD::Copy((TH2D&)newth2);
}
//______________________________________________________________________________
TH1 *TH2D::DrawCopy(Option_t *option)
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH2D *newth2 = (TH2D*)Clone();
newth2->SetDirectory(0);
newth2->SetBit(kCanDelete);
newth2->AppendPad(option);
return newth2;
}
//______________________________________________________________________________
Stat_t TH2D::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH2C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH2D::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH2::Reset(option);
TArrayD::Reset();
}
//______________________________________________________________________________
void TH2D::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
fNcells = n;
TArrayD::Set(n);
}
//______________________________________________________________________________
void TH2D::Streamer(TBuffer &R__b)
{
// Stream an object of class TH2D.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH2D::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayD::Streamer(R__b);
R__b.ReadVersion();
R__b >> fScalefactor;
R__b >> fTsumwy;
R__b >> fTsumwy2;
R__b >> fTsumwxy;
} else {
TH2::Streamer(R__b);
TArrayD::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH2D::IsA());
}
//====end of old versions
} else {
TH2D::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH2D& TH2D::operator=(const TH2D &h1)
{
if (this != &h1) ((TH2D&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH2D operator*(Float_t c1, TH2D &h1)
{
TH2D hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator+(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator-(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator*(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH2D operator/(TH2D &h1, TH2D &h2)
{
TH2D hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.