// @(#)root/hist:$Name: $:$Id: TF1.cxx,v 1.82 2004/07/05 07:02:53 brun Exp $ // Author: Rene Brun 18/08/95 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #include "Riostream.h" #include "TROOT.h" #include "TMath.h" #include "TF1.h" #include "TH1.h" #include "TVirtualPad.h" #include "TStyle.h" #include "TRandom.h" #include "Api.h" #include "TPluginManager.h" #include "TVirtualUtilPad.h" #include "TBrowser.h" Bool_t TF1::fgAbsValue = kFALSE; Bool_t TF1::fgRejectPoint = kFALSE; static TF1 *gHelper = 0; ClassImp(TF1) //______________________________________________________________________________ // // a TF1 object is a 1-Dim function defined between a lower and upper limit. // The function may be a simple function (see TFormula) or a precompiled // user function. // The function may have associated parameters. // TF1 graphics function is via the TH1/TGraph drawing functions. // // The following types of functions can be created: // A- Expression using variable x and no parameters // B- Expression using variable x with parameters // C- A general C function with parameters // // Example of a function of type A // // TF1 *f1 = new TF1("f1","sin(x)/x",0,10); // f1->Draw(); ///* */ // // // Example of a function of type B // TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3); // This creates a function of variable x with 2 parameters. // The parameters must be initialized via: // f1->SetParameter(0,value_first_parameter); // f1->SetParameter(1,value_second_parameter); // Parameters may be given a name: // f1->SetParName(0,"Constant"); // // Example of function of type C // Consider the macro myfunc.C below //-------------macro myfunc.C----------------------------- //Double_t myfunction(Double_t *x, Double_t *par) //{ // Float_t xx =x[0]; // Double_t f = TMath::Abs(par[0]*sin(par[1]*xx)/xx); // return f; //} //void myfunc() //{ // TF1 *f1 = new TF1("myfunc",myfunction,0,10,2); // f1->SetParameters(2,1); // f1->SetParNames("constant","coefficient"); // f1->Draw(); //} //void myfit() //{ // TH1F *h1=new TH1F("h1","test",100,0,10); // h1->FillRandom("myfunc",20000); // TF1 *f1=gROOT->GetFunction("myfunc"); // f1->SetParameters(800,1); // h1.Fit("myfunc"); //} //--------end of macro myfunc.C--------------------------------- // // In an interactive session you can do: // Root > .L myfunc.C // Root > myfunc(); // Root > myfit(); // // // TF1 objects can reference other TF1 objects (thanks John Odonnell) // of type A or B defined above.This excludes CINT interpreted functions // and compiled functions. // However, there is a restriction. A function cannot reference a basic // function if the basic function is a polynomial polN. // Example: //{ // TF1 *fcos = new TF1 ("fcos", "[0]*cos(x)", 0., 10.); // fcos->SetParNames( "cos"); // fcos->SetParameter( 0, 1.1); // // TF1 *fsin = new TF1 ("fsin", "[0]*sin(x)", 0., 10.); // fsin->SetParNames( "sin"); // fsin->SetParameter( 0, 2.1); // // TF1 *fsincos = new TF1 ("fsc", "fcos+fsin"); // // TF1 *fs2 = new TF1 ("fs2", "fsc+fsc"); //} // // WHY TF1 CANNOT ACCEPT A CLASS MEMBER FUNCTION ? // =============================================== // This is a frequently asked question. // C++ is a strongly typed language. There is no way for TF1 (without // recompiling this class) to know about all possible user defined data types. // This also apply to the case of a static class function. // //------------------------------------------------------------------------ TF1 *TF1::fgCurrent = 0; //______________________________________________________________________________ TF1::TF1(): TFormula(), TAttLine(), TAttFill(), TAttMarker() { //*-*-*-*-*-*-*-*-*-*-*F1 default constructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ====================== fXmin = 0; fXmax = 0; fNpx = 100; fType = 0; fNpfits = 0; fNDF = 0; fNsave = 0; fChisquare = 0; fIntegral = 0; fFunction = 0; fParErrors = 0; fParMin = 0; fParMax = 0; fAlpha = 0; fBeta = 0; fGamma = 0; fParent = 0; fSave = 0; fHistogram = 0; fMinimum = -1111; fMaximum = -1111; fMethodCall = 0; SetFillStyle(0); } //______________________________________________________________________________ TF1::TF1(const char *name,const char *formula, Double_t xmin, Double_t xmax) :TFormula(name,formula), TAttLine(), TAttFill(), TAttMarker() { //*-*-*-*-*-*-*F1 constructor using a formula definition*-*-*-*-*-*-*-*-*-*-* //*-* ========================================= //*-* //*-* See TFormula constructor for explanation of the formula syntax. //*-* //*-* See tutorials: fillrandom, first, fit1, formula1, multifit //*-* for real examples. //*-* //*-* Creates a function of type A or B between xmin and xmax //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* if (xmin < xmax ) { fXmin = xmin; fXmax = xmax; } else { fXmin = xmax; //when called from TF2,TF3 fXmax = xmin; } fNpx = 100; fType = 0; fFunction = 0; if (fNpar) { fParErrors = new Double_t[fNpar]; fParMin = new Double_t[fNpar]; fParMax = new Double_t[fNpar]; for (int i = 0; i < fNpar; i++) { fParErrors[i] = 0; fParMin[i] = 0; fParMax[i] = 0; } } else { fParErrors = 0; fParMin = 0; fParMax = 0; } fChisquare = 0; fIntegral = 0; fAlpha = 0; fBeta = 0; fGamma = 0; fParent = 0; fNpfits = 0; fNDF = 0; fNsave = 0; fSave = 0; fHistogram = 0; fMinimum = -1111; fMaximum = -1111; fMethodCall = 0; if (fNdim != 1 && xmin < xmax) { Error("TF1","function: %s/%s has %d parameters instead of 1",name,formula,fNdim); MakeZombie(); } if (!gStyle) return; SetLineColor(gStyle->GetFuncColor()); SetLineWidth(gStyle->GetFuncWidth()); SetLineStyle(gStyle->GetFuncStyle()); SetFillStyle(0); } //______________________________________________________________________________ TF1::TF1(const char *name, Double_t xmin, Double_t xmax, Int_t npar) :TFormula(), TAttLine(), TAttFill(), TAttMarker() { //*-*-*-*-*-*-*F1 constructor using name of an interpreted function*-*-*-* //*-* ======================================================= //*-* //*-* Creates a function of type C between xmin and xmax. //*-* name is the name of an interpreted CINT cunction. //*-* The function is defined with npar parameters //*-* fcn must be a function of type: //*-* Double_t fcn(Double_t *x, Double_t *params) //*-* //*-* This constructor is called for functions of type C by CINT. //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* fXmin = xmin; fXmax = xmax; fNpx = 100; fType = 2; fFunction = 0; if (npar > 0 ) fNpar = npar; if (fNpar) { fNames = new TString[fNpar]; fParams = new Double_t[fNpar]; fParErrors = new Double_t[fNpar]; fParMin = new Double_t[fNpar]; fParMax = new Double_t[fNpar]; for (int i = 0; i < fNpar; i++) { fParams[i] = 0; fParErrors[i] = 0; fParMin[i] = 0; fParMax[i] = 0; } } else { fParErrors = 0; fParMin = 0; fParMax = 0; } fChisquare = 0; fIntegral = 0; fAlpha = 0; fBeta = 0; fGamma = 0; fParent = 0; fNpfits = 0; fNDF = 0; fNsave = 0; fSave = 0; fHistogram = 0; fMinimum = -1111; fMaximum = -1111; fMethodCall = 0; fNdim = 1; TF1 *f1old = (TF1*)gROOT->GetListOfFunctions()->FindObject(name); if (f1old) delete f1old; SetName(name); if (gStyle) { SetLineColor(gStyle->GetFuncColor()); SetLineWidth(gStyle->GetFuncWidth()); SetLineStyle(gStyle->GetFuncStyle()); } SetFillStyle(0); SetTitle(name); if (name) { if (*name == '*') return; //case happens via SavePrimitive fMethodCall = new TMethodCall(); fMethodCall->InitWithPrototype(name,"Double_t*,Double_t*"); fNumber = -1; gROOT->GetListOfFunctions()->Add(this); } else { Printf("Function:%s cannot be compiled",name); } } //______________________________________________________________________________ TF1::TF1(const char *name,void *fcn, Double_t xmin, Double_t xmax, Int_t npar) :TFormula(), TAttLine(), TAttFill(), TAttMarker() { //*-*-*-*-*-*-*F1 constructor using pointer to an interpreted function*-*-*-* //*-* ======================================================= //*-* //*-* See TFormula constructor for explanation of the formula syntax. //*-* //*-* Creates a function of type C between xmin and xmax. //*-* The function is defined with npar parameters //*-* fcn must be a function of type: //*-* Double_t fcn(Double_t *x, Double_t *params) //*-* //*-* see tutorial; myfit for an example of use //*-* also test/stress.cxx (see function stress1) //*-* //*-* //*-* This constructor is called for functions of type C by CINT. //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* fXmin = xmin; fXmax = xmax; fNpx = 100; fType = 2; fFunction = 0; if (npar > 0 ) fNpar = npar; if (fNpar) { fNames = new TString[fNpar]; fParams = new Double_t[fNpar]; fParErrors = new Double_t[fNpar]; fParMin = new Double_t[fNpar]; fParMax = new Double_t[fNpar]; for (int i = 0; i < fNpar; i++) { fParams[i] = 0; fParErrors[i] = 0; fParMin[i] = 0; fParMax[i] = 0; } } else { fParErrors = 0; fParMin = 0; fParMax = 0; } fChisquare = 0; fIntegral = 0; fAlpha = 0; fBeta = 0; fGamma = 0; fParent = 0; fNpfits = 0; fNDF = 0; fNsave = 0; fSave = 0; fHistogram = 0; fMinimum = -1111; fMaximum = -1111; fMethodCall = 0; fNdim = 1; TF1 *f1old = (TF1*)gROOT->GetListOfFunctions()->FindObject(name); if (f1old) delete f1old; SetName(name); if (gStyle) { SetLineColor(gStyle->GetFuncColor()); SetLineWidth(gStyle->GetFuncWidth()); SetLineStyle(gStyle->GetFuncStyle()); } SetFillStyle(0); if (!fcn) return; char *funcname = G__p2f2funcname(fcn); SetTitle(funcname); if (funcname) { fMethodCall = new TMethodCall(); fMethodCall->InitWithPrototype(funcname,"Double_t*,Double_t*"); fNumber = -1; gROOT->GetListOfFunctions()->Add(this); } else { Printf("Function:%s cannot be compiled",name); } } //______________________________________________________________________________ TF1::TF1(const char *name,Double_t (*fcn)(Double_t *, Double_t *), Double_t xmin, Double_t xmax, Int_t npar) :TFormula(), TAttLine(), TAttFill(), TAttMarker() { //*-*-*-*-*-*-*F1 constructor using a pointer to real function*-*-*-*-*-*-*-* //*-* =============================================== //*-* //*-* npar is the number of free parameters used by the function //*-* //*-* This constructor creates a function of type C when invoked //*-* with the normal C++ compiler. //*-* //*-* see test program test/stress.cxx (function stress1) for an example. //*-* note the interface with an intermediate pointer. //*-* //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* fXmin = xmin; fXmax = xmax; fNpx = 100; char *funcname = G__p2f2funcname((void*)fcn); if (funcname) { fType = 2; SetTitle(funcname); fMethodCall = new TMethodCall(); fMethodCall->InitWithPrototype(funcname,"Double_t*,Double_t*"); fNumber = -1; fFunction = 0; } else { fType = 1; fMethodCall = 0; fFunction = fcn; } if (npar > 0 ) fNpar = npar; if (fNpar) { fNames = new TString[fNpar]; fParams = new Double_t[fNpar]; fParErrors = new Double_t[fNpar]; fParMin = new Double_t[fNpar]; fParMax = new Double_t[fNpar]; for (int i = 0; i < fNpar; i++) { fParams[i] = 0; fParErrors[i] = 0; fParMin[i] = 0; fParMax[i] = 0; } } else { fParErrors = 0; fParMin = 0; fParMax = 0; } fChisquare = 0; fIntegral = 0; fAlpha = 0; fBeta = 0; fGamma = 0; fNsave = 0; fSave = 0; fParent = 0; fNpfits = 0; fNDF = 0; fHistogram = 0; fMinimum = -1111; fMaximum = -1111; fNdim = 1; //*-*- Store formula in linked list of formula in ROOT TF1 *f1old = (TF1*)gROOT->GetListOfFunctions()->FindObject(name); if (f1old) delete f1old; SetName(name); gROOT->GetListOfFunctions()->Add(this); if (!gStyle) return; SetLineColor(gStyle->GetFuncColor()); SetLineWidth(gStyle->GetFuncWidth()); SetLineStyle(gStyle->GetFuncStyle()); SetFillStyle(0); } //______________________________________________________________________________ TF1& TF1::operator=(const TF1 &rhs) { if (this != &rhs) { rhs.Copy(*this); } return *this; } //______________________________________________________________________________ TF1::~TF1() { //*-*-*-*-*-*-*-*-*-*-*F1 default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ===================== if (fParMin) delete [] fParMin; if (fParMax) delete [] fParMax; if (fParErrors) delete [] fParErrors; if (fIntegral) delete [] fIntegral; if (fAlpha) delete [] fAlpha; if (fBeta) delete [] fBeta; if (fGamma) delete [] fGamma; if (fSave) delete [] fSave; delete fHistogram; delete fMethodCall; if (fParent) { if (fParent->InheritsFrom(TH1::Class())) { ((TH1*)fParent)->GetListOfFunctions()->Remove(this); return; } //parent may be a graph, or ?? //The pad utility manager is required (a plugin) TVirtualUtilPad *util = (TVirtualUtilPad*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilPad"); if (!util) { TPluginHandler *h; if ((h = gROOT->GetPluginManager()->FindHandler("TVirtualUtilPad"))) { if (h->LoadPlugin() == -1) return; h->ExecPlugin(0); util = (TVirtualUtilPad*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilPad"); } } util->RemoveObject(fParent,this); fParent = 0; } } //______________________________________________________________________________ TF1::TF1(const TF1 &f1) : TFormula(), TAttLine(f1), TAttFill(f1), TAttMarker(f1) { fXmin = 0; fXmax = 0; fNpx = 100; fType = 0; fNpfits = 0; fNDF = 0; fNsave = 0; fChisquare = 0; fIntegral = 0; fFunction = 0; fParErrors = 0; fParMin = 0; fParMax = 0; fAlpha = 0; fBeta = 0; fGamma = 0; fParent = 0; fSave = 0; fHistogram = 0; fMinimum = -1111; fMaximum = -1111; fMethodCall = 0; SetFillStyle(0); ((TF1&)f1).Copy(*this); } //______________________________________________________________________________ void TF1::AbsValue(Bool_t flag) { // static function: set the fgAbsValue flag. // By default TF1::Integral uses the original function value to compute the integral // However, TF1::Moment, CentralMoment require to compute the integral // using the absolute value of the function. fgAbsValue = flag; } //______________________________________________________________________________ void TF1::Browse(TBrowser *b) { Draw(b ? b->GetDrawOption() : ""); gPad->Update(); } //______________________________________________________________________________ void TF1::Copy(TObject &obj) const { //*-*-*-*-*-*-*-*-*-*-*Copy this F1 to a new F1*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ======================== if (((TF1&)obj).fParMin) delete [] ((TF1&)obj).fParMin; if (((TF1&)obj).fParMax) delete [] ((TF1&)obj).fParMax; if (((TF1&)obj).fParErrors) delete [] ((TF1&)obj).fParErrors; if (((TF1&)obj).fIntegral) delete [] ((TF1&)obj).fIntegral; if (((TF1&)obj).fAlpha) delete [] ((TF1&)obj).fAlpha; if (((TF1&)obj).fBeta) delete [] ((TF1&)obj).fBeta; if (((TF1&)obj).fGamma) delete [] ((TF1&)obj).fGamma; if (((TF1&)obj).fSave) delete [] ((TF1&)obj).fSave; delete ((TF1&)obj).fHistogram; delete ((TF1&)obj).fMethodCall; TFormula::Copy(obj); TAttLine::Copy((TF1&)obj); TAttFill::Copy((TF1&)obj); TAttMarker::Copy((TF1&)obj); ((TF1&)obj).fXmin = fXmin; ((TF1&)obj).fXmax = fXmax; ((TF1&)obj).fNpx = fNpx; ((TF1&)obj).fType = fType; ((TF1&)obj).fFunction = fFunction; ((TF1&)obj).fChisquare = fChisquare; ((TF1&)obj).fNpfits = fNpfits; ((TF1&)obj).fNDF = fNDF; ((TF1&)obj).fMinimum = fMinimum; ((TF1&)obj).fMaximum = fMaximum; ((TF1&)obj).fParErrors = 0; ((TF1&)obj).fParMin = 0; ((TF1&)obj).fParMax = 0; ((TF1&)obj).fIntegral = 0; ((TF1&)obj).fAlpha = 0; ((TF1&)obj).fBeta = 0; ((TF1&)obj).fGamma = 0; ((TF1&)obj).fParent = fParent; ((TF1&)obj).fNsave = fNsave; ((TF1&)obj).fSave = 0; ((TF1&)obj).fHistogram = 0; ((TF1&)obj).fMethodCall = 0; if (fNsave) { ((TF1&)obj).fSave = new Double_t[fNsave]; for (Int_t j=0;j<fNsave;j++) ((TF1&)obj).fSave[j] = fSave[j]; } if (fNpar) { ((TF1&)obj).fParErrors = new Double_t[fNpar]; ((TF1&)obj).fParMin = new Double_t[fNpar]; ((TF1&)obj).fParMax = new Double_t[fNpar]; Int_t i; for (i=0;i<fNpar;i++) ((TF1&)obj).fParErrors[i] = fParErrors[i]; for (i=0;i<fNpar;i++) ((TF1&)obj).fParMin[i] = fParMin[i]; for (i=0;i<fNpar;i++) ((TF1&)obj).fParMax[i] = fParMax[i]; } if (fMethodCall) { TMethodCall *m = new TMethodCall(); m->InitWithPrototype(fMethodCall->GetMethodName(),fMethodCall->GetProto()); ((TF1&)obj).fMethodCall = m; } } //______________________________________________________________________________ Double_t TF1::Derivative(Double_t x, Double_t *params, Double_t epsilon) { //*-*-*-*-*-*-*-*-*Return derivative of function at point x*-*-*-*-*-*-*-* // // The derivative is computed by computing the value of the function // at points x-epsilon*range and x+epsilon*range (range=fXmax-fXmin). // if params is NULL, use the current values of parameters Double_t xx[2]; if (epsilon <= 0) epsilon = 0.001; epsilon *= fXmax-fXmin; xx[0] = x - epsilon; xx[1] = x + epsilon; if (xx[0] < fXmin) xx[0] = fXmin; if (xx[1] > fXmax) xx[1] = fXmax; Double_t f1,f2,deriv; InitArgs(&xx[0],params); f1 = EvalPar(&xx[0],params); InitArgs(&xx[1],params); f2 = EvalPar(&xx[1],params); deriv = (f2-f1)/(xx[1]-xx[0]); return deriv; } //______________________________________________________________________________ Int_t TF1::DistancetoPrimitive(Int_t px, Int_t py) { //*-*-*-*-*-*-*-*-*-*-*Compute distance from point px,py to a function*-*-*-*-* //*-* =============================================== //*-* Compute the closest distance of approach from point px,py to this function. //*-* The distance is computed in pixels units. //*-* //*-* Algorithm: //*-* //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* if (!fHistogram) return 9999; Int_t distance = fHistogram->DistancetoPrimitive(px,py); if (distance <= 1) return distance; Double_t xx[1]; Double_t x = gPad->AbsPixeltoX(px); xx[0] = gPad->PadtoX(x); if (xx[0] < fXmin || xx[0] > fXmax) return distance; Double_t fval = Eval(xx[0]); Double_t y = gPad->YtoPad(fval); Int_t pybin = gPad->YtoAbsPixel(y); return TMath::Abs(py - pybin); } //______________________________________________________________________________ void TF1::Draw(Option_t *option) { //*-*-*-*-*-*-*-*-*-*-*Draw this function with its current attributes*-*-*-*-* //*-* ============================================== //*-* //*-* Possible option values are: //*-* "SAME" superimpose on top of existing picture //*-* "L" connect all computed points with a straight line //*-* "C" connect all computed points with a smooth curve. //*-* "FC" draw a fill area below a smooth curve //*-* //*-* Note that the default value is "L". Therefore to draw on top //*-* of an existing picture, specify option "LSAME" //*-* //*-* NB. You must use DrawCopy if you want to draw several times the same //*-* function in the current canvas. //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* TString opt = option; opt.ToLower(); if (gPad && !opt.Contains("same")) gPad->Clear(); AppendPad(option); } //______________________________________________________________________________ TF1 *TF1::DrawCopy(Option_t *option) const { //*-*-*-*-*-*-*-*Draw a copy of this function with its current attributes*-*-* //*-* ======================================================== //*-* //*-* This function MUST be used instead of Draw when you want to draw //*-* the same function with different parameters settings in the same canvas. //*-* //*-* Possible option values are: //*-* "SAME" superimpose on top of existing picture //*-* "L" connect all computed points with a straight line //*-* "C" connect all computed points with a smooth curve. //*-* "FC" draw a fill area below a smooth curve //*-* //*-* Note that the default value is "L". Therefore to draw on top //*-* of an existing picture, specify option "LSAME" //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* TF1 *newf1 = new TF1(); Copy(*newf1); newf1->AppendPad(option); newf1->SetBit(kCanDelete); return newf1; } //______________________________________________________________________________ void TF1::DrawDerivative(Option_t *option) { // Draw derivative of this function // // An intermediate TGraph object is built and drawn with option. // // The resulting graph will be drawn into the current pad. // If this function is used via the context menu, it recommended // to create a new canvas/pad before invoking this function. TVirtualPad *pad = gROOT->GetSelectedPad(); TVirtualPad *padsav = gPad; if (pad) pad->cd(); char cmd[512]; sprintf(cmd,"{TGraph *R__%s_Derivative = new TGraph((TF1*)0x%lx,\"d\");R__%s_Derivative->Draw(\"%s\");}",GetName(),(Long_t)this,GetName(),option); gROOT->ProcessLine(cmd); if (padsav) padsav->cd(); } //______________________________________________________________________________ void TF1::DrawIntegral(Option_t *option) { // Draw integral of this function // // An intermediate TGraph object is built and drawn with option. // // The resulting graph will be drawn into the current pad. // If this function is used via the context menu, it recommended // to create a new canvas/pad before invoking this function. TVirtualPad *pad = gROOT->GetSelectedPad(); TVirtualPad *padsav = gPad; if (pad) pad->cd(); char cmd[512]; sprintf(cmd,"{TGraph *R__%s_Integral = new TGraph((TF1*)0x%lx,\"i\");R__%s_Integral->Draw(\"%s\");}",GetName(),(Long_t)this,GetName(),option); gROOT->ProcessLine(cmd); if (padsav) padsav->cd(); } //______________________________________________________________________________ void TF1::DrawF1(const char *formula, Double_t xmin, Double_t xmax, Option_t *option) { //*-*-*-*-*-*-*-*-*-*Draw formula between xmin and xmax*-*-*-*-*-*-*-*-*-*-*-* //*-* ================================== //*-* if (Compile(formula)) return; SetRange(xmin, xmax); Draw(option); } //______________________________________________________________________________ void TF1::DrawPanel() { //*-*-*-*-*-*-*Display a panel with all function drawing options*-*-*-*-*-* //*-* ================================================= //*-* //*-* See class TDrawPanelHist for example if (gPad) { gROOT->SetSelectedPrimitive(this); gROOT->SetSelectedPad(gPad); } //The pad utility manager is required (a plugin) TVirtualUtilPad *util = (TVirtualUtilPad*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilPad"); if (!util) { TPluginHandler *h; if ((h = gROOT->GetPluginManager()->FindHandler("TVirtualUtilPad"))) { if (h->LoadPlugin() == -1) return; h->ExecPlugin(0); util = (TVirtualUtilPad*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilPad"); } } util->DrawPanel(); } //______________________________________________________________________________ Double_t TF1::Eval(Double_t x, Double_t y, Double_t z, Double_t t) { //*-*-*-*-*-*-*-*-*-*-*Evaluate this formula*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ===================== //*-* //*-* Computes the value of this function (general case for a 3-d function) //*-* at point x,y,z. //*-* For a 1-d function give y=0 and z=0 //*-* The current value of variables x,y,z is passed through x, y and z. //*-* The parameters used will be the ones in the array params if params is given //*-* otherwise parameters will be taken from the stored data members fParams //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* Double_t xx[4]; xx[0] = x; xx[1] = y; xx[2] = z; xx[3] = t; InitArgs(xx,fParams); return EvalPar(xx,fParams); } //______________________________________________________________________________ Double_t TF1::EvalPar(const Double_t *x, const Double_t *params) { //*-*-*-*-*-*Evaluate function with given coordinates and parameters*-*-*-*-*-* //*-* ======================================================= //*-* // Compute the value of this function at point defined by array x // and current values of parameters in array params. // If argument params is omitted or equal 0, the internal values // of parameters (array fParams) will be used instead. // For a 1-D function only x[0] must be given. // In case of a multi-dimemsional function, the arrays x must be // filled with the corresponding number of dimensions. // // WARNING. In case of an interpreted function (fType=2), it is the // user's responsability to initialize the parameters via InitArgs // before calling this function. // InitArgs should be called at least once to specify the addresses // of the arguments x and params. // InitArgs should be called everytime these addresses change. // fgCurrent = this; if (fType == 0) return TFormula::EvalPar(x,params); Double_t result = 0; if (fType == 1) { if (fFunction) { if (params) result = (*fFunction)((Double_t*)x,(Double_t*)params); else result = (*fFunction)((Double_t*)x,fParams); }else result = GetSave(x); } if (fType == 2) { if (fMethodCall) fMethodCall->Execute(result); else result = GetSave(x); } return result; } //______________________________________________________________________________ void TF1::ExecuteEvent(Int_t event, Int_t px, Int_t py) { //*-*-*-*-*-*-*-*-*-*-*Execute action corresponding to one event*-*-*-* //*-* ========================================= //*-* This member function is called when a F1 is clicked with the locator //*-* //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* fHistogram->ExecuteEvent(event,px,py); if (!gPad->GetView()) { if (event == kMouseMotion) gPad->SetCursor(kHand); } } //______________________________________________________________________________ void TF1::FixParameter(Int_t ipar, Double_t value) { // Fix the value of a parameter // The specified value will be used in a fit operation if (ipar < 0 || ipar > fNpar-1) return; SetParameter(ipar,value); if (value != 0) SetParLimits(ipar,value,value); else SetParLimits(ipar,1,1); } //______________________________________________________________________________ TF1 *TF1::GetCurrent() { // static function returning the current function being processed return fgCurrent; } //______________________________________________________________________________ TH1 *TF1::GetHistogram() const { // return a pointer to the histogram used to vusualize the function if (fHistogram) return fHistogram; // may be function has not yet be painted. force a pad update //gPad->Modified(); //gPad->Update(); ((TF1*)this)->Paint(); return fHistogram; } //______________________________________________________________________________ Double_t TF1::GetMaximum(Double_t xmin, Double_t xmax) const { // return the maximum value of the function // Method: // the function is computed at fNpx points between xmin and xmax // xxmax is the X value corresponding to the maximum function value // An iterative procedure computes the maximum around xxmax // until dx is less than 1e-9 *(fXmax-fXmin) Double_t x,y; if (xmin >= xmax) {xmin = fXmin; xmax = fXmax;} Double_t dx = (xmax-xmin)/fNpx; Double_t xxmax = xmin; Double_t yymax = ((TF1*)this)->Eval(xmin+dx); for (Int_t i=0;i<fNpx;i++) { x = xmin + (i+0.5)*dx; y = ((TF1*)this)->Eval(x); if (y > yymax) {xxmax = x; yymax = y;} } if (dx < 1.e-9*(fXmax-fXmin)) return yymax; else return GetMaximum(TMath::Max(xmin,xxmax-dx), TMath::Min(xmax,xxmax+dx)); } //______________________________________________________________________________ Double_t TF1::GetMaximumX(Double_t xmin, Double_t xmax) const { // return the X value corresponding to the maximum value of the function // Method: // the function is computed at fNpx points between xmin and xmax // xxmax is the X value corresponding to the maximum function value // An iterative procedure computes the maximum around xxmax // until dx is less than 1e-9 *(fXmax-fXmin) Double_t x,y; if (xmin >= xmax) {xmin = fXmin; xmax = fXmax;} Double_t dx = (xmax-xmin)/fNpx; Double_t xxmax = xmin; Double_t yymax = ((TF1*)this)->Eval(xmin+dx); for (Int_t i=0;i<fNpx;i++) { x = xmin + (i+0.5)*dx; y = ((TF1*)this)->Eval(x); if (y > yymax) {xxmax = x; yymax = y;} } if (dx < 1.e-9*(fXmax-fXmin)) return TMath::Min(xmax,xxmax); else return GetMaximumX(TMath::Max(xmin,xxmax-dx), TMath::Min(xmax,xxmax+dx)); } //______________________________________________________________________________ Double_t TF1::GetMinimum(Double_t xmin, Double_t xmax) const { // return the minimum value of the function // Method: // the function is computed at fNpx points between xmin and xmax // xxmax is the X value corresponding to the minimum function value // An iterative procedure computes the minimum around xxmax // until dx is less than 1e-9 *(fXmax-fXmin) Double_t x,y; if (xmin >= xmax) {xmin = fXmin; xmax = fXmax;} Double_t dx = (xmax-xmin)/fNpx; Double_t xxmin = xmin; Double_t yymin = ((TF1*)this)->Eval(xmin+dx); for (Int_t i=0;i<fNpx;i++) { x = xmin + (i+0.5)*dx; y = ((TF1*)this)->Eval(x); if (y < yymin) {xxmin = x; yymin = y;} } if (dx < 1.e-9*(fXmax-fXmin)) return yymin; else return GetMinimum(TMath::Max(xmin,xxmin-dx), TMath::Min(xmax,xxmin+dx)); } //______________________________________________________________________________ Double_t TF1::GetMinimumX(Double_t xmin, Double_t xmax) const { // return the X value corresponding to the minimum value of the function // Method: // the function is computed at fNpx points between xmin and xmax // xxmax is the X value corresponding to the minimum function value // An iterative procedure computes the minimum around xxmax // until dx is less than 1e-9 *(fXmax-fXmin) Double_t x,y; if (xmin >= xmax) {xmin = fXmin; xmax = fXmax;} Double_t dx = (xmax-xmin)/fNpx; Double_t xxmin = xmin; Double_t yymin = ((TF1*)this)->Eval(xmin+dx); for (Int_t i=0;i<fNpx;i++) { x = xmin + (i+0.5)*dx; y = ((TF1*)this)->Eval(x); if (y < yymin) {xxmin = x; yymin = y;} } if (dx < 1.e-9*(fXmax-fXmin)) return TMath::Min(xmax,xxmin); else return GetMinimumX(TMath::Max(xmin,xxmin-dx), TMath::Min(xmax,xxmin+dx)); } //______________________________________________________________________________ Double_t TF1::GetX(Double_t fy, Double_t xmin, Double_t xmax) const { // return the X value corresponding to the function value fy for (xmin<x<xmax). // Method: // the function z = abs(f-fy) is computed at fNpx points between xmin and xmax // xxmax is the X value corresponding to the minimum function value // An iterative procedure computes the minimum around xxmax // until dx is less than 1e-9 *(fXmax-fXmin). // In case the problem has several solutions in X, the higher X solution is returned // If the problem has no solution, the function returns the value of X // where f(X) is closer to fy. Double_t x,y; if (xmin >= xmax) {xmin = fXmin; xmax = fXmax;} Double_t dx = (xmax-xmin)/fNpx; Double_t xxmin = xmin; Double_t yymin = TMath::Abs(((TF1*)this)->Eval(xmin+dx) -fy); for (Int_t i=0;i<fNpx;i++) { x = xmin + (i+0.5)*dx; y = TMath::Abs(((TF1*)this)->Eval(x) -fy); if (y < yymin) {xxmin = x; yymin = y;} } if (dx < 1.e-9*(fXmax-fXmin)) return TMath::Min(xmax,xxmin); else return GetX(fy,TMath::Max(xmin,xxmin-dx), TMath::Min(xmax,xxmin+dx)); } //______________________________________________________________________________ Int_t TF1::GetNDF() const { // return the number of degrees of freedom in the fit // the fNDF parameter has been previously computed during a fit. // The number of degrees of freedom corresponds to the number of points // used in the fit minus the number of free parameters. if (fNDF == 0) return fNpfits-fNpar; return fNDF; } //______________________________________________________________________________ Int_t TF1::GetNumberFreeParameters() const { // return the number of free parameters Int_t nfree = fNpar; Double_t al,bl; for (Int_t i=0;i<fNpar;i++) { ((TF1*)this)->GetParLimits(i,al,bl); if (al*bl != 0 && al >= bl) nfree--; } return nfree; } //______________________________________________________________________________ char *TF1::GetObjectInfo(Int_t px, Int_t /* py */) const { // Redefines TObject::GetObjectInfo. // Displays the function info (x, function value // corresponding to cursor position px,py // static char info[64]; Double_t x = gPad->PadtoX(gPad->AbsPixeltoX(px)); sprintf(info,"(x=%g, f=%g)",x,((TF1*)this)->Eval(x)); return info; } //______________________________________________________________________________ Double_t TF1::GetParError(Int_t ipar) const { //return value of parameter number ipar if (ipar < 0 || ipar > fNpar-1) return 0; return fParErrors[ipar]; } //______________________________________________________________________________ void TF1::GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) { //*-*-*-*-*-*Return limits for parameter ipar*-*-*-* //*-* ================================ parmin = 0; parmax = 0; if (ipar < 0 || ipar > fNpar-1) return; if (fParMin) parmin = fParMin[ipar]; if (fParMax) parmax = fParMax[ipar]; } //______________________________________________________________________________ Double_t TF1::GetProb() const { // return the fit probability if (fNDF <= 0) return 0; return TMath::Prob(fChisquare,fNDF); } //______________________________________________________________________________ Int_t TF1::GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum) { // Compute Quantiles for density distribution of this function // Quantile x_q of a probability distribution Function F is defined as // // F(x_q) = Integral_{xmin}^(x_q) f dx = q with 0 <= q <= 1. // // For instance the median x_0.5 of a distribution is defined as that value // of the random variable for which the distribution function equals 0.5: // // F(x_0.5) = Probability(x < x_0.5) = 0.5 // // code from Eddy Offermann, Renaissance // // input parameters // - this TF1 function // - nprobSum maximum size of array q and size of array probSum // - probSum array of positions where quantiles will be computed. // It is assumed to contain at least nprobSum values. // output // - return value nq (<=nprobSum) with the number of quantiles computed // - array q filled with nq quantiles // // Getting quantiles from two histograms and storing results in a TGraph, // a so-called QQ-plot // // TGraph *gr = new TGraph(nprob); // f1->GetQuantiles(nprob,gr->GetX()); // f2->GetQuantiles(nprob,gr->GetY()); // gr->Draw("alp"); const Int_t npx = TMath::Min(250,TMath::Max(50,2*nprobSum)); const Double_t xMin = GetXmin(); const Double_t xMax = GetXmax(); const Double_t dx = (xMax-xMin)/npx; TArrayD integral(npx+1); TArrayD alpha(npx); TArrayD beta(npx); TArrayD gamma(npx); integral[0] = 0; Int_t intNegative = 0; Int_t i; for (i = 0; i < npx; i++) { const Double_t *params = 0; Double_t integ = Integral(Double_t(xMin+i*dx),Double_t(xMin+i*dx+dx),params); if (integ < 0) {intNegative++; integ = -integ;} integral[i+1] = integral[i] + integ; } if (intNegative > 0) Warning("GetQuantiles","function:%s has %d negative values: abs assumed", GetName(),intNegative); if (integral[npx] == 0) { Error("GetQuantiles","Integral of function is zero"); return 0; } const Double_t total = integral[npx]; for (i = 1; i <= npx; i++) integral[i] /= total; //the integral r for each bin is approximated by a parabola // x = alpha + beta*r +gamma*r**2 // compute the coefficients alpha, beta, gamma for each bin for (i = 0; i < npx; i++) { const Double_t x0 = xMin+dx*i; const Double_t r2 = integral[i+1]-integral[i]; const Double_t r1 = Integral(x0,x0+0.5*dx)/total; gamma[i] = (2*r2-4*r1)/(dx*dx); beta[i] = r2/dx-gamma[i]*dx; alpha[i] = x0; gamma[i] *= 2; } // Be careful because of finite precision in the integral; Use the fact that the integral // is monotone increasing for (i = 0; i < nprobSum; i++) { const Double_t r = probSum[i]; Int_t bin = TMath::Max(TMath::BinarySearch(npx+1,integral.GetArray(),r)-1,0); while (bin < npx-1 && integral[bin+1] == r) { if (integral[bin+2] == r) bin++; else break; } const Double_t rr = r-integral[bin]; if (rr != 0.0) { Double_t xx; if (gamma[bin] && beta[bin]*beta[bin]+2*gamma[bin]*rr >= 0.0) xx = (-beta[bin]+TMath::Sqrt(beta[bin]*beta[bin]+2*gamma[bin]*rr))/gamma[bin]; else xx = rr/beta[bin]; q[i] = alpha[bin]+xx; } else { q[i] = alpha[bin]; if (integral[bin+1] == r) q[i] += dx; } } return nprobSum; } //______________________________________________________________________________ Double_t TF1::GetRandom() { // Return a random number following this function shape //*-* //*-* The distribution contained in the function fname (TF1) is integrated //*-* over the channel contents. //*-* It is normalized to 1. //*-* For each bin the integral is approximated by a parabola. //*-* The parabola coefficients are stored as non persistent data members //*-* Getting one random number implies: //*-* - Generating a random number between 0 and 1 (say r1) //*-* - Look in which bin in the normalized integral r1 corresponds to //*-* - Evaluate the parabolic curve in the selected bin to find //*-* the corresponding X value. //*-* The parabolic approximation is very good as soon as the number //*-* of bins is greater than 50. //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-* // Check if integral array must be build if (fIntegral == 0) { Double_t dx = (fXmax-fXmin)/fNpx; fIntegral = new Double_t[fNpx+1]; fAlpha = new Double_t[fNpx]; fBeta = new Double_t[fNpx]; fGamma = new Double_t[fNpx]; fIntegral[0] = 0; Double_t integ; Int_t intNegative = 0; Int_t i; for (i=0;i<fNpx;i++) { integ = Integral(Double_t(fXmin+i*dx), Double_t(fXmin+i*dx+dx)); if (integ < 0) {intNegative++; integ = -integ;} fIntegral[i+1] = fIntegral[i] + integ; } if (intNegative > 0) { Warning("GetRandom","function:%s has %d negative values: abs assumed",GetName(),intNegative); } if (fIntegral[fNpx] == 0) { Error("GetRandom","Integral of function is zero"); return 0; } Double_t total = fIntegral[fNpx]; for (i=1;i<=fNpx;i++) { // normalize integral to 1 fIntegral[i] /= total; } //the integral r for each bin is approximated by a parabola // x = alpha + beta*r +gamma*r**2 // compute the coefficients alpha, beta, gamma for each bin Double_t x0,r1,r2; for (i=0;i<fNpx;i++) { x0 = fXmin+i*dx; r2 = fIntegral[i+1] - fIntegral[i]; r1 = Integral(x0,x0+0.5*dx)/total; fGamma[i] = (2*r2 - 4*r1)/(dx*dx); fBeta[i] = r2/dx - fGamma[i]*dx; fAlpha[i] = x0; fGamma[i] *= 2; } } // return random number Double_t r = gRandom->Rndm(); Int_t bin = TMath::BinarySearch(fNpx,fIntegral,r); Double_t rr = r - fIntegral[bin]; Double_t xx; if(fGamma[bin]) xx = (-fBeta[bin] + TMath::Sqrt(fBeta[bin]*fBeta[bin]+2*fGamma[bin]*rr))/fGamma[bin]; else xx = rr/fBeta[bin]; Double_t x = fAlpha[bin] + xx; return x; } //______________________________________________________________________________ Double_t TF1::GetRandom(Double_t xmin, Double_t xmax) { // Return a random number following this function shape in [xmin,xmax] //*-* //*-* The distribution contained in the function fname (TF1) is integrated //*-* over the channel contents. //*-* It is normalized to 1. //*-* For each bin the integral is approximated by a parabola. //*-* The parabola coefficients are stored as non persistent data members //*-* Getting one random number implies: //*-* - Generating a random number between 0 and 1 (say r1) //*-* - Look in which bin in the normalized integral r1 corresponds to //*-* - Evaluate the parabolic curve in the selected bin to find //*-* the corresponding X value. //*-* The parabolic approximation is very good as soon as the number //*-* of bins is greater than 50. //*-* //*-* IMPORTANT NOTE //*-* The integral of the function is computed at fNpx points. If the function //*-* has sharp peaks, you should increase the number of points (SetNpx) //*-* such that the peak is correctly tabulated at several points. //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-* // Check if integral array must be build if (fIntegral == 0) { Double_t dx = (fXmax-fXmin)/fNpx; fIntegral = new Double_t[fNpx+1]; fAlpha = new Double_t[fNpx]; fBeta = new Double_t[fNpx]; fGamma = new Double_t[fNpx]; fIntegral[0] = 0; Double_t integ; Int_t intNegative = 0; Int_t i; for (i=0;i<fNpx;i++) { integ = Integral(Double_t(fXmin+i*dx), Double_t(fXmin+i*dx+dx)); if (integ < 0) {intNegative++; integ = -integ;} fIntegral[i+1] = fIntegral[i] + integ; } if (intNegative > 0) { Warning("GetRandom","function:%s has %d negative values: abs assumed",GetName(),intNegative); } if (fIntegral[fNpx] == 0) { Error("GetRandom","Integral of function is zero"); return 0; } Double_t total = fIntegral[fNpx]; for (i=1;i<=fNpx;i++) { // normalize integral to 1 fIntegral[i] /= total; } //the integral r for each bin is approximated by a parabola // x = alpha + beta*r +gamma*r**2 // compute the coefficients alpha, beta, gamma for each bin Double_t x0,r1,r2; for (i=0;i<fNpx;i++) { x0 = fXmin+i*dx; r2 = fIntegral[i+1] - fIntegral[i]; r1 = Integral(x0,x0+0.5*dx)/total; fGamma[i] = (2*r2 - 4*r1)/(dx*dx); fBeta[i] = r2/dx - fGamma[i]*dx; fAlpha[i] = x0; fGamma[i] *= 2; } } // return random number Double_t dx = (fXmax-fXmin)/fNpx; Int_t nbinmin = (Int_t)((xmin-fXmin)/dx); Int_t nbinmax = (Int_t)((xmax-fXmin)/dx)+2; if(nbinmax>fNpx) nbinmax=fNpx; Double_t pmin=fIntegral[nbinmin]; Double_t pmax=fIntegral[nbinmax]; Double_t r,x,xx,rr; do { r = gRandom->Uniform(pmin,pmax); Int_t bin = TMath::BinarySearch(fNpx,fIntegral,r); rr = r - fIntegral[bin]; if(fGamma[bin]) xx = (-fBeta[bin] + TMath::Sqrt(fBeta[bin]*fBeta[bin]+2*fGamma[bin]*rr))/fGamma[bin]; else xx = rr/fBeta[bin]; x = fAlpha[bin] + xx; } while(x<xmin || x>xmax); return x; } //______________________________________________________________________________ void TF1::GetRange(Double_t &xmin, Double_t &xmax) const { //*-*-*-*-*-*-*-*-*-*-*Return range of a 1-D function*-*-*-*-*-*-*-*-*-*-*-* //*-* ============================== xmin = fXmin; xmax = fXmax; } //______________________________________________________________________________ void TF1::GetRange(Double_t &xmin, Double_t &ymin, Double_t &xmax, Double_t &ymax) const { //*-*-*-*-*-*-*-*-*-*-*Return range of a 2-D function*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ============================== xmin = fXmin; xmax = fXmax; ymin = 0; ymax = 0; } //______________________________________________________________________________ void TF1::GetRange(Double_t &xmin, Double_t &ymin, Double_t &zmin, Double_t &xmax, Double_t &ymax, Double_t &zmax) const { //*-*-*-*-*-*-*-*-*-*-*Return range of function*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ======================== xmin = fXmin; xmax = fXmax; ymin = 0; ymax = 0; zmin = 0; zmax = 0; } //______________________________________________________________________________ Double_t TF1::GetSave(const Double_t *xx) { // Get value corresponding to X in array of fSave values if (fNsave <= 0) return 0; if (fSave == 0) return 0; Int_t np = fNsave - 3; Double_t xmin = Double_t(fSave[np+1]); Double_t xmax = Double_t(fSave[np+2]); Double_t x = Double_t(xx[0]); Double_t dx = (xmax-xmin)/np; if (x < xmin || x > xmax) return 0; if (dx <= 0) return 0; Int_t bin = Int_t((x-xmin)/dx); Double_t xlow = xmin + bin*dx; Double_t xup = xlow + dx; Double_t ylow = fSave[bin]; Double_t yup = fSave[bin+1]; Double_t y = ((xup*ylow-xlow*yup) + x*(yup-ylow))/dx; return y; } //______________________________________________________________________________ TAxis *TF1::GetXaxis() const { // Get x axis of the function. //if (!gPad) return 0; TH1 *h = GetHistogram(); if (!h) return 0; return h->GetXaxis(); } //______________________________________________________________________________ TAxis *TF1::GetYaxis() const { // Get y axis of the function. //if (!gPad) return 0; TH1 *h = GetHistogram(); if (!h) return 0; return h->GetYaxis(); } //______________________________________________________________________________ void TF1::InitArgs(const Double_t *x, const Double_t *params) { //*-*-*-*-*-*-*-*-*-*-*Initialize parameters addresses*-*-*-*-*-*-*-*-*-*-*-* //*-* =============================== if (fMethodCall) { Long_t args[2]; args[0] = (Long_t)x; if (params) args[1] = (Long_t)params; else args[1] = (Long_t)fParams; fMethodCall->SetParamPtrs(args); } } //______________________________________________________________________________ void TF1::InitStandardFunctions() { // Create the basic function objects TF1 *f1; if (!gROOT->GetListOfFunctions()->FindObject("gaus")) { f1 = new TF1("gaus","gaus",-1,1); f1->SetParameters(1,0,1); f1 = new TF1("landau","landau",-1,1); f1->SetParameters(1,0,1); f1 = new TF1("expo","expo",-1,1); f1->SetParameters(1,1); for (Int_t i=0;i<10;i++) { f1 = new TF1(Form("pol%d",i),Form("pol%d",i),-1,1); f1->SetParameters(1,1,1,1,1,1,1,1,1,1); } } } //______________________________________________________________________________ Double_t TF1::Integral(Double_t a, Double_t b, const Double_t *params, Double_t epsilon) { //*-*-*-*-*-*-*-*-*Return Integral of function between a and b*-*-*-*-*-*-*-* // // based on original CERNLIB routine DGAUSS by Sigfried Kolbig // converted to C++ by Rene Brun // // /*
This function computes, to an attempted specified accuracy, the value of the integral
Usage:
In any arithmetic expression, this function has the approximate value of the integral I.
Method:
For any interval [a,b] we define and to be the 8-point and 16-point Gaussian quadrature approximations to
and define
Then,
where, starting with and finishing with , the subdivision points are given by
with equal to the first member of the sequence for which . If, at any stage in the process of subdivision, the ratio
is so small that 1+0.005q is indistinguishable from 1 to machine accuracy, an error exit occurs with the function value set equal to zero.
Accuracy:
Unless there is severe cancellation of positive and negative values of f(x) over the interval [A,B], the argument EPS may be considered as specifying a bound on the relative error of I in the case |I|>1, and a bound on the absolute error in the case |I|<1. More precisely, if k is the number of sub-intervals contributing to the approximation (see Method), and if
then the relation
will nearly always be true, provided the routine terminates without printing an error message. For functions f having no singularities in the closed interval [A,B] the accuracy will usually be much higher than this.
Error handling:
The requested accuracy cannot be obtained (see Method). The function value is set equal to zero.
Notes:
Values of the function f(x) at the interval end-points
A and B are not required. The subprogram may therefore
be used when these values are undefined.