// @(#)root/geom:$Name: $:$Id: TGeoParaboloid.cxx,v 1.1 2004/06/25 11:59:55 brun Exp $
// Author: Mihaela Gheata 20/06/04
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
// TGeoParaboloid - Paraboloid class. A paraboloid is the solid bounded by
// the following surfaces:
// - 2 planes parallel with XY cutting the Z axis at Z=-dz and Z=+dz
// - the surface of revolution of a parabola described by:
// z = a*(x*x + y*y) + b
// The parameters a and b are automatically computed from:
// - rlo - the radius of the circle of intersection between the
// parabolic surface and the plane z = -dz
// - rhi - the radius of the circle of intersection between the
// parabolic surface and the plane z = +dz
// | -dz = a*rlo*rlo + b
// | dz = a*rhi*rhi + b where: rlo != rhi, both >= 0
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoParaboloid.h"
ClassImp(TGeoParaboloid)
//_____________________________________________________________________________
TGeoParaboloid::TGeoParaboloid()
{
// Dummy constructor
fRlo = 0;
fRhi = 0;
fDz = 0;
fA = 0;
fB = 0;
SetShapeBit(TGeoShape::kGeoParaboloid);
}
//_____________________________________________________________________________
TGeoParaboloid::TGeoParaboloid(Double_t rlo, Double_t rhi, Double_t dz)
:TGeoBBox(0,0,0)
{
// Default constructor specifying X and Y semiaxis length
fRlo = 0;
fRhi = 0;
fDz = 0;
fA = 0;
fB = 0;
SetShapeBit(TGeoShape::kGeoParaboloid);
SetParaboloidDimensions(rlo, rhi, dz);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoParaboloid::TGeoParaboloid(const char *name, Double_t rlo, Double_t rhi, Double_t dz)
:TGeoBBox(name, 0, 0, 0)
{
// Default constructor specifying X and Y semiaxis length
fRlo = 0;
fRhi = 0;
fDz = 0;
fA = 0;
fB = 0;
SetShapeBit(TGeoShape::kGeoParaboloid);
SetParaboloidDimensions(rlo, rhi, dz);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoParaboloid::TGeoParaboloid(Double_t *param)
{
// Default constructor specifying minimum and maximum radius
// param[0] = rlo
// param[1] = rhi
// param[2] = dz
SetShapeBit(TGeoShape::kGeoParaboloid);
SetDimensions(param);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoParaboloid::~TGeoParaboloid()
{
// destructor
}
//_____________________________________________________________________________
void TGeoParaboloid::ComputeBBox()
{
// compute bounding box of the tube
fDX = TMath::Max(fRlo, fRhi);
fDY = fDX;
fDZ = fDz;
}
//_____________________________________________________________________________
void TGeoParaboloid::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
if ((TMath::Abs(point[2])-fDz) > -1E-5) {
norm[0] = norm[1] = 0.0;
norm[2] = TMath::Sign(1., dir[2]);
return;
}
Double_t talf = 2.*TMath::Sqrt(fA*(point[2]-fB))*TMath::Sign(1.0, fA);
Double_t calf = 1./TMath::Sqrt(1.+talf*talf);
Double_t salf = talf * calf;
Double_t phi = TMath::ATan2(point[1], point[0]);
if (phi<0) phi+=2.*TMath::Pi();
Double_t cphi = TMath::Cos(phi);
Double_t sphi = TMath::Sin(phi);
Double_t ct = - calf*TMath::Sign(1.,fA);
Double_t st = salf*TMath::Sign(1.,fA);
norm[0] = st*cphi;
norm[1] = st*sphi;
norm[2] = ct;
Double_t ndotd = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
if (ndotd < 0) {
norm[0] = -norm[0];
norm[1] = -norm[1];
norm[2] = -norm[2];
}
}
//_____________________________________________________________________________
Bool_t TGeoParaboloid::Contains(Double_t *point) const
{
// test if point is inside the elliptical tube
if (TMath::Abs(point[2])>fDz) return kFALSE;
Double_t aa = fA*(point[2]-fB);
if (aa < 0) return kFALSE;
Double_t rsq = point[0]*point[0]+point[1]*point[1];
if (aa < fA*fA*rsq) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Int_t TGeoParaboloid::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each vertex
Int_t n = gGeoManager->GetNsegments();
const Int_t numPoints=n*(n+1)+2;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//_____________________________________________________________________________
Double_t TGeoParaboloid::DistToParaboloid(Double_t *point, Double_t *dir) const
{
// Compute distance from a point to the parabola given by:
// z = a*rsq + b; rsq = x*x+y*y
Double_t a = fA * (dir[0]*dir[0] + dir[1]*dir[1]);
Double_t b = 2.*fA*(point[0]*dir[0]+point[1]*dir[1])-dir[2];
Double_t c = fA*(point[0]*point[0]+point[1]*point[1]) + fB - point[2];
Double_t dist = TGeoShape::Big();
if (a==0) {
if (b==0) return dist; // big
dist = -c/b;
if (dist < 0) return TGeoShape::Big();
return dist; // OK
}
Double_t ainv = 1./a;
Double_t sum = - b*ainv;
Double_t prod = c*ainv;
Double_t delta = sum*sum - 4.*prod;
if (delta<0) return dist; // big
if (prod == 0) return 0.;
if (prod < 0) {
dist = 0.5*(sum + TMath::Sqrt(delta));
return dist; // OK
}
if (sum < 0) return dist; // big
dist = 0.5 * (sum - TMath::Sqrt(delta));
return dist; // OK
}
//_____________________________________________________________________________
Double_t TGeoParaboloid::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the paraboloid
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
Double_t dz = TGeoShape::Big();
if (dir[2]<0) {
dz = -(point[2]+fDz)/dir[2];
} else if (dir[2]>0) {
dz = (fDz-point[2])/dir[2];
}
Double_t dpara = DistToParaboloid(point, dir);
return TMath::Min(dz, dpara);
}
//_____________________________________________________________________________
Double_t TGeoParaboloid::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the paraboloid and safe distance
Double_t snxt = TGeoShape::Big();
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
Double_t xnew, ynew, znew;
if (point[2]<=-fDz) {
if (dir[2]<=0) return TGeoShape::Big();
snxt = -(fDz+point[2])/dir[2];
// find extrapolated X and Y
xnew = point[0]+snxt*dir[0];
ynew = point[1]+snxt*dir[1];
if ((xnew*xnew+ynew*ynew) <= fRlo*fRlo) return snxt;
} else if (point[2]>=fDz) {
if (dir[2]>=0) return TGeoShape::Big();
snxt = (fDz-point[2])/dir[2];
// find extrapolated X and Y
xnew = point[0]+snxt*dir[0];
ynew = point[1]+snxt*dir[1];
if ((xnew*xnew+ynew*ynew) <= fRhi*fRhi) return snxt;
}
snxt = DistToParaboloid(point, dir);
if (snxt > 1E20) return snxt;
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) <= fDz) return snxt;
return TGeoShape::Big();
}
//_____________________________________________________________________________
TGeoVolume *TGeoParaboloid::Divide(TGeoVolume * /*voldiv*/, const char * /*divname*/, Int_t /*iaxis*/, Int_t /*ndiv*/,
Double_t /*start*/, Double_t /*step*/)
{
Error("Divide", "Paraboloid divisions not implemented");
return 0;
}
//_____________________________________________________________________________
void TGeoParaboloid::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
param[0] = 0.; // Rmin
param[1] = fDX; // Rmax
param[1] *= param[1];
param[2] = 0.; // Phi1
param[3] = 360.; // Phi2
}
//_____________________________________________________________________________
TGeoShape *TGeoParaboloid::GetMakeRuntimeShape(TGeoShape *, TGeoMatrix *) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
return 0;
}
//_____________________________________________________________________________
void TGeoParaboloid::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoParaboloid ***\n", GetName());
printf(" rlo = %11.5f\n", fRlo);
printf(" rhi = %11.5f\n", fRhi);
printf(" dz = %11.5f\n", fDz);
printf(" Bounding box:\n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
void *TGeoParaboloid::Make3DBuffer(const TGeoVolume *vol) const
{
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return 0;
return painter->MakeParaboloid3DBuffer(vol);
}
//_____________________________________________________________________________
void TGeoParaboloid::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
painter->PaintParaboloid(this, option);
}
//_____________________________________________________________________________
Double_t TGeoParaboloid::Safety(Double_t */*point*/, Bool_t /*in*/) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
return TGeoShape::Big();
}
//_____________________________________________________________________________
void TGeoParaboloid::SetParaboloidDimensions(Double_t rlo, Double_t rhi, Double_t dz)
{
if ((rlo<0) || (rlo<0) || (dz<=0) || (rlo==rhi)) {
SetShapeBit(kGeoRunTimeShape);
Error("SetParaboloidDimensions", "Dimensions of %s invalid: check (rlo>=0) (rhi>=0) (rlo!=rhi) dz>0",GetName());
return;
}
fRlo = rlo;
fRhi = rhi;
fDz = dz;
Double_t dd = 1./(fRhi*fRhi - fRlo*fRlo);
fA = 2.*fDz*dd;
fB = - fDz * (fRlo*fRlo + fRhi*fRhi)*dd;
}
//_____________________________________________________________________________
void TGeoParaboloid::SetDimensions(Double_t *param)
{
Double_t rlo = param[0];
Double_t rhi = param[1];
Double_t dz = param[2];
SetParaboloidDimensions(rlo, rhi, dz);
}
//_____________________________________________________________________________
void TGeoParaboloid::SetPoints(Double_t *buff) const
{
// Create paraboloid mesh points.
// Npoints = n*(n+1) + 2
// ifirst = 0
// ipoint(i,j) = 1+i*n+j; i=[0,n] j=[0,n-1]
// ilast = 1+n*(n+1)
// Nsegments = n*(2*n+3)
// lower: (0, j+1); j=[0,n-1]
// circle(i): (n*i+1+j, n*i+1+(j+1)%n); i=[0,n] j=[0,n-1]
// generator(i): (n*i+1+j, n*(i+1)+1+j); i,j=[0,n-1]
// upper: (n*n+1+j, (n+1)*n+1) j=[0,n-1]
// Npolygons = n*(n+2)
// lower: (n+j, (j+1)%n, j) j=[0,n-1]
// lateral(i): ((2*i+1)*n+j, 2*(i+1)*n+j, (2*i+3)*n+j, 2*(i+1)*n+(j+1)%n)
// i,j = [0,n-1]
// upper: ((2n+1)*n+j, 2*n*(n+1)+(j+1)%n, 2*n*(n+1)+j) j=[0,n-1]
if (!buff) return;
Double_t ttmin, ttmax;
ttmin = TMath::ATan2(-fDz, fRlo);
ttmax = TMath::ATan2(fDz, fRhi);
Int_t n = gGeoManager->GetNsegments();
Double_t dtt = (ttmax-ttmin)/n;
Double_t dphi = 360./n;
Double_t tt;
Double_t r, z, delta;
Double_t phi, sph, cph;
Int_t indx = 0;
// center of the lower endcap:
buff[indx++] = 0; // x
buff[indx++] = 0; // y
buff[indx++] = -fDz;
for (Int_t i=0; i<n+1; i++) { // nz planes = n+1
if (i==0) {
r = fRlo;
z = -fDz;
} else if (i==n) {
r = fRhi;
z = fDz;
} else {
tt = TMath::Tan(ttmin + i*dtt);
delta = tt*tt - 4*fA*fB; // should be always positive (a*b<0)
r = 0.5*(tt+TMath::Sqrt(delta))/fA;
z = r*tt;
}
for (Int_t j=0; j<n; j++) {
phi = j*dphi*TMath::DegToRad();
sph=TMath::Sin(phi);
cph=TMath::Cos(phi);
buff[indx++] = r*cph;
buff[indx++] = r*sph;
buff[indx++] = z;
}
}
// center of the upper endcap
buff[indx++] = 0; // x
buff[indx++] = 0; // y
buff[indx++] = fDz;
}
//_____________________________________________________________________________
Int_t TGeoParaboloid::GetNmeshVertices() const
{
Int_t n = gGeoManager->GetNsegments();
return (n*(n+1)+2);
}
//_____________________________________________________________________________
void TGeoParaboloid::SetPoints(Float_t *buff) const
{
if (!buff) return;
Double_t ttmin, ttmax;
ttmin = TMath::ATan2(-fDz, fRlo);
ttmax = TMath::ATan2(fDz, fRhi);
Int_t n = gGeoManager->GetNsegments();
Double_t dtt = (ttmax-ttmin)/n;
Double_t dphi = 360./n;
Double_t tt;
Double_t r, z, delta;
Double_t phi, sph, cph;
Int_t indx = 0;
// center of the lower endcap:
buff[indx++] = 0; // x
buff[indx++] = 0; // y
buff[indx++] = -fDz;
for (Int_t i=0; i<n+1; i++) { // nz planes = n+1
if (i==0) {
r = fRlo;
z = -fDz;
} else if (i==n) {
r = fRhi;
z = fDz;
} else {
tt = TMath::Tan(ttmin + i*dtt);
delta = tt*tt - 4*fA*fB; // should be always positive (a*b<0)
r = 0.5*(tt+TMath::Sqrt(delta))/fA;
z = r*tt;
}
for (Int_t j=0; j<n; j++) {
phi = j*dphi*TMath::DegToRad();
sph=TMath::Sin(phi);
cph=TMath::Cos(phi);
buff[indx++] = r*cph;
buff[indx++] = r*sph;
buff[indx++] = z;
}
}
// center of the upper endcap
buff[indx++] = 0; // x
buff[indx++] = 0; // y
buff[indx++] = fDz;
}
//_____________________________________________________________________________
void TGeoParaboloid::Sizeof3D() const
{
Int_t n = gGeoManager->GetNsegments();
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (painter) painter->AddSize3D(n*(n+1)+2, n*(2*n+3), n*(n+2));
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.