// @(#)root/geom:$Name: $:$Id: TGeoPgon.cxx,v 1.37 2004/06/25 11:59:55 brun Exp $
// Author: Andrei Gheata 31/01/02
// TGeoPgon::Contains() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//_____________________________________________________________________________
// TGeoPgon - a polygone. It has at least 10 parameters :
// - the lower phi limit;
// - the range in phi;
// - the number of edges on each z plane;
// - the number of z planes (at least two) where the inner/outer
// radii are changing;
// - z coordinate, inner and outer radius for each z plane
//
//_____________________________________________________________________________
//
/*
*/
//
//
/*
*/
//
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoTube.h"
#include "TGeoPgon.h"
ClassImp(TGeoPgon)
//_____________________________________________________________________________
TGeoPgon::TGeoPgon()
{
// dummy ctor
SetShapeBit(TGeoShape::kGeoPgon);
fNedges = 0;
}
//_____________________________________________________________________________
TGeoPgon::TGeoPgon(Double_t phi, Double_t dphi, Int_t nedges, Int_t nz)
:TGeoPcon(phi, dphi, nz)
{
// Default constructor
SetShapeBit(TGeoShape::kGeoPgon);
fNedges = nedges;
}
//_____________________________________________________________________________
TGeoPgon::TGeoPgon(const char *name, Double_t phi, Double_t dphi, Int_t nedges, Int_t nz)
:TGeoPcon(name, phi, dphi, nz)
{
// Default constructor
SetShapeBit(TGeoShape::kGeoPgon);
fNedges = nedges;
}
//_____________________________________________________________________________
TGeoPgon::TGeoPgon(Double_t *param)
:TGeoPcon()
{
// Default constructor in GEANT3 style
// param[0] = phi1
// param[1] = dphi
// param[2] = nedges
// param[3] = nz
//
// param[4] = z1
// param[5] = Rmin1
// param[6] = Rmax1
// ...
SetShapeBit(TGeoShape::kGeoPgon);
SetDimensions(param);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoPgon::~TGeoPgon()
{
// destructor
}
//_____________________________________________________________________________
void TGeoPgon::ComputeBBox()
{
// compute bounding box for a polygone
Double_t zmin = TMath::Min(fZ[0], fZ[fNz-1]);
Double_t zmax = TMath::Max(fZ[0], fZ[fNz-1]);
// find largest rmax an smallest rmin
Double_t rmin, rmax;
Double_t divphi = fDphi/fNedges;
// find the radius of the outscribed circle
rmin = fRmin[TMath::LocMin(fNz, fRmin)];
rmax = fRmax[TMath::LocMax(fNz, fRmax)];
rmax = rmax/TMath::Cos(0.5*divphi*TMath::DegToRad());
Double_t phi1 = fPhi1;
Double_t phi2 = phi1 + fDphi;
Double_t xc[4];
Double_t yc[4];
xc[0] = rmax*TMath::Cos(phi1*TMath::DegToRad());
yc[0] = rmax*TMath::Sin(phi1*TMath::DegToRad());
xc[1] = rmax*TMath::Cos(phi2*TMath::DegToRad());
yc[1] = rmax*TMath::Sin(phi2*TMath::DegToRad());
xc[2] = rmin*TMath::Cos(phi1*TMath::DegToRad());
yc[2] = rmin*TMath::Sin(phi1*TMath::DegToRad());
xc[3] = rmin*TMath::Cos(phi2*TMath::DegToRad());
yc[3] = rmin*TMath::Sin(phi2*TMath::DegToRad());
Double_t xmin = xc[TMath::LocMin(4, &xc[0])];
Double_t xmax = xc[TMath::LocMax(4, &xc[0])];
Double_t ymin = yc[TMath::LocMin(4, &yc[0])];
Double_t ymax = yc[TMath::LocMax(4, &yc[0])];
Double_t ddp = -phi1;
if (ddp<0) ddp+= 360;
if (ddp<=fDphi) xmax = rmax;
ddp = 90-phi1;
if (ddp<0) ddp+= 360;
if (ddp<=fDphi) ymax = rmax;
ddp = 180-phi1;
if (ddp<0) ddp+= 360;
if (ddp<=fDphi) xmin = -rmax;
ddp = 270-phi1;
if (ddp<0) ddp+= 360;
if (ddp<=fDphi) ymin = -rmax;
fOrigin[0] = (xmax+xmin)/2;
fOrigin[1] = (ymax+ymin)/2;
fOrigin[2] = (zmax+zmin)/2;
fDX = (xmax-xmin)/2;
fDY = (ymax-ymin)/2;
fDZ = (zmax-zmin)/2;
SetShapeBit(kGeoClosedShape);
}
//_____________________________________________________________________________
void TGeoPgon::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
memset(norm,0,3*sizeof(Double_t));
Double_t phi1=0, phi2=0, c1=0, s1=0, c2=0, s2=0;
Double_t dz, rmin1, rmin2;
Bool_t is_seg = (fDphi<360)?kTRUE:kFALSE;
if (is_seg) {
phi1 = fPhi1;
if (phi1<0) phi1+=360;
phi2 = phi1 + fDphi;
phi1 *= TMath::DegToRad();
phi2 *= TMath::DegToRad();
c1 = TMath::Cos(phi1);
s1 = TMath::Sin(phi1);
c2 = TMath::Cos(phi2);
s2 = TMath::Sin(phi2);
if (TGeoShape::IsCloseToPhi(1E-5, point, c1,s1,c2,s2)) {
TGeoShape::NormalPhi(point,dir,norm,c1,s1,c2,s2);
return;
}
} // Phi done
Int_t ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl==(fNz-1) || ipl<0) {
// point outside Z range
norm[2] = TMath::Sign(1., norm[2]);
return;
}
Int_t iplclose = ipl;
if ((fZ[ipl+1]-point[2])<(point[2]-fZ[ipl])) iplclose++;
dz = TMath::Abs(fZ[iplclose]-point[2]);
Double_t divphi = fDphi/fNedges;
Double_t phi = TMath::ATan2(point[1], point[0])*TMath::RadToDeg();
while (phi<fPhi1) phi+=360.;
Double_t ddp = phi-fPhi1;
Int_t ipsec = Int_t(ddp/divphi);
Double_t ph0 = (fPhi1+divphi*(ipsec+0.5))*TMath::DegToRad();
// compute projected distance
Double_t r, rsum, rpgon, ta, calf;
r = TMath::Abs(point[0]*TMath::Cos(ph0)+point[1]*TMath::Sin(ph0));
if (dz<1E-5) {
if (iplclose==0 || iplclose==(fNz-1)) {
norm[2] = TMath::Sign(1., norm[2]);
return;
}
if (iplclose==ipl && fZ[ipl]==fZ[ipl-1]) {
if (r<TMath::Max(fRmin[ipl],fRmin[ipl-1]) || r>TMath::Min(fRmax[ipl],fRmax[ipl-1])) {
norm[2] = TMath::Sign(1., norm[2]);
return;
}
} else {
if (fZ[iplclose]==fZ[iplclose+1]) {
if (r<TMath::Max(fRmin[iplclose],fRmin[iplclose+1]) || r>TMath::Min(fRmax[iplclose],fRmax[iplclose+1])) {
norm[2] = TMath::Sign(1., norm[2]);
return;
}
}
}
} //-> Z done
dz = fZ[ipl+1]-fZ[ipl];
rmin1 = fRmin[ipl];
rmin2 = fRmin[ipl+1];
rsum = rmin1+rmin2;
Double_t safe = TGeoShape::Big();
if (rsum>1E-10) {
ta = (rmin2-rmin1)/dz;
calf = 1./TMath::Sqrt(1+ta*ta);
rpgon = rmin1 + (point[2]-fZ[ipl])*ta;
safe = TMath::Abs(r-rpgon);
norm[0] = calf*TMath::Cos(ph0);
norm[1] = calf*TMath::Sin(ph0);
norm[2] = -calf*ta;
}
ta = (fRmax[ipl+1]-fRmax[ipl])/dz;
calf = 1./TMath::Sqrt(1+ta*ta);
rpgon = fRmax[ipl] + (point[2]-fZ[ipl])*ta;
if (safe>TMath::Abs(rpgon-r)) {
norm[0] = calf*TMath::Cos(ph0);
norm[1] = calf*TMath::Sin(ph0);
norm[2] = -calf*ta;
}
if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
norm[0] = -norm[0];
norm[1] = -norm[1];
norm[2] = -norm[2];
}
}
//_____________________________________________________________________________
Bool_t TGeoPgon::Contains(Double_t *point) const
{
// test if point is inside this shape
// check total z range
if (point[2]<fZ[0]) return kFALSE;
if (point[2]>fZ[fNz-1]) return kFALSE;
Double_t divphi = fDphi/fNedges;
// now check phi
Double_t phi = TMath::ATan2(point[1], point[0])*TMath::RadToDeg();
while (phi < fPhi1) phi += 360.0;
Double_t ddp = phi-fPhi1;
if (ddp>fDphi) return kFALSE;
// now find phi division
Int_t ipsec = TMath::Min(Int_t(ddp/divphi), fNedges-1);
Double_t ph0 = (fPhi1+divphi*(ipsec+0.5))*TMath::DegToRad();
// now check projected distance
Double_t r = point[0]*TMath::Cos(ph0) + point[1]*TMath::Sin(ph0);
// find in which Z section the point is in
Int_t iz = TMath::BinarySearch(fNz, fZ, point[2]);
if (iz==fNz-1) {
if (r<fRmin[iz]) return kFALSE;
if (r>fRmax[iz]) return kFALSE;
return kTRUE;
}
Double_t dz = fZ[iz+1]-fZ[iz];
Double_t rmin, rmax;
if (dz<1E-8) {
// we are at a radius-changing plane
rmin = TMath::Min(fRmin[iz], fRmin[iz+1]);
rmax = TMath::Max(fRmax[iz], fRmax[iz+1]);
if (r<rmin) return kFALSE;
if (r>rmax) return kFALSE;
return kTRUE;
}
// now compute rmin and rmax and test the value of r
Double_t dzrat = (point[2]-fZ[iz])/dz;
rmin = fRmin[iz]+dzrat*(fRmin[iz+1]-fRmin[iz]);
// is the point inside the 'hole' at the center of the volume ?
if (r < rmin) return kFALSE;
rmax = fRmax[iz]+dzrat*(fRmax[iz+1]-fRmax[iz]);
if (r > rmax) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
void TGeoPgon::DefineSection(Int_t snum, Double_t z, Double_t rmin, Double_t rmax)
{
// defines z position of a section plane, rmin and rmax at this z.
if ((snum<0) || (snum>=fNz)) return;
fZ[snum] = z;
fRmin[snum] = rmin;
fRmax[snum] = rmax;
if (snum==(fNz-1)) ComputeBBox();
}
//_____________________________________________________________________________
Double_t TGeoPgon::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the polygone
// first find out in which Z section the point is in
if (iact<3 && safe) {
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
// find current Z section
Int_t ipl, ipsec;
ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl==fNz-1) {
if (dir[2]>=0) return 0.;
ipl--;
}
if (ipl<0) {
// point out
if (dir[2]<=0) return 0.;
ipl++;
}
Double_t stepmax = step;
Double_t *sph = gGeoManager->GetDblBuffer(fNedges+2);
Int_t *iph = gGeoManager->GetIntBuffer(fNedges+2);
Int_t icrossed;
// locate current phi sector [0,fNedges-1]; -1 for dead region
LocatePhi(point, ipsec);
icrossed = GetPhiCrossList(point,dir,ipsec,sph,iph, stepmax);
Double_t snext;
if (TMath::Abs(dir[2])<1E-8) {
if (SliceCrossingInZ(point, dir, icrossed, iph, sph, snext, stepmax)) return snext;
if (snext>stepmax) return TGeoShape::Big();
return 0.;
}
if (SliceCrossingIn(point, dir, icrossed, iph, sph, snext, stepmax)) return snext;
if (snext>stepmax) return TGeoShape::Big();
return 0.;
}
//_____________________________________________________________________________
void TGeoPgon::LocatePhi(Double_t *point, Int_t &ipsec) const
{
Double_t divphi=fDphi/fNedges;
Double_t phi = TMath::ATan2(point[1], point[0])*TMath::RadToDeg();
while (phi<fPhi1) phi+=360.;
ipsec = Int_t((phi-fPhi1)/divphi); // [0, fNedges-1]
if (ipsec>fNedges-1) ipsec = -1;
}
//_____________________________________________________________________________
Int_t TGeoPgon::GetPhiCrossList(Double_t *point, Double_t *dir, Int_t istart, Double_t *sphi, Int_t *iphi, Double_t stepmax) const
{
//printf(" PHI crossing list:\n");
Double_t rxy, phi, cph, sph;
Int_t icrossed = 0;
if ((1.-TMath::Abs(dir[2]))<1E-8) {
// ray is going parallel with Z
iphi[0] = istart;
sphi[0] = stepmax;
return 1;
}
Bool_t shootorig = (TMath::Abs(point[0]*dir[1]-point[1]*dir[0])<1E-8)?kTRUE:kFALSE;
Double_t divphi = fDphi/fNedges;
if (shootorig) {
Double_t rdotn = point[0]*dir[0]+point[1]*dir[1];
if (rdotn>0) {
sphi[icrossed] = stepmax;
iphi[icrossed++] = istart;
return icrossed;
}
sphi[icrossed] = TMath::Sqrt((point[0]*point[0]+point[1]*point[1])/(1.-dir[2]*dir[2]));
iphi[icrossed++] = istart;
if (sphi[icrossed-1]>stepmax) {
sphi[icrossed-1] = stepmax;
return icrossed;
}
phi = TMath::ATan2(dir[1], dir[0])*TMath::RadToDeg();
while (phi<fPhi1) phi+=360.;
istart = Int_t((phi-fPhi1)/divphi);
if (istart>fNedges-1) istart=-1;
iphi[icrossed] = istart;
sphi[icrossed] = stepmax;
icrossed++;
return icrossed;
}
Int_t incsec = Int_t(TMath::Sign(1., point[0]*dir[1]-point[1]*dir[0]));
Int_t ist;
if (istart<0) ist=(incsec>0)?0:fNedges;
else ist=(incsec>0)?(istart+1):istart;
Bool_t crossing = kTRUE;
Bool_t gapdone = kFALSE;
divphi *= TMath::DegToRad();
Double_t phi1 = fPhi1*TMath::DegToRad();
while (crossing) {
if (istart<0) gapdone = kTRUE;
phi = phi1+ist*divphi;
cph = TMath::Cos(phi);
sph = TMath::Sin(phi);
crossing = IsCrossingSemiplane(point,dir,cph,sph,sphi[icrossed],rxy);
if (!crossing) sphi[icrossed] = stepmax;
iphi[icrossed++] = istart;
if (crossing) {
if (sphi[icrossed-1]>stepmax) {
sphi[icrossed-1] = stepmax;
return icrossed;
}
if (istart<0) {
istart = (incsec>0)?0:(fNedges-1);
} else {
istart += incsec;
if (istart>fNedges-1) istart=(fDphi<360.)?(-1):0;
else if (istart<0 && fDphi==360) istart=fNedges-1;
}
if (istart<0) {
if (gapdone) return icrossed;
ist=(incsec>0)?0:fNedges;
} else {
ist=(incsec>0)?(istart+1):istart;
}
}
}
return icrossed;
}
//_____________________________________________________________________________
Bool_t TGeoPgon::SliceCrossingInZ(Double_t *point, Double_t *dir, Int_t nphi, Int_t *iphi, Double_t *stepphi, Double_t &snext, Double_t stepmax) const
{
snext = 0.;
if (!nphi) return kFALSE;
Int_t i;
Double_t rmin, rmax;
Double_t apg,bpg;
Double_t pt[3];
if (iphi[0]<0 && nphi==1) return kFALSE;
// Get current Z segment
Int_t ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl<0 || ipl==fNz-1) return kFALSE;
if (point[2] == fZ[ipl]) {
if (ipl<fNz-2 && fZ[ipl]==fZ[ipl+1]) {
rmin = TMath::Min(fRmin[ipl], fRmin[ipl+1]);
rmax = TMath::Max(fRmax[ipl], fRmax[ipl+1]);
} else if (ipl>1 && fZ[ipl]==fZ[ipl-1]) {
rmin = TMath::Min(fRmin[ipl], fRmin[ipl+1]);
rmax = TMath::Max(fRmax[ipl], fRmax[ipl+1]);
} else {
rmin = fRmin[ipl];
rmax = fRmax[ipl];
}
} else {
rmin = Rpg(point[2], ipl, kTRUE, apg,bpg);
rmax = Rpg(point[2], ipl, kFALSE, apg,bpg);
}
Int_t iphcrt;
Double_t divphi = TMath::DegToRad()*fDphi/fNedges;
Double_t rproj, ndot, dist;
Double_t phi1 = fPhi1*TMath::DegToRad();
Double_t cosph, sinph;
Double_t snextphi = 0.;
Double_t step = 0;
Double_t phi;
memcpy(pt,point,3*sizeof(Double_t));
for (iphcrt=0; iphcrt<nphi; iphcrt++) {
if (step>stepmax) {
snext = step;
return kFALSE;
}
if (iphi[iphcrt]<0) {
snext = step;
return kTRUE;
}
// check crossing
snextphi = stepphi[iphcrt];
phi = phi1+(iphi[iphcrt]+0.5)*divphi;
cosph = TMath::Cos(phi);
sinph = TMath::Sin(phi);
rproj = pt[0]*cosph+pt[1]*sinph;
dist = TGeoShape::Big();
ndot = dir[0]*cosph+dir[1]*sinph;
if (ndot!=0) {
dist = (ndot>0)?((rmax-rproj)/ndot):((rmin-rproj)/ndot);
if (dist<0) dist=0.;
}
if (dist < (snextphi-step)) {
snext = step + dist;
if (snext<stepmax) return kTRUE;
return kFALSE;
}
step = snextphi;
for (i=0; i<3; i++) pt[i] = point[i]+step*dir[i];
}
snext = step;
return kFALSE;
}
//_____________________________________________________________________________
Bool_t TGeoPgon::SliceCrossingZ(Double_t *point, Double_t *dir, Int_t nphi, Int_t *iphi, Double_t *stepphi, Double_t &snext, Double_t stepmax) const
{
if (!nphi) return kFALSE;
Int_t i;
Double_t rmin, rmax;
Double_t apg,bpg;
Double_t pt[3];
if (iphi[0]<0 && nphi==1) return kFALSE;
// Get current Z segment
Int_t ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl<0 || ipl==fNz-1) return kFALSE;
if (point[2] == fZ[ipl]) {
if (ipl<fNz-2 && fZ[ipl]==fZ[ipl+1]) {
rmin = TMath::Min(fRmin[ipl], fRmin[ipl+1]);
rmax = TMath::Max(fRmax[ipl], fRmax[ipl+1]);
} else if (ipl>1 && fZ[ipl]==fZ[ipl-1]) {
rmin = TMath::Min(fRmin[ipl], fRmin[ipl+1]);
rmax = TMath::Max(fRmax[ipl], fRmax[ipl+1]);
} else {
rmin = fRmin[ipl];
rmax = fRmax[ipl];
}
} else {
rmin = Rpg(point[2], ipl, kTRUE, apg,bpg);
rmax = Rpg(point[2], ipl, kFALSE, apg,bpg);
}
Int_t iphcrt;
Double_t divphi = TMath::DegToRad()*fDphi/fNedges;
Double_t rproj, ndot, dist;
Double_t phi1 = fPhi1*TMath::DegToRad();
Double_t cosph, sinph;
Double_t snextphi = 0.;
Double_t step = 0;
Double_t phi;
memcpy(pt,point,3*sizeof(Double_t));
for (iphcrt=0; iphcrt<nphi; iphcrt++) {
if (step>stepmax) return kFALSE;
snextphi = stepphi[iphcrt];
if (iphi[iphcrt]<0) {
if (iphcrt==nphi-1) return kFALSE;
if (snextphi>stepmax) return kFALSE;
for (i=0; i<3; i++) pt[i] = point[i]+snextphi*dir[i];
phi = phi1+(iphi[iphcrt+1]+0.5)*divphi;
cosph = TMath::Cos(phi);
sinph = TMath::Sin(phi);
rproj = pt[0]*cosph+pt[1]*sinph;
if (rproj<rmin || rproj>rmax) {
step = snextphi;
continue;
}
snext = snextphi;
return kTRUE;
}
// check crossing
phi = phi1+(iphi[iphcrt]+0.5)*divphi;
cosph = TMath::Cos(phi);
sinph = TMath::Sin(phi);
rproj = pt[0]*cosph+pt[1]*sinph;
dist = TGeoShape::Big();
ndot = dir[0]*cosph+dir[1]*sinph;
if (rproj<rmin) {
dist = (ndot>0)?((rmin-rproj)/ndot):TGeoShape::Big();
} else {
dist = (ndot<0)?((rmax-rproj)/ndot):TGeoShape::Big();
}
if (dist<1E10) {
snext = step+dist;
if (snext<stepmax) return kTRUE;
}
step = snextphi;
for (i=0; i<3; i++) pt[i] = point[i]+step*dir[i];
}
return kFALSE;
}
//_____________________________________________________________________________
Bool_t TGeoPgon::SliceCrossingIn(Double_t *point, Double_t *dir, Int_t nphi, Int_t *iphi, Double_t *stepphi, Double_t &snext, Double_t stepmax) const
{
// Check boundary crossing inside phi slices. Return distance snext to first crossing
// if smaller than stepmax.
// printf(" SliceCrossingIn. stepmax = %f\n", stepmax);
snext = 0.;
if (!nphi) return kFALSE;
Int_t i;
Double_t pt[3];
if (iphi[0]<0 && nphi==1) return kFALSE;
// Get current Z segment
Double_t snextphi = 0.;
Double_t step = 0;
// Get current Z segment
Int_t incseg = (dir[2]>0)?1:-1; // dir[2] is never 0 here
Int_t ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl<0) {
if (incseg<0) return kTRUE;
ipl = 0;
} else {
if (ipl==fNz-1) {
if (incseg>0) return kTRUE;
ipl = fNz-2;
} else {
if (point[2] == fZ[ipl]) {
// we are at the sector edge, but inside the pgon
if (fZ[ipl] == fZ[ipl-incseg]) ipl -= incseg;
}
}
}
// Compute the projected radius from starting point
Int_t iphcrt;
Double_t apg,bpg, apr, bpr, db;
Double_t rpg, rnew, znew;
Double_t divphi = TMath::DegToRad()*fDphi/fNedges;
Double_t phi1 = fPhi1*TMath::DegToRad();
Double_t phi, dz;
Double_t cosph, sinph;
Double_t distz, distr, din, dout;
Double_t invdir = 1./dir[2];
memcpy(pt,point,3*sizeof(Double_t));
for (iphcrt=0; iphcrt<nphi; iphcrt++) {
// check if step to current checked slice is too big
if (step>stepmax) {
snext = step;
return kFALSE;
}
if (iphi[iphcrt]<0) {
snext = snextphi;
return kTRUE;
}
snextphi = stepphi[iphcrt];
phi = phi1+(iphi[iphcrt]+0.5)*divphi;
cosph = TMath::Cos(phi);
sinph = TMath::Sin(phi);
Rproj(pt[2], pt, dir, cosph, sinph, apr, bpr);
// compute distance to next Z plane
while (ipl>=0 && ipl<fNz-1) {
din = dout = TGeoShape::Big();
// dist to last boundary of current segment according dir
distz = (fZ[ipl+((1+incseg)>>1)]-pt[2])*invdir;
// length of current segment
dz = fZ[ipl+1] - fZ[ipl];
if (dz == 0) {
rnew = apr+bpr*fZ[ipl];
rpg = (rnew-fRmin[ipl])*(rnew-fRmin[ipl+1]);
if (rpg<=0) din=distz;
rpg = (rnew-fRmax[ipl])*(rnew-fRmax[ipl+1]);
if (rpg<=0) dout=distz;
} else {
rpg = Rpg(pt[2], ipl, kTRUE, apg, bpg);
db = bpg-bpr;
if (db != 0.) {
znew = (apr-apg)/db;
if (znew>=fZ[ipl] && znew<=fZ[ipl+1]) {
din = (znew-pt[2])*invdir;
if (din<0) din = TGeoShape::Big();
}
}
rpg = Rpg(pt[2], ipl, kFALSE, apg, bpg);
db = bpg-bpr;
if (db != 0.) {
znew = (apr-apg)/db;
if (znew>=fZ[ipl] && znew<=fZ[ipl+1]) {
dout = (znew-pt[2])*invdir;
if (dout<0) dout = TGeoShape::Big();
}
}
}
distr = TMath::Min(din, dout);
if (distr<=distz) {
if (step+distr < snextphi) {
step += distr;
snext = step;
return (step>stepmax)?kFALSE:kTRUE;
} else {
for (i=0; i<3; i++) pt[i] = point[i] + snextphi*dir[i];
step = snextphi;
break;
}
}
// we have crossed a Z boundary
if ((ipl+incseg<0) || (ipl+incseg>fNz-2)) {
if (step+distz < snextphi) {
step += distz;
snext = step;
return (step>stepmax)?kFALSE:kTRUE;
} else {
for (i=0; i<3; i++) pt[i] = point[i] + snextphi*dir[i];
step = snextphi;
break;
}
}
if (snextphi < step+distz) {
for (i=0; i<3; i++) pt[i] = point[i] + snextphi*dir[i];
step = snextphi;
break;
}
ipl += incseg;
} // end loop Z
} // end loop phi
snext = TGeoShape::Big();
return kFALSE;
}
//_____________________________________________________________________________
Bool_t TGeoPgon::SliceCrossing(Double_t *point, Double_t *dir, Int_t nphi, Int_t *iphi, Double_t *stepphi, Double_t &snext, Double_t stepmax) const
{
// Check boundary crossing inside phi slices. Return distance snext to first crossing
// if smaller than stepmax.
if (!nphi) return kFALSE;
Int_t i;
Double_t pt[3];
if (iphi[0]<0 && nphi==1) return kFALSE;
Double_t snextphi = 0.;
Double_t step = 0;
// Get current Z segment
Int_t incseg = (dir[2]>0)?1:-1; // dir[2] is never 0 here
Int_t ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl<0) {
ipl = 0; // this should never happen
} else {
if (ipl==fNz-1) {
ipl = fNz-2; // nor this
} else {
if (point[2] == fZ[ipl]) {
// we are at the sector edge, but never inside the pgon
if (fZ[ipl] == fZ[ipl+incseg]) ipl += incseg;
// move to next clean segment if downwards
if (incseg<0) {
if (fZ[ipl]==fZ[ipl+1]) ipl--;
}
}
}
}
// Compute the projected radius from starting point
Int_t iphcrt;
Double_t apg,bpg;
Double_t rpgin;
Double_t rpgout;
Double_t divphi = TMath::DegToRad()*fDphi/fNedges;
Double_t phi1 = fPhi1*TMath::DegToRad();
Double_t phi;
Double_t cosph, sinph;
Double_t rproj;
memcpy(pt,point,3*sizeof(Double_t));
for (iphcrt=0; iphcrt<nphi; iphcrt++) {
// check if step to current checked slice is too big
if (step>stepmax) return kFALSE;
// jump over the dead sector
snextphi = stepphi[iphcrt];
if (iphi[iphcrt]<0) {
if (iphcrt==nphi-1) return kFALSE;
if (snextphi>stepmax) return kFALSE;
for (i=0; i<3; i++) pt[i] = point[i]+snextphi*dir[i];
// we have a new z, so check again iz
if (incseg>0) {
// loop z planes
while (pt[2]>fZ[ipl+1]) {
ipl++;
if (ipl>fNz-2) return kFALSE;
}
} else {
while (pt[2]<fZ[ipl]) {
ipl--;
if (ipl<0) return kFALSE;
}
}
// check if we have a crossing when entering new sector
rpgin = Rpg(pt[2],ipl,kTRUE,apg,bpg);
rpgout = Rpg(pt[2],ipl,kFALSE,apg,bpg);
phi = phi1+(iphi[iphcrt+1]+0.5)*divphi;
cosph = TMath::Cos(phi);
sinph = TMath::Sin(phi);
rproj = Rproj(pt[2], point,dir, cosph, sinph, apg,bpg);
if (rproj<rpgin || rproj>rpgout) {
step = snextphi;
continue;
}
snext = snextphi;
return kTRUE;
}
if (IsCrossingSlice(point, dir, iphi[iphcrt], step, ipl, snext, TMath::Min(snextphi, stepmax)))
return kTRUE;
step = snextphi;
}
return kFALSE;
}
//_____________________________________________________________________________
Bool_t TGeoPgon::IsCrossingSlice(Double_t *point, Double_t *dir, Int_t iphi, Double_t sstart, Int_t &ipl, Double_t &snext, Double_t stepmax) const
{
// Check crossing of a given pgon slice, from a starting point inside the slice
if (ipl<0 || ipl>fNz-2) return kFALSE;
if (sstart>stepmax) return kFALSE;
Double_t pt[3];
memcpy(pt, point, 3*sizeof(Double_t));
if (sstart>0) for (Int_t i=0; i<3; i++) pt[i] += sstart*dir[i];
stepmax -= sstart;
Double_t step;
Int_t incseg = (dir[2]>0)?1:-1;
Double_t invdir = 1./dir[2];
Double_t divphi = TMath::DegToRad()*fDphi/fNedges;
Double_t phi = fPhi1*TMath::DegToRad() + (iphi+0.5)*divphi;
Double_t cphi = TMath::Cos(phi);
Double_t sphi = TMath::Sin(phi);
Double_t apr, bpr;
Double_t rproj = Rproj(pt[2], point, dir, cphi, sphi, apr, bpr);
Double_t dz;
// loop segments
Int_t icrtseg = ipl;
Int_t isegstart = ipl;
Int_t iseglast = (incseg>0)?(fNz-1):-1;
Double_t din,dout,rdot,rnew,rpg,apg,bpg,db,znew;
for (ipl=isegstart; ipl!=iseglast; ipl+=incseg) {
step = (fZ[ipl+1-((1+incseg)>>1)]-pt[2])*invdir;
if (step>0) {
if (step>stepmax) {
ipl = icrtseg;
return kFALSE;
}
icrtseg = ipl;
}
din = dout = TGeoShape::Big();
dz = fZ[ipl+1]-fZ[ipl];
rdot = (rproj-fRmin[ipl])*dz - (pt[2]-fZ[ipl])*(fRmin[ipl+1]-fRmin[ipl]);
if (rdot<0) {
// inner surface visible ->check crossing
if (dz==0) {
rnew = apr+bpr*fZ[ipl];
rpg = (rnew-fRmin[ipl])*(rnew-fRmin[ipl+1]);
if (rpg<=0) din=(fZ[ipl]-pt[2])*invdir;
} else {
rpg = Rpg(pt[2], ipl, kTRUE, apg, bpg);
db = bpg-bpr;
if (db!=0.) {
znew = (apr-apg)/db;
if (znew>fZ[ipl] && znew<fZ[ipl+1]) {
din=(znew-pt[2])*invdir;
if (din<0) din=TGeoShape::Big();
}
}
}
}
rdot = (rproj-fRmax[ipl])*dz - (pt[2]-fZ[ipl])*(fRmax[ipl+1]-fRmax[ipl]);
if (rdot>0) {
// outer surface visible ->check crossing
if (dz==0) {
rnew = apr+bpr*fZ[ipl];
rpg = (rnew-fRmax[ipl])*(rnew-fRmax[ipl+1]);
if (rpg<=0) dout=(fZ[ipl]-pt[2])*invdir;
} else {
rpg = Rpg(pt[2], ipl, kFALSE, apg, bpg);
db = bpg-bpr;
if (db!=0.) {
znew = (apr-apg)/db;
if (znew>fZ[ipl] && znew<fZ[ipl+1]) dout=(znew-pt[2])*invdir;
if (dout<0) dout=TGeoShape::Big();
}
}
}
step = TMath::Min(din, dout);
if (step<1E10) {
// there is a crossing within this segment
if (step>stepmax) {
ipl = icrtseg;
return kFALSE;
}
snext = sstart+step;
return kTRUE;
}
}
ipl = icrtseg;
return kFALSE;
}
//_____________________________________________________________________________
Double_t TGeoPgon::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the polygone
if (iact<3 && safe) {
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big(); // just safety computed
if (iact==1 && step<*safe) return TGeoShape::Big(); // safety mode
}
// copy the current point
Double_t pt[3];
memcpy(pt,point,3*sizeof(Double_t));
// find current Z section
Int_t ipl;
Int_t i, ipsec;
ipl = TMath::BinarySearch(fNz, fZ, pt[2]);
if (ipl<0 && dir[2]<=0) return TGeoShape::Big(); // ray downwards
if (ipl==fNz-1 && dir[2]>=0) return TGeoShape::Big(); // ray upwards
Double_t divphi=fDphi/fNedges;
// check if ray may intersect outer cylinder
Double_t snext = 0.;
Double_t stepmax = step;
Double_t rpr, snewcross;
Double_t r2 = pt[0]*pt[0]+pt[1]*pt[1];
Double_t radmax = fRmax[TMath::LocMax(fNz, fRmax)];
radmax = radmax/TMath::Cos(0.5*divphi*TMath::DegToRad());
radmax += 1E-8;
if (r2>(radmax*radmax) || pt[2]<fZ[0] || pt[2]>fZ[fNz-1]) {
pt[2] -= 0.5*(fZ[0]+fZ[fNz-1]);
snext = TGeoTube::DistToInS(pt,dir,0.,radmax,0.5*(fZ[fNz-1]-fZ[0]));
if (snext>1E10) return TGeoShape::Big();
if (snext>stepmax) return TGeoShape::Big();
stepmax -= snext;
pt[2] = point[2];
for (i=0; i<3; i++) pt[i] += snext*dir[i];
Bool_t checkz = (ipl<0 && TMath::Abs(pt[2]-fZ[0])<1E-8)?kTRUE:kFALSE;
if (!checkz) checkz = (ipl==fNz-1 && TMath::Abs(pt[2]-fZ[fNz-1])<1E-8)?kTRUE:kFALSE;
if (checkz) {
Double_t rmin,rmax;
if (ipl<0) {
rmin = fRmin[0];
rmax = fRmax[0];
} else {
rmin = fRmin[fNz-1];
rmax = fRmax[fNz-1];
}
Double_t phi = TMath::ATan2(pt[1], pt[0])*TMath::RadToDeg();
while (phi < fPhi1) phi += 360.0;
Double_t ddp = phi-fPhi1;
if (ddp<=fDphi) {
ipsec = Int_t(ddp/divphi);
Double_t ph0 = (fPhi1+divphi*(ipsec+0.5))*TMath::DegToRad();
rpr = pt[0]*TMath::Cos(ph0) + pt[1]*TMath::Sin(ph0);
if (rpr>=rmin && rpr<=rmax) return snext;
}
}
}
Double_t *sph = gGeoManager->GetDblBuffer(fNedges+2);
Int_t *iph = gGeoManager->GetIntBuffer(fNedges+2);
Int_t icrossed;
// locate current phi sector [0,fNedges-1]; -1 for dead region
// if ray is perpendicular to Z, solve this particular case
if (TMath::Abs(dir[2])<1E-8) {
LocatePhi(pt, ipsec);
icrossed = GetPhiCrossList(pt,dir,ipsec,sph,iph, stepmax);
if (SliceCrossingZ(pt, dir, icrossed, iph, sph, snewcross, stepmax)) return (snext+snewcross);
return TGeoShape::Big();
}
// Locate phi and get the phi crossing list
LocatePhi(pt, ipsec);
icrossed = GetPhiCrossList(pt,dir,ipsec,sph,iph, stepmax);
// Fire-up slice crossing algorithm
if (SliceCrossing(pt, dir, icrossed, iph, sph, snewcross, stepmax)) {
snext += snewcross;
return snext;
}
return TGeoShape::Big();
}
//_____________________________________________________________________________
Int_t TGeoPgon::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
Int_t n = fNedges+1;
const Int_t numPoints = 2*n*fNz;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//_____________________________________________________________________________
TGeoVolume *TGeoPgon::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this polygone shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume in case of Z divisions. Phi divisions are
// allowed only if nedges%ndiv=0 and create polygone "segments" with nedges/ndiv edges.
// Z divisions can be performed if the divided range is in between two consecutive Z planes.
// In case a wrong division axis is supplied, returns pointer to volume that was divided.
// printf("Dividing %s : nz=%d nedges=%d phi1=%g dphi=%g (ndiv=%d iaxis=%d start=%g step=%g)\n",
// voldiv->GetName(), fNz, fNedges, fPhi1, fDphi, ndiv, iaxis, start, step);
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Int_t nedges = fNedges;
Double_t zmin = start;
Double_t zmax = start+ndiv*step;
Int_t isect = -1;
Int_t is, id, ipl;
switch (iaxis) {
case 1: //--- R division
Error("Divide", "makes no sense dividing a pgon on radius");
return 0;
case 2: //--- Phi division
if (fNedges%ndiv) {
Error("Divide", "ndiv should divide number of pgon edges");
return 0;
}
nedges = fNedges/ndiv;
finder = new TGeoPatternCylPhi(voldiv, ndiv, start, start+ndiv*step);
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
shape = new TGeoPgon(-step/2, step, nedges, fNz);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti->AddVolume(vol);
for (is=0; is<fNz; is++)
((TGeoPgon*)shape)->DefineSection(is, fZ[is], fRmin[is], fRmax[is]);
opt = "Phi";
for (id=0; id<ndiv; id++) {
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
case 3: // --- Z division
// find start plane
for (ipl=0; ipl<fNz-1; ipl++) {
if (start<fZ[ipl]) continue;
else {
if ((start+ndiv*step)>fZ[ipl+1]) continue;
}
isect = ipl;
zmin = fZ[isect];
zmax = fZ[isect+1];
break;
}
if (isect<0) {
Error("Divide", "cannot divide pcon on Z if divided region is not between 2 consecutive planes");
return 0;
}
finder = new TGeoPatternZ(voldiv, ndiv, start, start+ndiv*step);
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
opt = "Z";
for (id=0; id<ndiv; id++) {
Double_t z1 = start+id*step;
Double_t z2 = start+(id+1)*step;
Double_t rmin1 = (fRmin[isect]*(zmax-z1)-fRmin[isect+1]*(zmin-z1))/(zmax-zmin);
Double_t rmax1 = (fRmax[isect]*(zmax-z1)-fRmax[isect+1]*(zmin-z1))/(zmax-zmin);
Double_t rmin2 = (fRmin[isect]*(zmax-z2)-fRmin[isect+1]*(zmin-z2))/(zmax-zmin);
Double_t rmax2 = (fRmax[isect]*(zmax-z2)-fRmax[isect+1]*(zmin-z2))/(zmax-zmin);
shape = new TGeoPgon(fPhi1, fDphi, nedges, 2);
((TGeoPgon*)shape)->DefineSection(0, -step/2, rmin1, rmax1);
((TGeoPgon*)shape)->DefineSection(1, step/2, rmin2, rmax2);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti->AddVolume(vol);
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
}
//_____________________________________________________________________________
void TGeoPgon::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
param[0] = fRmin[0]; // Rmin
param[1] = fRmax[0]; // Rmax
for (Int_t i=1; i<fNz; i++) {
if (fRmin[i] < param[0]) param[0] = fRmin[i];
if (fRmax[i] > param[1]) param[1] = fRmax[i];
}
Double_t divphi = fDphi/fNedges;
param[1] /= TMath::Cos(0.5*divphi*TMath::DegToRad());
param[0] *= param[0];
param[1] *= param[1];
if (fDphi==360.) {
param[2] = 0.;
param[3] = 360.;
return;
}
param[2] = (fPhi1<0)?(fPhi1+360.):fPhi1; // Phi1
param[3] = param[2]+fDphi; // Phi2
}
//_____________________________________________________________________________
void TGeoPgon::InspectShape() const
{
printf("*** Shape %s: TGeoPgon ***\n", GetName());
printf(" Nedges = %i\n", fNedges);
TGeoPcon::InspectShape();
}
//_____________________________________________________________________________
void TGeoPgon::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
painter->PaintPcon(this, option);
}
//_____________________________________________________________________________
Double_t TGeoPgon::Rpg(Double_t z, Int_t ipl, Bool_t inner, Double_t &a, Double_t &b) const
{
// Computes projected pgon radius (inner or outer) corresponding to a given Z
// value. Fills corresponding coefficients of:
// Rpg(z) = a + b*z
// Note: ipl must be in range [0,fNz-2]
Double_t rpg;
Double_t dz = fZ[ipl+1] - fZ[ipl];
if (dz==0.) {
// radius-changing region
rpg = (inner)?TMath::Min(fRmin[ipl],fRmin[ipl+1]):TMath::Max(fRmax[ipl],fRmax[ipl+1]);
a = rpg;
b = 0.;
return rpg;
}
Double_t r1=0, r2=0;
if (inner) {
r1 = fRmin[ipl];
r2 = fRmin[ipl+1];
} else {
r1 = fRmax[ipl];
r2 = fRmax[ipl+1];
}
Double_t dzinv = 1./dz;
a = (r1*fZ[ipl+1]-r2*fZ[ipl])*dzinv;
b = (r2-r1)*dzinv;
return (a+b*z);
}
//_____________________________________________________________________________
Double_t TGeoPgon::Rproj(Double_t z, Double_t *point, Double_t *dir, Double_t cphi, Double_t sphi, Double_t &a, Double_t &b) const
{
// Computes projected distance at a given Z for a given ray inside a given sector
// and fills coefficients:
// Rproj = a + b*z
if (TMath::Abs(dir[2])<1E-8) return TGeoShape::Big();
Double_t invdirz = 1./dir[2];
a = ((point[0]*dir[2]-point[2]*dir[0])*cphi+(point[1]*dir[2]-point[2]*dir[1])*sphi)*invdirz;
b = (dir[0]*cphi+dir[1]*sphi)*invdirz;
return (a+b*z);
}
//_____________________________________________________________________________
Double_t TGeoPgon::SafetyToSegment(Double_t *point, Int_t ipl, Int_t iphi, Bool_t in, Double_t safphi, Double_t safmin) const
{
// Compute safety from POINT to segment between planes ipl, ipl+1 within safmin.
Double_t saf[3];
Double_t safe;
Int_t i;
Double_t r,rpgon, ta, calf;
if (ipl<0 || ipl>fNz-2) return (safmin+1.); // error in input plane
// Get info about segment.
Double_t dz = fZ[ipl+1]-fZ[ipl];
if (dz<1E-9) return 1E9; // skip radius-changing segment
Double_t znew = point[2] - 0.5*(fZ[ipl]+fZ[ipl+1]);
saf[0] = 0.5*dz - TMath::Abs(znew);
if (-saf[0]>safmin) return TGeoShape::Big(); // means: stop checking further segments
Double_t rmin1 = fRmin[ipl];
Double_t rmax1 = fRmax[ipl];
Double_t rmin2 = fRmin[ipl+1];
Double_t rmax2 = fRmax[ipl+1];
Double_t divphi = fDphi/fNedges;
if (iphi<0) {
Double_t f = 1./TMath::Cos(0.5*divphi*TMath::DegToRad());
rmax1 *= f;
rmax2 *= f;
r = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t ro1 = 0.5*(rmin1+rmin2);
Double_t tg1 = (rmin2-rmin1)/dz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(rmax1+rmax2);
Double_t tg2 = (rmax2-rmax1)/dz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t rin = tg1*znew+ro1;
Double_t rout = tg2*znew+ro2;
saf[1] = (ro1>0)?((r-rin)*cr1):TGeoShape::Big();
saf[2] = (rout-r)*cr2;
for (i=0; i<3; i++) saf[i]=-saf[i];
safe = saf[TMath::LocMax(3,saf)];
safe = TMath::Max(safe, safphi);
if (safe<0) safe = 0;
return safe;
}
Double_t ph0 = (fPhi1+divphi*(iphi+0.5))*TMath::DegToRad();
r = point[0]*TMath::Cos(ph0)+point[1]*TMath::Sin(ph0);
if (rmin1+rmin2>1E-10) {
ta = (rmin2-rmin1)/dz;
calf = 1./TMath::Sqrt(1+ta*ta);
rpgon = rmin1 + (point[2]-fZ[ipl])*ta;
saf[1] = (r-rpgon)*calf;
} else {
saf[1] = TGeoShape::Big();
}
ta = (rmax2-rmax1)/dz;
calf = 1./TMath::Sqrt(1+ta*ta);
rpgon = rmax1 + (point[2]-fZ[ipl])*ta;
saf[2] = (rpgon-r)*calf;
if (in) {
safe = saf[TMath::LocMin(3,saf)];
safe = TMath::Min(safe, safphi);
} else {
for (i=0; i<3; i++) saf[i]=-saf[i];
safe = saf[TMath::LocMax(3,saf)];
safe = TMath::Max(safe, safphi);
}
if (safe<0) safe=0;
return safe;
}
//_____________________________________________________________________________
Double_t TGeoPgon::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t safmin, saftmp, safphi;
Double_t dz;
Int_t ipl, iplane, iphi;
LocatePhi(point, iphi);
safphi = TGeoShape::SafetyPhi(point,in,fPhi1, fPhi1+fDphi);
if (in) {
//---> point is inside pgon
ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl==(fNz-1)) return 0; // point on last Z boundary
if (ipl<0) return 0; // point on first Z boundary
dz = 0.5*(fZ[ipl+1]-fZ[ipl]);
if (dz<1E-8) return 0;
// Check safety for current segment
safmin = SafetyToSegment(point, ipl, iphi, in, safphi);
if (safmin>1E10) {
// something went wrong - point is not inside current segment
return TGeoShape::Big();
}
if (safmin<1E-6) return TMath::Abs(safmin); // point on radius-changing plane
// check increasing iplanes
iplane = ipl+1;
saftmp = 0.;
while ((iplane<fNz-1) && saftmp<1E10) {
saftmp = TMath::Abs(SafetyToSegment(point,iplane,iphi,kFALSE,safphi,safmin));
if (saftmp<safmin) safmin=saftmp;
iplane++;
}
// now decreasing nplanes
iplane = ipl-1;
saftmp = 0.;
while ((iplane>=0) && saftmp<1E10) {
saftmp = TMath::Abs(SafetyToSegment(point,iplane,iphi,kFALSE,safphi,safmin));
if (saftmp<safmin) safmin=saftmp;
iplane--;
}
return safmin;
}
//---> point is outside pgon
ipl = TMath::BinarySearch(fNz, fZ, point[2]);
if (ipl<0) ipl=0;
else if (ipl==fNz-1) ipl=fNz-2;
dz = 0.5*(fZ[ipl+1]-fZ[ipl]);
if (dz<1E-8) {
ipl++;
dz = 0.5*(fZ[ipl+1]-fZ[ipl]);
}
// Check safety for current segment
safmin = SafetyToSegment(point, ipl,iphi,kFALSE,safphi);
if (safmin<1E-6) return TMath::Abs(safmin); // point on radius-changing plane
saftmp = 0.;
// check increasing iplanes
iplane = ipl+1;
saftmp = 0.;
while ((iplane<fNz-1) && saftmp<1E10) {
saftmp = TMath::Abs(SafetyToSegment(point,iplane,iphi,kFALSE,safphi,safmin));
if (saftmp<safmin) safmin=saftmp;
iplane++;
}
// now decreasing nplanes
iplane = ipl-1;
saftmp = 0.;
while ((iplane>=0) && saftmp<1E10) {
saftmp = TMath::Abs(SafetyToSegment(point,iplane,iphi, kFALSE,safphi,safmin));
if (saftmp<safmin) safmin=saftmp;
iplane--;
}
return safmin;
}
//_____________________________________________________________________________
void TGeoPgon::SetDimensions(Double_t *param)
{
fPhi1 = param[0];
fDphi = param[1];
fNedges = (Int_t)param[2];
fNz = (Int_t)param[3];
if (!fRmin) fRmin = new Double_t [fNz];
if (!fRmax) fRmax = new Double_t [fNz];
if (!fZ) fZ = new Double_t [fNz];
for (Int_t i=0; i<fNz; i++)
DefineSection(i, param[4+3*i], param[5+3*i], param[6+3*i]);
}
//_____________________________________________________________________________
void TGeoPgon::SetPoints(Double_t *buff) const
{
// create polygone mesh points
Double_t phi, dphi;
Int_t n = fNedges + 1;
dphi = fDphi/(n-1);
Double_t factor = 1./TMath::Cos(TMath::DegToRad()*dphi/2);
Int_t i, j;
Int_t indx = 0;
if (buff) {
for (i = 0; i < fNz; i++)
{
for (j = 0; j < n; j++)
{
phi = (fPhi1+j*dphi)*TMath::DegToRad();
buff[indx++] = factor * fRmin[i] * TMath::Cos(phi);
buff[indx++] = factor * fRmin[i] * TMath::Sin(phi);
buff[indx++] = fZ[i];
}
for (j = 0; j < n; j++)
{
phi = (fPhi1+j*dphi)*TMath::DegToRad();
buff[indx++] = factor * fRmax[i] * TMath::Cos(phi);
buff[indx++] = factor * fRmax[i] * TMath::Sin(phi);
buff[indx++] = fZ[i];
}
}
}
}
//_____________________________________________________________________________
void TGeoPgon::SetPoints(Float_t *buff) const
{
// create polygone mesh points
Double_t phi, dphi;
Int_t n = fNedges + 1;
dphi = fDphi/(n-1);
Double_t factor = 1./TMath::Cos(TMath::DegToRad()*dphi/2);
Int_t i, j;
Int_t indx = 0;
if (buff) {
for (i = 0; i < fNz; i++)
{
for (j = 0; j < n; j++)
{
phi = (fPhi1+j*dphi)*TMath::DegToRad();
buff[indx++] = factor * fRmin[i] * TMath::Cos(phi);
buff[indx++] = factor * fRmin[i] * TMath::Sin(phi);
buff[indx++] = fZ[i];
}
for (j = 0; j < n; j++)
{
phi = (fPhi1+j*dphi)*TMath::DegToRad();
buff[indx++] = factor * fRmax[i] * TMath::Cos(phi);
buff[indx++] = factor * fRmax[i] * TMath::Sin(phi);
buff[indx++] = fZ[i];
}
}
}
}
//_____________________________________________________________________________
Int_t TGeoPgon::GetNmeshVertices() const
{
// Return number of vertices of the mesh representation
Int_t n = fNedges+1;
Int_t numPoints = fNz*2*n;
return numPoints;
}
//_____________________________________________________________________________
void TGeoPgon::Sizeof3D() const
{
// fill size of this 3-D object
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
Int_t n;
n = fNedges+1;
Int_t numPoints = fNz*2*n;
Int_t numSegs = 4*(fNz*n-1+(fDphi == 360));
Int_t numPolys = 2*(fNz*n-1+(fDphi == 360));
painter->AddSize3D(numPoints, numSegs, numPolys);
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.