// @(#)root/geom:$Name: $:$Id: TGeoTorus.cxx,v 1.10 2004/06/25 11:59:56 brun Exp $
// Author: Andrei Gheata 28/07/03
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//_____________________________________________________________________________
// TGeoTorus - Torus segment class. A torus has 5 parameters :
// R - axial radius
// Rmin - inner radius
// Rmax - outer radius
// Phi1 - starting phi
// Dphi - phi extent
//
//_____________________________________________________________________________
//
/*
*/
//
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoTube.h"
#include "TVirtualGeoPainter.h"
#include "TGeoTorus.h"
ClassImp(TGeoTorus)
//_____________________________________________________________________________
TGeoTorus::TGeoTorus()
{
// Default constructor
SetShapeBit(TGeoShape::kGeoTorus);
fR = 0.0;
fRmin = 0.0;
fRmax = 0.0;
fPhi1 = 0.0;
fDphi = 0.0;
}
//_____________________________________________________________________________
TGeoTorus::TGeoTorus(Double_t r, Double_t rmin, Double_t rmax, Double_t phi1, Double_t dphi)
:TGeoBBox(0, 0, 0)
{
// Constructor without name.
SetShapeBit(TGeoShape::kGeoTorus);
SetTorusDimensions(r, rmin, rmax, phi1, dphi);
if ((fRmin<0) || (fRmax<0))
SetShapeBit(kGeoRunTimeShape);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoTorus::TGeoTorus(const char *name, Double_t r, Double_t rmin, Double_t rmax, Double_t phi1, Double_t dphi)
:TGeoBBox(name, 0, 0, 0)
{
// Constructor with name.
SetShapeBit(TGeoShape::kGeoTorus);
SetTorusDimensions(r, rmin, rmax, phi1, dphi);
if ((fRmin<0) || (fRmax<0))
SetShapeBit(kGeoRunTimeShape);
ComputeBBox();
}
//_____________________________________________________________________________
TGeoTorus::TGeoTorus(Double_t *param)
:TGeoBBox(0, 0, 0)
{
// Constructor based on an array of parameters.
// param[0] = R
// param[1] = Rmin
// param[2] = Rmax
// param[3] = Phi1
// param[4] = Dphi
SetShapeBit(TGeoShape::kGeoTorus);
SetDimensions(param);
if (fRmin<0 || fRmax<0) SetShapeBit(kGeoRunTimeShape);
ComputeBBox();
}
//_____________________________________________________________________________
void TGeoTorus::ComputeBBox()
{
// Compute bounding box of the torus.
fDZ = fRmax;
if (fDphi == 360.) {
fDX = fDY = fR+fRmax;
return;
}
Double_t xc[4];
Double_t yc[4];
xc[0] = (fR+fRmax)*TMath::Cos(fPhi1*TMath::DegToRad());
yc[0] = (fR+fRmax)*TMath::Sin(fPhi1*TMath::DegToRad());
xc[1] = (fR+fRmax)*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
yc[1] = (fR+fRmax)*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
xc[2] = (fR-fRmax)*TMath::Cos(fPhi1*TMath::DegToRad());
yc[2] = (fR-fRmax)*TMath::Sin(fPhi1*TMath::DegToRad());
xc[3] = (fR-fRmax)*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
yc[3] = (fR-fRmax)*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
Double_t xmin = xc[TMath::LocMin(4, &xc[0])];
Double_t xmax = xc[TMath::LocMax(4, &xc[0])];
Double_t ymin = yc[TMath::LocMin(4, &yc[0])];
Double_t ymax = yc[TMath::LocMax(4, &yc[0])];
Double_t ddp = -fPhi1;
if (ddp<0) ddp+= 360;
if (ddp<=fDphi) xmax = fR+fRmax;
ddp = 90-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=fDphi) ymax = fR+fRmax;
ddp = 180-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=fDphi) xmin = -(fR+fRmax);
ddp = 270-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=fDphi) ymin = -(fR+fRmax);
fOrigin[0] = (xmax+xmin)/2;
fOrigin[1] = (ymax+ymin)/2;
fOrigin[2] = 0;
fDX = (xmax-xmin)/2;
fDY = (ymax-ymin)/2;
}
//-----------------------------------------------------------------------------
void TGeoTorus::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
Double_t phi = TMath::ATan2(point[1],point[0]);
if (fDphi<360) {
Double_t phi1 = fPhi1*TMath::DegToRad();
Double_t phi2 = (fPhi1+fDphi)*TMath::DegToRad();
Double_t c1 = TMath::Cos(phi1);
Double_t s1 = TMath::Sin(phi1);
Double_t c2 = TMath::Cos(phi2);
Double_t s2 = TMath::Sin(phi2);
Double_t daxis = Daxis(point,dir,0);
if ((fRmax-daxis)>1E-5) {
if (fRmin==0 || (daxis-fRmin)>1E-5) {
TGeoShape::NormalPhi(point,dir,norm,c1,s1,c2,s2);
return;
}
}
}
Double_t r0[3];
r0[0] = fR*TMath::Cos(phi);
r0[1] = fR*TMath::Sin(phi);
r0[2] = 0;
Double_t normsq = 0;
for (Int_t i=0; i<3; i++) {
norm[i] = point[i] - r0[i];
normsq += norm[i]*norm[i];
}
normsq = TMath::Sqrt(normsq);
norm[0] /= normsq;
norm[1] /= normsq;
norm[2] /= normsq;
if (dir[0]*norm[0]+dir[1]*norm[1]+dir[2]*norm[2] < 0) {
norm[0] = -norm[0];
norm[1] = -norm[1];
norm[2] = -norm[2];
}
}
//_____________________________________________________________________________
Bool_t TGeoTorus::Contains(Double_t *point) const
{
// Test if point is inside the torus.
// check phi range
if (fDphi!=360) {
Double_t phi = TMath::ATan2(point[1], point[0]) * TMath::RadToDeg();
if (phi < 0) phi+=360.0;
Double_t ddp = phi-fPhi1;
if (ddp<0) ddp+=360.;
if (ddp>fDphi) return kFALSE;
}
//check radius
Double_t rxy = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t radsq = (rxy-fR)*(rxy-fR) + point[2]*point[2];
if (radsq<fRmin*fRmin) return kFALSE;
if (radsq>fRmax*fRmax) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Int_t TGeoTorus::DistancetoPrimitive(Int_t px, Int_t py)
{
// Compute closest distance from point px,py to each vertex.
Int_t n = gGeoManager->GetNsegments()+1;
Int_t numPoints = n*(n-1);
if (fRmin>0) numPoints *= 2;
else if (fDphi<360) numPoints += 2;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//_____________________________________________________________________________
Double_t TGeoTorus::Daxis(Double_t *pt, Double_t *dir, Double_t t) const
{
// Computes distance to axis of the torus from point pt + t*dir;
Double_t p[3];
for (Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
Double_t rxy = TMath::Sqrt(p[0]*p[0]+p[1]*p[1]);
return TMath::Sqrt((rxy-fR)*(rxy-fR)+p[2]*p[2]);
}
//_____________________________________________________________________________
Double_t TGeoTorus::DDaxis(Double_t *pt, Double_t *dir, Double_t t) const
{
// Computes derivative w.r.t. t of the distance to axis of the torus from point pt + t*dir;
Double_t p[3];
for (Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
Double_t rxy = TMath::Sqrt(p[0]*p[0]+p[1]*p[1]);
if (rxy<1E-4) return ((p[2]*dir[2]-fR*TMath::Sqrt(dir[0]*dir[0]+dir[1]*dir[1]))/TMath::Sqrt(fR*fR+p[2]*p[2]));
Double_t d = TMath::Sqrt((rxy-fR)*(rxy-fR)+p[2]*p[2]);
if (d==0) return 0.;
Double_t dd = (p[0]*dir[0]+p[1]*dir[1]+p[2]*dir[2] - (p[0]*dir[0]+p[1]*dir[1])*fR/rxy)/d;
return dd;
}
//_____________________________________________________________________________
Double_t TGeoTorus::DDDaxis(Double_t *pt, Double_t *dir, Double_t t) const
{
// Second derivative of distance to torus axis w.r.t t.
Double_t p[3];
for (Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
Double_t rxy = TMath::Sqrt(p[0]*p[0]+p[1]*p[1]);
if (rxy<1E-6) return 0;
Double_t daxis = TMath::Sqrt((rxy-fR)*(rxy-fR)+p[2]*p[2]);
if (daxis==0) return 0;
Double_t ddaxis = (p[0]*dir[0]+p[1]*dir[1]+p[2]*dir[2] - (p[0]*dir[0]+p[1]*dir[1])*fR/rxy)/daxis;
Double_t dddaxis = 1 - ddaxis*ddaxis - (1-dir[2]*dir[2])*fR/rxy +
fR*(p[0]*dir[0]+p[1]*dir[1])*(p[0]*dir[0]+p[1]*dir[1])/(rxy*rxy*rxy);
dddaxis /= daxis;
return dddaxis;
}
//_____________________________________________________________________________
Double_t TGeoTorus::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from inside point to surface of the torus.
if (iact<3 && safe) {
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if ((iact==1) && (step<=*safe)) return TGeoShape::Big();
}
Double_t snext = TGeoShape::Big();
Bool_t hasphi = (fDphi<360)?kTRUE:kFALSE;
Bool_t hasrmin = (fRmin>0)?kTRUE:kFALSE;
Double_t dout = ToBoundary(point,dir,fRmax);
if (dout>1E10) {
Double_t pt[3];
for (Int_t i=0; i<3; i++) pt[i] = point[i]-1E-4*dir[i];
dout = ToBoundary(pt,dir,fRmax)-1E-4;
if (dout<1E10) return dout;
Error("DistToOut", "cannot get outside");
printf("point (%f,%f,%f) daxis=%f contains=%i\n", point[0],point[1],point[2],
Daxis(point,dir,0), Contains(point));
return TGeoShape::Big();
}
Double_t din = (hasrmin)?ToBoundary(point,dir,fRmin):TGeoShape::Big();
snext = TMath::Min(dout,din);
Double_t dphi = TGeoShape::Big();
if (hasphi) {
// Torus segment case.
Double_t c1,s1,c2,s2,cm,sm;
Double_t phi1=fPhi1*TMath::DegToRad();
Double_t phi2=(fPhi1+fDphi)*TMath::DegToRad();
c1=TMath::Cos(phi1);
s1=TMath::Sin(phi1);
c2=TMath::Cos(phi2);
s2=TMath::Sin(phi2);
Double_t fio=0.5*(phi1+phi2);
cm=TMath::Cos(fio);
sm=TMath::Sin(fio);
dphi = TGeoTubeSeg::DistToOutS(point,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm);
if (dphi>1E10) {
Double_t pt[3];
for (Int_t i=0; i<3; i++) pt[i] = point[i]-1E-4*dir[i];
dphi = TGeoTubeSeg::DistToOutS(pt,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm)-1E-4;
if (dphi>1E10) {
Error("DistToOut", "cannot get outside");
return TGeoShape::Big();
}
}
Double_t daxis = Daxis(point,dir,dphi+1E-8);
if (daxis>=fRmin && daxis<=fRmax) snext=TMath::Min(snext,dphi);
}
return snext;
}
//_____________________________________________________________________________
Double_t TGeoTorus::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from outside point to surface of the torus.
if (iact<3 && safe) {
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big();
if ((iact==1) && (step<=*safe)) return TGeoShape::Big();
}
Double_t daxis;
Bool_t hasphi = (fDphi<360)?kTRUE:kFALSE;
// Bool_t hasrmin = (fRmin>0)?kTRUE:kFALSE;
Double_t c1=0,s1=0,c2=0,s2=0,cm=0,sm=0,cdfi=0;
Bool_t inphi = kFALSE;
Double_t phi, ddp, phi1,phi2,fio;
Double_t rxy2,dd;
Double_t snext;
Double_t pt[3];
Int_t i;
if (hasphi) {
// Torus segment case.
phi=TMath::ATan2(point[1], point[0])*TMath::RadToDeg();;
if (phi<0) phi+=360;
ddp = phi-fPhi1;
if (ddp<0) ddp+=360;;
if (ddp<=fDphi) inphi=kTRUE;
phi1=fPhi1*TMath::DegToRad();
phi2=(fPhi1+fDphi)*TMath::DegToRad();
c1=TMath::Cos(phi1);
s1=TMath::Sin(phi1);
c2=TMath::Cos(phi2);
s2=TMath::Sin(phi2);
fio=0.5*(phi1+phi2);
cm=TMath::Cos(fio);
sm=TMath::Sin(fio);
cdfi=TMath::Cos(0.5*(phi2-phi1));
}
// Check if we are inside or outside the bounding ring.
Bool_t inbring = kFALSE;
if (TMath::Abs(point[2]) <= fRmax) {
rxy2 = point[0]*point[0]+point[1]*point[1];
if ((rxy2>=(fR-fRmax)*(fR-fRmax)) && (rxy2<=(fR+fRmax)*(fR+fRmax))) {
if (!hasphi || inphi) inbring=kTRUE;
}
}
// If outside the ring, compute distance to it.
Double_t dring = TGeoShape::Big();
snext = 0;
daxis = -1;
memcpy(pt,point,3*sizeof(Double_t));
if (!inbring) {
if (hasphi) dring = TGeoTubeSeg::DistToInS(point,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm,cdfi);
else dring = TGeoTube::DistToInS(point,dir,fR-fRmax,fR+fRmax, fRmax);
// If not crossing it, return BIG.
if (dring>1E10) return TGeoShape::Big();
snext = dring;
// Check if the crossing is due to phi.
daxis = Daxis(point,dir,snext);
if (daxis>=fRmin && daxis<fRmax) return snext;
// Not a phi crossing -> propagate until we cross the ring.
for (i=0; i<3; i++) pt[i] = point[i]+snext*dir[i];
}
// Point pt is inside the bounding ring, no phi crossing so far.
// Check if we are in the hole.
if (daxis<0) daxis = Daxis(pt,dir,0);
if (daxis<fRmin) {
// We are in the hole. Check if we came from outside.
if (snext>0) {
// we can cross either the inner torus or exit the other hole.
snext += 1E-6;
for (i=0; i<3; i++) pt[i] += 1E-6*dir[i];
}
// We are in the hole from the begining.
// find first crossing with inner torus
dd = ToBoundary(pt,dir, fRmin);
// find exit distance from inner bounding ring
dring = TGeoTubeSeg::DistToOutS(pt,dir, fR-fRmin, fR+fRmin, fRmin,c1,s1,c2,s2,cm,sm);
if (dd<dring) return (snext+dd);
// we were exiting a hole
return TGeoShape::Big();
}
// We are inside the outer ring, having daxis>fRmax
// Check intersection with outer torus
dd = ToBoundary(pt, dir, fRmax);
// Compute distance to exit the bounding ring (again)
if (snext>0) {
// we can cross either the inner torus or exit the other hole.
snext += 1E-6;
for (i=0; i<3; i++) pt[i] += 1E-6*dir[i];
}
if (hasphi) dring = TGeoTubeSeg::DistToOutS(pt,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm);
else dring = TGeoTube::DistToOutS(pt,dir,fR-fRmax,fR+fRmax, fRmax);
if (dd<dring) {
snext += dd;
return snext;
}
// We are exiting the bounding ring before crossing the torus -> propagate
snext += dring+1E-6;
for (i=0; i<3; i++) pt[i] = point[i] + snext*dir[i];
snext += DistToIn(pt,dir,3);
return snext;
}
//_____________________________________________________________________________
TGeoVolume *TGeoTorus::Divide(TGeoVolume * /*voldiv*/, const char * /*divname*/, Int_t /*iaxis*/, Int_t /*ndiv*/,
Double_t /*start*/, Double_t /*step*/)
{
//--- Divide this torus shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step.
return 0;
}
//_____________________________________________________________________________
const char *TGeoTorus::GetAxisName(Int_t iaxis) const
{
// Returns name of axis IAXIS.
switch (iaxis) {
case 1:
return "R";
case 2:
return "PHI";
case 3:
return "Z";
default:
return "UNDEFINED";
}
}
//_____________________________________________________________________________
Double_t TGeoTorus::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 1:
xlo = fRmin;
xhi = fRmax;
dx = xhi-xlo;
return dx;
case 2:
xlo = fPhi1;
xhi = fPhi1+fDphi;
dx = fDphi;
return dx;
case 3:
dx = 0;
return dx;
}
return dx;
}
//_____________________________________________________________________________
void TGeoTorus::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2, dZ
param[0] = (fR-fRmax); // Rmin
param[1] = (fR+fRmax); // Rmax
param[2] = fPhi1; // Phi1
param[3] = fPhi1+fDphi; // Phi2
}
//_____________________________________________________________________________
TGeoShape *TGeoTorus::GetMakeRuntimeShape(TGeoShape * /*mother*/, TGeoMatrix * /*mat*/) const
{
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
Error("GetMakeRuntimeShape", "parametrized toruses not supported");
return 0;
}
//_____________________________________________________________________________
void TGeoTorus::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoTorus ***\n", GetName());
printf(" R = %11.5f\n", fR);
printf(" Rmin = %11.5f\n", fRmin);
printf(" Rmax = %11.5f\n", fRmax);
printf(" Phi1 = %11.5f\n", fPhi1);
printf(" Dphi = %11.5f\n", fDphi);
printf(" Bounding box:\n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
void *TGeoTorus::Make3DBuffer(const TGeoVolume *vol) const
{
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return 0;
return painter->MakeTorus3DBuffer(vol);
}
//_____________________________________________________________________________
void TGeoTorus::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
painter->PaintTorus(this, option);
}
//_____________________________________________________________________________
Double_t TGeoTorus::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[2];
Int_t i;
Double_t rxy = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rad = TMath::Sqrt((rxy-fR)*(rxy-fR) + point[2]*point[2]);
saf[0] = rad-fRmin;
saf[1] = fRmax-rad;
if (fDphi==360) {
if (in) return TMath::Min(saf[0],saf[1]);
for (i=0; i<2; i++) saf[i]=-saf[i];
return TMath::Max(saf[0], saf[1]);
}
Double_t safphi = TGeoShape::SafetyPhi(point,in,fPhi1, fPhi1+fDphi);
Double_t safe = TGeoShape::Big();
if (in) {
safe = TMath::Min(saf[0], saf[1]);
return TMath::Min(safe, safphi);
}
for (i=0; i<2; i++) saf[i]=-saf[i];
safe = TMath::Max(saf[0], saf[1]);
return TMath::Max(safe, safphi);
}
//_____________________________________________________________________________
void TGeoTorus::SetTorusDimensions(Double_t r, Double_t rmin, Double_t rmax,
Double_t phi1, Double_t dphi)
{
fR = r;
fRmin = rmin;
fRmax = rmax;
fPhi1 = phi1;
if (fPhi1<0) fPhi1+=360.;
fDphi = dphi;
}
//_____________________________________________________________________________
void TGeoTorus::SetDimensions(Double_t *param)
{
SetTorusDimensions(param[0], param[1], param[2], param[3], param[4]);
}
//_____________________________________________________________________________
void TGeoTorus::SetPoints(Double_t *buff) const
{
// Create torus mesh points
if (!buff) return;
Int_t n = gGeoManager->GetNsegments()+1;
Double_t phin, phout;
Double_t dpin = 360./(n-1);
Double_t dpout = fDphi/(n-1);
Double_t co,so,ci,si;
Bool_t havermin = (fRmin==0)?kFALSE:kTRUE;
Int_t i,j;
Int_t indx = 0;
// loop outer mesh -> n*n points [0, 3*n*n-1]
for (i=0; i<n; i++) {
phout = (fPhi1+i*dpout)*TMath::DegToRad();
co = TMath::Cos(phout);
so = TMath::Sin(phout);
for (j=0; j<n-1; j++) {
phin = j*dpin*TMath::DegToRad();
ci = TMath::Cos(phin);
si = TMath::Sin(phin);
buff[indx++] = (fR+fRmax*ci)*co;
buff[indx++] = (fR+fRmax*ci)*so;
buff[indx++] = fRmax*si;
}
}
if (havermin) {
// loop inner mesh -> n*n points [3*n*n, 6*n*n-1]
for (i=0; i<n; i++) {
phout = (fPhi1+i*dpout)*TMath::DegToRad();
co = TMath::Cos(phout);
so = TMath::Sin(phout);
for (j=0; j<n-1; j++) {
phin = j*dpin*TMath::DegToRad();
ci = TMath::Cos(phin);
si = TMath::Sin(phin);
buff[indx++] = (fR+fRmin*ci)*co;
buff[indx++] = (fR+fRmin*ci)*so;
buff[indx++] = fRmin*si;
}
}
} else {
if (fDphi!=360.) {
// just add extra 2 points on the centers of the 2 phi cuts [3*n*n, 3*n*n+1]
buff[indx++] = fR*TMath::Cos(fPhi1*TMath::DegToRad());
buff[indx++] = fR*TMath::Sin(fPhi1*TMath::DegToRad());
buff[indx++] = 0;
buff[indx++] = fR*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
buff[indx++] = fR*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
buff[indx++] = 0;
}
}
}
//_____________________________________________________________________________
void TGeoTorus::SetPoints(Float_t *buff) const
{
// Create torus mesh points
if (!buff) return;
Int_t n = gGeoManager->GetNsegments()+1;
Double_t phin, phout;
Double_t dpin = 360./(n-1);
Double_t dpout = fDphi/(n-1);
Double_t co,so,ci,si;
Bool_t havermin = (fRmin==0)?kFALSE:kTRUE;
Int_t i,j;
Int_t indx = 0;
// loop outer mesh -> n*n points [0, n*n-1]
// plane i = 0, n-1 point j = 0, n-1 ipoint = n*i + j
for (i=0; i<n; i++) {
phout = (fPhi1+i*dpout)*TMath::DegToRad();
co = TMath::Cos(phout);
so = TMath::Sin(phout);
for (j=0; j<n-1; j++) {
phin = j*dpin*TMath::DegToRad();
ci = TMath::Cos(phin);
si = TMath::Sin(phin);
buff[indx++] = (fR+fRmax*ci)*co;
buff[indx++] = (fR+fRmax*ci)*so;
buff[indx++] = fRmax*si;
}
}
if (havermin) {
// loop inner mesh -> n*n points [n*n, 2*n*n-1]
// plane i = 0, n-1 point j = 0, n-1 ipoint = n*n + n*i + j
for (i=0; i<n; i++) {
phout = (fPhi1+i*dpout)*TMath::DegToRad();
co = TMath::Cos(phout);
so = TMath::Sin(phout);
for (j=0; j<n-1; j++) {
phin = j*dpin*TMath::DegToRad();
ci = TMath::Cos(phin);
si = TMath::Sin(phin);
buff[indx++] = (fR+fRmin*ci)*co;
buff[indx++] = (fR+fRmin*ci)*so;
buff[indx++] = fRmin*si;
}
}
} else {
if (fDphi!=360.) {
// just add extra 2 points on the centers of the 2 phi cuts [n*n, n*n+1]
// ip1 = n*(n-1) + 0;
// ip2 = n*(n-1) + 1
buff[indx++] = fR*TMath::Cos(fPhi1*TMath::DegToRad());
buff[indx++] = fR*TMath::Sin(fPhi1*TMath::DegToRad());
buff[indx++] = 0;
buff[indx++] = fR*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
buff[indx++] = fR*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
buff[indx++] = 0;
}
}
}
//_____________________________________________________________________________
Int_t TGeoTorus::GetNmeshVertices() const
{
// Return number of vertices of the mesh representation
Int_t n = gGeoManager->GetNsegments()+1;
Int_t numPoints = n*(n-1);
return numPoints;
}
//_____________________________________________________________________________
void TGeoTorus::Sizeof3D() const
{
// fill size of this 3-D object
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
Int_t n = gGeoManager->GetNsegments()+1;
Int_t numPoints = n*(n-1);
Int_t numSegs = (2*n-1)*(n-1);
Int_t numPolys = (n-1)*(n-1);
Bool_t hasrmin = (fRmin>0)?kTRUE:kFALSE;
Bool_t hasphi = (fDphi<360)?kTRUE:kFALSE;
if (hasrmin) numPoints *= 2;
else if (hasphi) numPoints += 2;
if (hasrmin) {
numSegs += (2*n-1)*(n-1);
numPolys += (n-1)*(n-1);
}
if (hasphi) {
numSegs += 2*(n-1);
numPolys += 2*(n-1);
}
painter->AddSize3D(numPoints, numSegs, numPolys);
}
//_____________________________________________________________________________
Int_t TGeoTorus::SolveCubic(Double_t a, Double_t b, Double_t c, Double_t *x) const
{
// Find real solutions of the cubic equation : x^3 + a*x^2 + b*x + c = 0
// Input: a,b,c
// Output: x[3] real solutions
// Returns number of real solutions (1 or 3)
const Double_t ott = 1./3.;
const Double_t sq3 = TMath::Sqrt(3.);
Int_t ireal = 1;
Double_t p = b-a*a*ott;
Double_t q = c-a*b*ott+2.*a*a*a*ott*ott*ott;
Double_t delta = 4*p*p*p+27*q*q;
// Double_t y1r, y1i, y2r, y2i;
Double_t t,u;
if (delta>=0) {
delta = TMath::Sqrt(delta);
t = (-3*q*sq3+delta)/(6*sq3);
u = (3*q*sq3+delta)/(6*sq3);
x[0] = TMath::Sign(1.,t)*TMath::Power(TMath::Abs(t),ott)-
TMath::Sign(1.,u)*TMath::Power(TMath::Abs(u),ott)-a*ott;
} else {
delta = TMath::Sqrt(-delta);
t = -0.5*q;
u = delta/(6*sq3);
x[0] = 2.*TMath::Power(t*t+u*u,0.5*ott) * TMath::Cos(ott*TMath::ATan2(u,t));
x[0] -= a*ott;
}
t = x[0]*x[0]+a*x[0]+b;
u = a+x[0];
delta = u*u-4.*t;
if (delta>=0) {
ireal = 3;
delta = TMath::Sqrt(delta);
x[1] = 0.5*(-u-delta);
x[2] = 0.5*(-u+delta);
}
return ireal;
}
//_____________________________________________________________________________
Int_t TGeoTorus::SolveQuartic(Double_t a, Double_t b, Double_t c, Double_t d, Double_t *x) const
{
// Find real solutions of the quartic equation : x^3 + a*x^2 + b*x + c = 0
// Input: a,b,c,d
// Output: x[4] - real solutions
// Returns number of real solutions (0 to 4)
Double_t e = b-3.*a*a/8.;
Double_t f = c+a*a*a/8.-0.5*a*b;
Double_t g = d-3.*a*a*a*a/256. + a*a*b/16. - a*c/4.;
Double_t xx[3];
Int_t ind[4];
Double_t delta;
Double_t h=0;
Int_t ireal = 0;
Int_t i;
if (f==0) {
delta = e*e-4.*g;
if (delta<0) return 0;
delta = TMath::Sqrt(delta);
h = 0.5*(-e-delta);
if (h>=0) {
h = TMath::Sqrt(h);
x[ireal++] = -h-0.25*a;
x[ireal++] = h-0.25*a;
}
h = 0.5*(-e+delta);
if (h>=0) {
h = TMath::Sqrt(h);
x[ireal++] = -h-0.25*a;
x[ireal++] = h-0.25*a;
}
if (ireal>0) {
TMath::Sort(ireal, x, ind,kFALSE);
for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
memcpy(x,xx,ireal*sizeof(Double_t));
}
return ireal;
}
if (g==0) {
x[ireal++] = -0.25*a;
ind[0] = SolveCubic(0,e,f,xx);
for (i=0; i<ind[0]; i++) x[ireal++] = xx[i]-0.25*a;
if (ireal>0) {
TMath::Sort(ireal, x, ind,kFALSE);
for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
memcpy(x,xx,ireal*sizeof(Double_t));
}
return ireal;
}
ireal = SolveCubic(2.*e, e*e-4.*g, -f*f, xx);
if (ireal==1) {
if (xx[0]<=0) return 0;
h = TMath::Sqrt(xx[0]);
} else {
// 3 real solutions of the cubic
for (Int_t i=0; i<3; i++) {
h = xx[i];
if (h>=0) break;
}
if (h<=0) return 0;
h = TMath::Sqrt(h);
}
Double_t j = 0.5*(e+h*h-f/h);
ireal = 0;
delta = h*h-4.*j;
if (delta>=0) {
delta = TMath::Sqrt(delta);
x[ireal++] = 0.5*(-h-delta)-0.25*a;
x[ireal++] = 0.5*(-h+delta)-0.25*a;
}
delta = h*h-4.*g/j;
if (delta>=0) {
delta = TMath::Sqrt(delta);
x[ireal++] = 0.5*(h-delta)-0.25*a;
x[ireal++] = 0.5*(h+delta)-0.25*a;
}
if (ireal>0) {
TMath::Sort(ireal, x, ind,kFALSE);
for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
memcpy(x,xx,ireal*sizeof(Double_t));
}
return ireal;
}
//_____________________________________________________________________________
Double_t TGeoTorus::ToBoundary(Double_t *pt, Double_t *dir, Double_t r) const
{
// Returns distance to the surface or the torus (fR,r) from a point, along
// a direction. Point is close enough to the boundary so that the distance
// to the torus is decreasing while moving along the given direction.
// Compute coeficients of the quartic
Double_t r0sq = pt[0]*pt[0]+pt[1]*pt[1]+pt[2]*pt[2];
Double_t rdotn = pt[0]*dir[0]+pt[1]*dir[1]+pt[2]*dir[2];
Double_t rsumsq = fR*fR+r*r;
Double_t a = 4.*rdotn;
Double_t b = 2.*(r0sq+2.*rdotn*rdotn-rsumsq+2.*fR*fR*dir[2]*dir[2]);
Double_t c = 4.*(r0sq*rdotn-rsumsq*rdotn+2.*fR*fR*pt[2]*dir[2]);
Double_t d = r0sq*r0sq-2.*r0sq*rsumsq+4.*fR*fR*pt[2]*pt[2]+(fR*fR-r*r)*(fR*fR-r*r);
Double_t x[4];
Int_t nsol = SolveQuartic(a,b,c,d,x);
if (!nsol) return TGeoShape::Big();
// look for first positive solution
for (Int_t i=0; i<nsol; i++) {
if (x[i]>=0) return x[i];
}
return TGeoShape::Big();
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.