// @(#)root/geom:$Name:  $:$Id: TGeoTorus.cxx,v 1.10 2004/06/25 11:59:56 brun Exp $
// Author: Andrei Gheata   28/07/03

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

//_____________________________________________________________________________
// TGeoTorus - Torus segment class. A torus has 5 parameters :
//            R    - axial radius
//            Rmin - inner radius
//            Rmax - outer radius 
//            Phi1 - starting phi
//            Dphi - phi extent
//
//_____________________________________________________________________________

//
/* */ //


#include "TROOT.h"

#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoTube.h"
#include "TVirtualGeoPainter.h"
#include "TGeoTorus.h"

ClassImp(TGeoTorus)

//_____________________________________________________________________________
 TGeoTorus::TGeoTorus()
{
// Default constructor
   SetShapeBit(TGeoShape::kGeoTorus);
   fR    = 0.0;
   fRmin = 0.0;
   fRmax = 0.0;
   fPhi1 = 0.0;
   fDphi = 0.0;
}   

//_____________________________________________________________________________
 TGeoTorus::TGeoTorus(Double_t r, Double_t rmin, Double_t rmax, Double_t phi1, Double_t dphi)
          :TGeoBBox(0, 0, 0)
{
// Constructor without name.
   SetShapeBit(TGeoShape::kGeoTorus);
   SetTorusDimensions(r, rmin, rmax, phi1, dphi);
   if ((fRmin<0) || (fRmax<0)) 
      SetShapeBit(kGeoRunTimeShape);
   ComputeBBox();
}

//_____________________________________________________________________________
 TGeoTorus::TGeoTorus(const char *name, Double_t r, Double_t rmin, Double_t rmax, Double_t phi1, Double_t dphi)
          :TGeoBBox(name, 0, 0, 0)
{
// Constructor with name.
   SetShapeBit(TGeoShape::kGeoTorus);
   SetTorusDimensions(r, rmin, rmax, phi1, dphi);
   if ((fRmin<0) || (fRmax<0)) 
      SetShapeBit(kGeoRunTimeShape);
   ComputeBBox();
}

//_____________________________________________________________________________
 TGeoTorus::TGeoTorus(Double_t *param)
          :TGeoBBox(0, 0, 0)
{
// Constructor based on an array of parameters.
// param[0] = R
// param[1] = Rmin
// param[2] = Rmax
// param[3] = Phi1
// param[4] = Dphi
   SetShapeBit(TGeoShape::kGeoTorus);
   SetDimensions(param);
   if (fRmin<0 || fRmax<0) SetShapeBit(kGeoRunTimeShape);
   ComputeBBox();
}

//_____________________________________________________________________________
 void TGeoTorus::ComputeBBox()
{
// Compute bounding box of the torus.
   fDZ = fRmax;
   if (fDphi == 360.) {
      fDX = fDY = fR+fRmax;
      return;
   }
   Double_t xc[4];
   Double_t yc[4];
   xc[0] = (fR+fRmax)*TMath::Cos(fPhi1*TMath::DegToRad());
   yc[0] = (fR+fRmax)*TMath::Sin(fPhi1*TMath::DegToRad());
   xc[1] = (fR+fRmax)*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
   yc[1] = (fR+fRmax)*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
   xc[2] = (fR-fRmax)*TMath::Cos(fPhi1*TMath::DegToRad());
   yc[2] = (fR-fRmax)*TMath::Sin(fPhi1*TMath::DegToRad());
   xc[3] = (fR-fRmax)*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
   yc[3] = (fR-fRmax)*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
      
   Double_t xmin = xc[TMath::LocMin(4, &xc[0])];
   Double_t xmax = xc[TMath::LocMax(4, &xc[0])]; 
   Double_t ymin = yc[TMath::LocMin(4, &yc[0])]; 
   Double_t ymax = yc[TMath::LocMax(4, &yc[0])];
   Double_t ddp = -fPhi1;
   if (ddp<0) ddp+= 360;
   if (ddp<=fDphi) xmax = fR+fRmax;
   ddp = 90-fPhi1;
   if (ddp<0) ddp+= 360;
   if (ddp>360) ddp-=360;
   if (ddp<=fDphi) ymax = fR+fRmax;
   ddp = 180-fPhi1;
   if (ddp<0) ddp+= 360;
   if (ddp>360) ddp-=360;
   if (ddp<=fDphi) xmin = -(fR+fRmax);
   ddp = 270-fPhi1;
   if (ddp<0) ddp+= 360;
   if (ddp>360) ddp-=360;
   if (ddp<=fDphi) ymin = -(fR+fRmax);
   fOrigin[0] = (xmax+xmin)/2;
   fOrigin[1] = (ymax+ymin)/2;
   fOrigin[2] = 0;
   fDX = (xmax-xmin)/2;
   fDY = (ymax-ymin)/2;
}

//-----------------------------------------------------------------------------   
 void TGeoTorus::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT. 
   Double_t phi = TMath::ATan2(point[1],point[0]);
   if (fDphi<360) {
      Double_t phi1 = fPhi1*TMath::DegToRad();
      Double_t phi2 = (fPhi1+fDphi)*TMath::DegToRad();
      Double_t c1 = TMath::Cos(phi1);
      Double_t s1 = TMath::Sin(phi1);
      Double_t c2 = TMath::Cos(phi2);
      Double_t s2 = TMath::Sin(phi2);

      Double_t daxis = Daxis(point,dir,0);
      if ((fRmax-daxis)>1E-5) {
         if (fRmin==0 || (daxis-fRmin)>1E-5) {
            TGeoShape::NormalPhi(point,dir,norm,c1,s1,c2,s2);
            return;
         }
      }
   }   
   Double_t r0[3];
   r0[0] = fR*TMath::Cos(phi);
   r0[1] = fR*TMath::Sin(phi);           
   r0[2] = 0;
   Double_t normsq = 0;
   for (Int_t i=0; i<3; i++) {
      norm[i] = point[i] - r0[i];
      normsq += norm[i]*norm[i];
   }
   
   normsq = TMath::Sqrt(normsq);
   norm[0] /= normsq;
   norm[1] /= normsq;
   norm[2] /= normsq;
   if (dir[0]*norm[0]+dir[1]*norm[1]+dir[2]*norm[2] < 0) {
      norm[0] = -norm[0];
      norm[1] = -norm[1];
      norm[2] = -norm[2];
   }      
}

//_____________________________________________________________________________
 Bool_t TGeoTorus::Contains(Double_t *point) const
{
// Test if point is inside the torus.
   // check phi range
   if (fDphi!=360) {
      Double_t phi = TMath::ATan2(point[1], point[0]) * TMath::RadToDeg();
      if (phi < 0) phi+=360.0;
      Double_t ddp = phi-fPhi1;
      if (ddp<0) ddp+=360.;
      if (ddp>fDphi) return kFALSE;
   }
   //check radius
   Double_t rxy = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
   Double_t radsq = (rxy-fR)*(rxy-fR) + point[2]*point[2];
   if (radsq<fRmin*fRmin) return kFALSE;
   if (radsq>fRmax*fRmax) return kFALSE;
   return kTRUE;
}   

//_____________________________________________________________________________
 Int_t TGeoTorus::DistancetoPrimitive(Int_t px, Int_t py)
{
// Compute closest distance from point px,py to each vertex.
   Int_t n = gGeoManager->GetNsegments()+1;
   Int_t numPoints = n*(n-1);
   if (fRmin>0) numPoints *= 2;
   else if (fDphi<360) numPoints += 2;
   return ShapeDistancetoPrimitive(numPoints, px, py);
}

//_____________________________________________________________________________
 Double_t TGeoTorus::Daxis(Double_t *pt, Double_t *dir, Double_t t) const
{
// Computes distance to axis of the torus from point pt + t*dir;
   Double_t p[3];
   for (Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
   Double_t rxy = TMath::Sqrt(p[0]*p[0]+p[1]*p[1]);
   return TMath::Sqrt((rxy-fR)*(rxy-fR)+p[2]*p[2]);
}   

//_____________________________________________________________________________
 Double_t TGeoTorus::DDaxis(Double_t *pt, Double_t *dir, Double_t t) const
{
// Computes derivative w.r.t. t of the distance to axis of the torus from point pt + t*dir;
   Double_t p[3];
   for (Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
   Double_t rxy = TMath::Sqrt(p[0]*p[0]+p[1]*p[1]);
   if (rxy<1E-4) return ((p[2]*dir[2]-fR*TMath::Sqrt(dir[0]*dir[0]+dir[1]*dir[1]))/TMath::Sqrt(fR*fR+p[2]*p[2]));
   Double_t d = TMath::Sqrt((rxy-fR)*(rxy-fR)+p[2]*p[2]);
   if (d==0) return 0.;
   Double_t dd = (p[0]*dir[0]+p[1]*dir[1]+p[2]*dir[2] - (p[0]*dir[0]+p[1]*dir[1])*fR/rxy)/d;
   return dd;
}   

//_____________________________________________________________________________
 Double_t TGeoTorus::DDDaxis(Double_t *pt, Double_t *dir, Double_t t) const
{
// Second derivative of distance to torus axis w.r.t t.
   Double_t p[3];
   for (Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
   Double_t rxy = TMath::Sqrt(p[0]*p[0]+p[1]*p[1]);
   if (rxy<1E-6) return 0;
   Double_t daxis = TMath::Sqrt((rxy-fR)*(rxy-fR)+p[2]*p[2]);
   if (daxis==0) return 0;
   Double_t ddaxis = (p[0]*dir[0]+p[1]*dir[1]+p[2]*dir[2] - (p[0]*dir[0]+p[1]*dir[1])*fR/rxy)/daxis;
   Double_t dddaxis = 1 - ddaxis*ddaxis - (1-dir[2]*dir[2])*fR/rxy +
                      fR*(p[0]*dir[0]+p[1]*dir[1])*(p[0]*dir[0]+p[1]*dir[1])/(rxy*rxy*rxy);
   dddaxis /= daxis;
   return dddaxis;
}
   
//_____________________________________________________________________________
 Double_t TGeoTorus::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from inside point to surface of the torus.
   if (iact<3 && safe) {
      *safe = Safety(point, kTRUE);
      if (iact==0) return TGeoShape::Big();
      if ((iact==1) && (step<=*safe)) return TGeoShape::Big();
   }
   Double_t snext = TGeoShape::Big();
   Bool_t hasphi = (fDphi<360)?kTRUE:kFALSE;
   Bool_t hasrmin = (fRmin>0)?kTRUE:kFALSE;
   Double_t dout = ToBoundary(point,dir,fRmax);
   if (dout>1E10) {
      Double_t pt[3];
      for (Int_t i=0; i<3; i++) pt[i] = point[i]-1E-4*dir[i];
      dout = ToBoundary(pt,dir,fRmax)-1E-4;
      if (dout<1E10) return dout;
      Error("DistToOut", "cannot get outside");
      printf("point (%f,%f,%f) daxis=%f contains=%i\n", point[0],point[1],point[2],
             Daxis(point,dir,0), Contains(point));
      return TGeoShape::Big();
   }
   Double_t din = (hasrmin)?ToBoundary(point,dir,fRmin):TGeoShape::Big();
   snext = TMath::Min(dout,din);
   Double_t dphi = TGeoShape::Big();
   if (hasphi) {
      // Torus segment case.
      Double_t c1,s1,c2,s2,cm,sm;
      Double_t phi1=fPhi1*TMath::DegToRad();
      Double_t phi2=(fPhi1+fDphi)*TMath::DegToRad();
      c1=TMath::Cos(phi1);
      s1=TMath::Sin(phi1);
      c2=TMath::Cos(phi2);
      s2=TMath::Sin(phi2);
      Double_t fio=0.5*(phi1+phi2);
      cm=TMath::Cos(fio);
      sm=TMath::Sin(fio);
      dphi = TGeoTubeSeg::DistToOutS(point,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm);
      if (dphi>1E10) {
         Double_t pt[3];
         for (Int_t i=0; i<3; i++) pt[i] = point[i]-1E-4*dir[i];
         dphi = TGeoTubeSeg::DistToOutS(pt,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm)-1E-4;
         if (dphi>1E10) {
            Error("DistToOut", "cannot get outside");
            return TGeoShape::Big();
         }   
      }
      Double_t daxis = Daxis(point,dir,dphi+1E-8);
      if (daxis>=fRmin && daxis<=fRmax) snext=TMath::Min(snext,dphi);
   }      
   return snext;
}

//_____________________________________________________________________________
 Double_t TGeoTorus::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from outside point to surface of the torus.
   if (iact<3 && safe) {
      *safe = Safety(point, kFALSE);
      if (iact==0) return TGeoShape::Big();
      if ((iact==1) && (step<=*safe)) return TGeoShape::Big();
   }
   Double_t daxis;
   Bool_t hasphi = (fDphi<360)?kTRUE:kFALSE;
//   Bool_t hasrmin = (fRmin>0)?kTRUE:kFALSE;
   Double_t c1=0,s1=0,c2=0,s2=0,cm=0,sm=0,cdfi=0;
   Bool_t inphi = kFALSE;
   Double_t phi, ddp, phi1,phi2,fio;
   Double_t rxy2,dd;
   Double_t snext;
   Double_t pt[3];
   Int_t i;
      
   if (hasphi) {
      // Torus segment case.
      phi=TMath::ATan2(point[1], point[0])*TMath::RadToDeg();;
      if (phi<0) phi+=360;
      ddp = phi-fPhi1;
      if (ddp<0) ddp+=360;;
      if (ddp<=fDphi) inphi=kTRUE;
      phi1=fPhi1*TMath::DegToRad();
      phi2=(fPhi1+fDphi)*TMath::DegToRad();
      c1=TMath::Cos(phi1);
      s1=TMath::Sin(phi1);
      c2=TMath::Cos(phi2);
      s2=TMath::Sin(phi2);
      fio=0.5*(phi1+phi2);
      cm=TMath::Cos(fio);
      sm=TMath::Sin(fio);
      cdfi=TMath::Cos(0.5*(phi2-phi1));
   }
   // Check if we are inside or outside the bounding ring.
   Bool_t inbring = kFALSE;
   if (TMath::Abs(point[2]) <= fRmax) {
      rxy2 = point[0]*point[0]+point[1]*point[1];
      if ((rxy2>=(fR-fRmax)*(fR-fRmax)) && (rxy2<=(fR+fRmax)*(fR+fRmax))) {
         if (!hasphi || inphi) inbring=kTRUE;
      }
   }   
   
   // If outside the ring, compute distance to it.
   Double_t dring = TGeoShape::Big();
   snext = 0;
   daxis = -1;
   memcpy(pt,point,3*sizeof(Double_t));
   if (!inbring) {
      if (hasphi) dring = TGeoTubeSeg::DistToInS(point,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm,cdfi);            
      else        dring = TGeoTube::DistToInS(point,dir,fR-fRmax,fR+fRmax, fRmax);
      // If not crossing it, return BIG.
      if (dring>1E10) return TGeoShape::Big();
      snext = dring;
      // Check if the crossing is due to phi.
      daxis = Daxis(point,dir,snext);
      if (daxis>=fRmin && daxis<fRmax) return snext;
      // Not a phi crossing -> propagate until we cross the ring.
      for (i=0; i<3; i++) pt[i] = point[i]+snext*dir[i];      
   }
   // Point pt is inside the bounding ring, no phi crossing so far.
   // Check if we are in the hole.
   if (daxis<0) daxis = Daxis(pt,dir,0);
   if (daxis<fRmin) {
      // We are in the hole. Check if we came from outside.
      if (snext>0) {
         // we can cross either the inner torus or exit the other hole.
         snext += 1E-6;
         for (i=0; i<3; i++) pt[i] += 1E-6*dir[i];
      }
      // We are in the hole from the begining.   
      // find first crossing with inner torus
      dd = ToBoundary(pt,dir, fRmin);
      // find exit distance from inner bounding ring
      dring = TGeoTubeSeg::DistToOutS(pt,dir, fR-fRmin, fR+fRmin, fRmin,c1,s1,c2,s2,cm,sm);
      if (dd<dring) return (snext+dd);
      // we were exiting a hole
      return TGeoShape::Big();
   }    
   // We are inside the outer ring, having daxis>fRmax
   // Check intersection with outer torus
   dd = ToBoundary(pt, dir, fRmax);
   // Compute distance to exit the bounding ring (again)
   if (snext>0) {
      // we can cross either the inner torus or exit the other hole.
      snext += 1E-6;
      for (i=0; i<3; i++) pt[i] += 1E-6*dir[i];
   }
   if (hasphi) dring = TGeoTubeSeg::DistToOutS(pt,dir,fR-fRmax,fR+fRmax, fRmax, c1,s1,c2,s2,cm,sm);            
   else        dring = TGeoTube::DistToOutS(pt,dir,fR-fRmax,fR+fRmax, fRmax);
   if (dd<dring) {
      snext += dd;
      return snext;
   }
   // We are exiting the bounding ring before crossing the torus -> propagate
   snext += dring+1E-6;   
   for (i=0; i<3; i++) pt[i] = point[i] + snext*dir[i];
   snext += DistToIn(pt,dir,3);
   return snext;
}      

//_____________________________________________________________________________
 TGeoVolume *TGeoTorus::Divide(TGeoVolume * /*voldiv*/, const char * /*divname*/, Int_t /*iaxis*/, Int_t /*ndiv*/, 
                              Double_t /*start*/, Double_t /*step*/) 
{
//--- Divide this torus shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. 
   return 0;
}

//_____________________________________________________________________________
 const char *TGeoTorus::GetAxisName(Int_t iaxis) const
{
// Returns name of axis IAXIS.
   switch (iaxis) {
      case 1:
         return "R";
      case 2:
         return "PHI";
      case 3:
         return "Z";
      default:
         return "UNDEFINED";
   }
}   
   
//_____________________________________________________________________________
 Double_t TGeoTorus::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
   xlo = 0;
   xhi = 0;
   Double_t dx = 0;
   switch (iaxis) {
      case 1:
         xlo = fRmin;
         xhi = fRmax;
         dx = xhi-xlo;
         return dx;
      case 2:
         xlo = fPhi1;
         xhi = fPhi1+fDphi;
         dx = fDphi;
         return dx;
      case 3:
         dx = 0;
         return dx;
   }
   return dx;
}         
   
//_____________________________________________________________________________
 void TGeoTorus::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2, dZ
   param[0] = (fR-fRmax); // Rmin
   param[1] = (fR+fRmax); // Rmax
   param[2] = fPhi1;    // Phi1
   param[3] = fPhi1+fDphi;  // Phi2
}   
 
//_____________________________________________________________________________
 TGeoShape *TGeoTorus::GetMakeRuntimeShape(TGeoShape * /*mother*/, TGeoMatrix * /*mat*/) const
{
   if (!TestShapeBit(kGeoRunTimeShape)) return 0;
   Error("GetMakeRuntimeShape", "parametrized toruses not supported");
   return 0;
}
      
//_____________________________________________________________________________
 void TGeoTorus::InspectShape() const
{
// print shape parameters
   printf("*** Shape %s: TGeoTorus ***\n", GetName());
   printf("    R    = %11.5f\n", fR);
   printf("    Rmin = %11.5f\n", fRmin);
   printf("    Rmax = %11.5f\n", fRmax);
   printf("    Phi1 = %11.5f\n", fPhi1);
   printf("    Dphi = %11.5f\n", fDphi);
   printf(" Bounding box:\n");
   TGeoBBox::InspectShape();
}

//_____________________________________________________________________________
 void *TGeoTorus::Make3DBuffer(const TGeoVolume *vol) const
{
   TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
   if (!painter) return 0;
   return painter->MakeTorus3DBuffer(vol);
}

//_____________________________________________________________________________
 void TGeoTorus::Paint(Option_t *option)
{
// paint this shape according to option
   TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
   if (!painter) return;
   painter->PaintTorus(this, option);
}

//_____________________________________________________________________________
 Double_t TGeoTorus::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
   Double_t saf[2];
   Int_t i;
   Double_t rxy = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
   Double_t rad = TMath::Sqrt((rxy-fR)*(rxy-fR) + point[2]*point[2]);
   saf[0] = rad-fRmin;
   saf[1] = fRmax-rad;
   if (fDphi==360) {
      if (in) return TMath::Min(saf[0],saf[1]);
      for (i=0; i<2; i++) saf[i]=-saf[i];
      return TMath::Max(saf[0], saf[1]);
   }   

   Double_t safphi = TGeoShape::SafetyPhi(point,in,fPhi1, fPhi1+fDphi);
   Double_t safe = TGeoShape::Big();
   if (in) {
      safe = TMath::Min(saf[0], saf[1]);
      return TMath::Min(safe, safphi);
   }   
   for (i=0; i<2; i++) saf[i]=-saf[i];
   safe = TMath::Max(saf[0], saf[1]);
   return TMath::Max(safe, safphi);
}

//_____________________________________________________________________________
 void TGeoTorus::SetTorusDimensions(Double_t r, Double_t rmin, Double_t rmax,
                          Double_t phi1, Double_t dphi)
{
   fR = r;
   fRmin = rmin;
   fRmax = rmax;
   fPhi1 = phi1;
   if (fPhi1<0) fPhi1+=360.;
   fDphi = dphi;
}

//_____________________________________________________________________________
 void TGeoTorus::SetDimensions(Double_t *param)
{
   SetTorusDimensions(param[0], param[1], param[2], param[3], param[4]);
}

//_____________________________________________________________________________
 void TGeoTorus::SetPoints(Double_t *buff) const
{
// Create torus mesh points
   if (!buff) return;
   Int_t n = gGeoManager->GetNsegments()+1;
   Double_t phin, phout;
   Double_t dpin = 360./(n-1);
   Double_t dpout = fDphi/(n-1);
   Double_t co,so,ci,si;
   Bool_t havermin = (fRmin==0)?kFALSE:kTRUE;
   Int_t i,j;
   Int_t indx = 0;
   // loop outer mesh -> n*n points [0, 3*n*n-1]
   for (i=0; i<n; i++) {
      phout = (fPhi1+i*dpout)*TMath::DegToRad();
      co = TMath::Cos(phout);
      so = TMath::Sin(phout);
      for (j=0; j<n-1; j++) {
         phin = j*dpin*TMath::DegToRad();
         ci = TMath::Cos(phin);
         si = TMath::Sin(phin);
         buff[indx++] = (fR+fRmax*ci)*co;
         buff[indx++] = (fR+fRmax*ci)*so;
         buff[indx++] = fRmax*si;
      }
   }     
    
   if (havermin) {
    // loop inner mesh -> n*n points [3*n*n, 6*n*n-1]
      for (i=0; i<n; i++) {
         phout = (fPhi1+i*dpout)*TMath::DegToRad();
         co = TMath::Cos(phout);
         so = TMath::Sin(phout);
         for (j=0; j<n-1; j++) {
            phin = j*dpin*TMath::DegToRad();
            ci = TMath::Cos(phin);
            si = TMath::Sin(phin);
            buff[indx++] = (fR+fRmin*ci)*co;
            buff[indx++] = (fR+fRmin*ci)*so;
            buff[indx++] = fRmin*si;
         }
      }  
   } else {
      if (fDphi!=360.) {
      // just add extra 2 points on the centers of the 2 phi cuts [3*n*n, 3*n*n+1]
         buff[indx++] = fR*TMath::Cos(fPhi1*TMath::DegToRad());
         buff[indx++] = fR*TMath::Sin(fPhi1*TMath::DegToRad());
         buff[indx++] = 0;
         buff[indx++] = fR*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
         buff[indx++] = fR*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
         buff[indx++] = 0;
      }
   }      
}        

//_____________________________________________________________________________
 void TGeoTorus::SetPoints(Float_t *buff) const
{
// Create torus mesh points
   if (!buff) return;
   Int_t n = gGeoManager->GetNsegments()+1;
   Double_t phin, phout;
   Double_t dpin = 360./(n-1);
   Double_t dpout = fDphi/(n-1);
   Double_t co,so,ci,si;
   Bool_t havermin = (fRmin==0)?kFALSE:kTRUE;
   Int_t i,j;
   Int_t indx = 0;
   // loop outer mesh -> n*n points [0, n*n-1]
   // plane i = 0, n-1  point j = 0, n-1  ipoint = n*i + j
   for (i=0; i<n; i++) {
      phout = (fPhi1+i*dpout)*TMath::DegToRad();
      co = TMath::Cos(phout);
      so = TMath::Sin(phout);
      for (j=0; j<n-1; j++) {
         phin = j*dpin*TMath::DegToRad();
         ci = TMath::Cos(phin);
         si = TMath::Sin(phin);
         buff[indx++] = (fR+fRmax*ci)*co;
         buff[indx++] = (fR+fRmax*ci)*so;
         buff[indx++] = fRmax*si;
      }
   }     
    
   if (havermin) {
      // loop inner mesh -> n*n points [n*n, 2*n*n-1]
      // plane i = 0, n-1  point j = 0, n-1  ipoint = n*n + n*i + j
      for (i=0; i<n; i++) {
         phout = (fPhi1+i*dpout)*TMath::DegToRad();
         co = TMath::Cos(phout);
         so = TMath::Sin(phout);
         for (j=0; j<n-1; j++) {
            phin = j*dpin*TMath::DegToRad();
            ci = TMath::Cos(phin);
            si = TMath::Sin(phin);
            buff[indx++] = (fR+fRmin*ci)*co;
            buff[indx++] = (fR+fRmin*ci)*so;
            buff[indx++] = fRmin*si;
         }
      }  
   } else {
      if (fDphi!=360.) {
      // just add extra 2 points on the centers of the 2 phi cuts [n*n, n*n+1]
      // ip1 = n*(n-1) + 0;
      // ip2 = n*(n-1) + 1
         buff[indx++] = fR*TMath::Cos(fPhi1*TMath::DegToRad());
         buff[indx++] = fR*TMath::Sin(fPhi1*TMath::DegToRad());
         buff[indx++] = 0;
         buff[indx++] = fR*TMath::Cos((fPhi1+fDphi)*TMath::DegToRad());
         buff[indx++] = fR*TMath::Sin((fPhi1+fDphi)*TMath::DegToRad());
         buff[indx++] = 0;
      }
   }      
}        

//_____________________________________________________________________________
 Int_t TGeoTorus::GetNmeshVertices() const
{
// Return number of vertices of the mesh representation
   Int_t n = gGeoManager->GetNsegments()+1;
   Int_t numPoints = n*(n-1);
   return numPoints;
}

//_____________________________________________________________________________
 void TGeoTorus::Sizeof3D() const
{
// fill size of this 3-D object
   TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
   if (!painter) return;
   Int_t n = gGeoManager->GetNsegments()+1;
   Int_t numPoints = n*(n-1);
   Int_t numSegs   = (2*n-1)*(n-1);
   Int_t numPolys  = (n-1)*(n-1);

   Bool_t hasrmin = (fRmin>0)?kTRUE:kFALSE;
   Bool_t hasphi  = (fDphi<360)?kTRUE:kFALSE;
   if (hasrmin) numPoints *= 2;
   else if (hasphi) numPoints += 2;
   if (hasrmin) {
      numSegs   += (2*n-1)*(n-1);
      numPolys  += (n-1)*(n-1);
   }   
   if (hasphi) {
      numSegs   += 2*(n-1);
      numPolys  += 2*(n-1);
   }   
    
   painter->AddSize3D(numPoints, numSegs, numPolys);
}

//_____________________________________________________________________________
 Int_t TGeoTorus::SolveCubic(Double_t a, Double_t b, Double_t c, Double_t *x) const
{
// Find real solutions of the cubic equation : x^3 + a*x^2 + b*x + c = 0
// Input: a,b,c
// Output: x[3] real solutions
// Returns number of real solutions (1 or 3)
   const Double_t ott = 1./3.;
   const Double_t sq3 = TMath::Sqrt(3.);
   Int_t ireal = 1;
   Double_t p = b-a*a*ott;
   Double_t q = c-a*b*ott+2.*a*a*a*ott*ott*ott;
   Double_t delta = 4*p*p*p+27*q*q;
//   Double_t y1r, y1i, y2r, y2i;
   Double_t t,u;
   if (delta>=0) {
      delta = TMath::Sqrt(delta);
      t = (-3*q*sq3+delta)/(6*sq3);
      u = (3*q*sq3+delta)/(6*sq3);
      x[0] = TMath::Sign(1.,t)*TMath::Power(TMath::Abs(t),ott)-
             TMath::Sign(1.,u)*TMath::Power(TMath::Abs(u),ott)-a*ott;
   } else {
      delta = TMath::Sqrt(-delta);
      t = -0.5*q;
      u = delta/(6*sq3);
      x[0] = 2.*TMath::Power(t*t+u*u,0.5*ott) * TMath::Cos(ott*TMath::ATan2(u,t));
      x[0] -= a*ott;
   }   
         
   t = x[0]*x[0]+a*x[0]+b;
   u = a+x[0];
   delta = u*u-4.*t;
   if (delta>=0) {
      ireal = 3;
      delta = TMath::Sqrt(delta);
      x[1] = 0.5*(-u-delta);
      x[2] = 0.5*(-u+delta);
   }
   return ireal;
}

//_____________________________________________________________________________
 Int_t TGeoTorus::SolveQuartic(Double_t a, Double_t b, Double_t c, Double_t d, Double_t *x) const
{
// Find real solutions of the quartic equation : x^3 + a*x^2 + b*x + c = 0
// Input: a,b,c,d
// Output: x[4] - real solutions
// Returns number of real solutions (0 to 4)
   Double_t e = b-3.*a*a/8.;
   Double_t f = c+a*a*a/8.-0.5*a*b;
   Double_t g = d-3.*a*a*a*a/256. + a*a*b/16. - a*c/4.;
   Double_t xx[3];
   Int_t    ind[4];
   Double_t delta;
   Double_t h=0;
   Int_t ireal = 0;
   Int_t i;
   if (f==0) {
      delta = e*e-4.*g;
      if (delta<0) return 0;
      delta = TMath::Sqrt(delta);
      h = 0.5*(-e-delta);
      if (h>=0) {
         h = TMath::Sqrt(h);
         x[ireal++] = -h-0.25*a;
         x[ireal++] = h-0.25*a;
      }
      h = 0.5*(-e+delta);
      if (h>=0) {
         h = TMath::Sqrt(h);
         x[ireal++] = -h-0.25*a;
         x[ireal++] = h-0.25*a;
      }
      if (ireal>0) {
         TMath::Sort(ireal, x, ind,kFALSE);
         for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
         memcpy(x,xx,ireal*sizeof(Double_t));
      }
      return ireal; 
   }     
   
   if (g==0) {
      x[ireal++] = -0.25*a;
      ind[0] = SolveCubic(0,e,f,xx);
      for (i=0; i<ind[0]; i++) x[ireal++] = xx[i]-0.25*a;      
      if (ireal>0) {
         TMath::Sort(ireal, x, ind,kFALSE);
         for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
         memcpy(x,xx,ireal*sizeof(Double_t));
      }
      return ireal;
   }    
      
      
   ireal = SolveCubic(2.*e, e*e-4.*g, -f*f, xx);
   if (ireal==1) {
      if (xx[0]<=0) return 0;
      h = TMath::Sqrt(xx[0]);   
   } else {
      // 3 real solutions of the cubic
      for (Int_t i=0; i<3; i++) {
         h = xx[i];
         if (h>=0) break;
      }
      if (h<=0) return 0;
      h = TMath::Sqrt(h);
   }
   Double_t j = 0.5*(e+h*h-f/h);      
   ireal = 0;
   delta = h*h-4.*j;
   if (delta>=0) {
      delta = TMath::Sqrt(delta);
      x[ireal++] = 0.5*(-h-delta)-0.25*a;
      x[ireal++] = 0.5*(-h+delta)-0.25*a;
   }
   delta = h*h-4.*g/j;
   if (delta>=0) {
      delta = TMath::Sqrt(delta);
      x[ireal++] = 0.5*(h-delta)-0.25*a;
      x[ireal++] = 0.5*(h+delta)-0.25*a;
   }
   if (ireal>0) {
      TMath::Sort(ireal, x, ind,kFALSE);
      for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
      memcpy(x,xx,ireal*sizeof(Double_t));
   }
   return ireal;
}

//_____________________________________________________________________________
 Double_t TGeoTorus::ToBoundary(Double_t *pt, Double_t *dir, Double_t r) const
{
// Returns distance to the surface or the torus (fR,r) from a point, along
// a direction. Point is close enough to the boundary so that the distance 
// to the torus is decreasing while moving along the given direction.
   
   // Compute coeficients of the quartic
   Double_t r0sq  = pt[0]*pt[0]+pt[1]*pt[1]+pt[2]*pt[2];
   Double_t rdotn = pt[0]*dir[0]+pt[1]*dir[1]+pt[2]*dir[2];
   Double_t rsumsq = fR*fR+r*r;
   Double_t a = 4.*rdotn;
   Double_t b = 2.*(r0sq+2.*rdotn*rdotn-rsumsq+2.*fR*fR*dir[2]*dir[2]);
   Double_t c = 4.*(r0sq*rdotn-rsumsq*rdotn+2.*fR*fR*pt[2]*dir[2]);
   Double_t d = r0sq*r0sq-2.*r0sq*rsumsq+4.*fR*fR*pt[2]*pt[2]+(fR*fR-r*r)*(fR*fR-r*r);
   
   Double_t x[4];
   Int_t nsol = SolveQuartic(a,b,c,d,x);
   if (!nsol) return TGeoShape::Big();
   // look for first positive solution
   for (Int_t i=0; i<nsol; i++) {
      if (x[i]>=0) return x[i];
   }
   return TGeoShape::Big();   
}      

      
   



ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.