// @(#)root/geom:$Name: $:$Id: TGeoTrd2.cxx,v 1.24 2004/04/13 07:04:42 brun Exp $
// Author: Andrei Gheata 31/01/02
// TGeoTrd2::Contains() and DistToOut() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//_____________________________________________________________________________
// TGeoTrd2 - a trapezoid with both x and y lengths varying with z. It
// has 5 parameters, the half lengths in x at -dz and +dz, the half
// lengths in y at -dz and +dz, and the half length in z (dz).
//
//_____________________________________________________________________________
//
/*
*/
//
//
/*
*/
//
//
/*
*/
//
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoTrd2.h"
ClassImp(TGeoTrd2)
//_____________________________________________________________________________
TGeoTrd2::TGeoTrd2()
{
// dummy ctor
SetShapeBit(kGeoTrd2);
fDz = fDx1 = fDx2 = fDy1 = fDy2 = 0;
}
//_____________________________________________________________________________
TGeoTrd2::TGeoTrd2(Double_t dx1, Double_t dx2, Double_t dy1, Double_t dy2, Double_t dz)
:TGeoBBox(0,0,0)
{
// constructor.
SetShapeBit(kGeoTrd2);
fDx1 = dx1;
fDx2 = dx2;
fDy1 = dy1;
fDy2 = dy2;
fDz = dz;
if ((fDx1<0) || (fDx2<0) || (fDy1<0) || (fDy2<0) || (fDz<0)) {
SetShapeBit(kGeoRunTimeShape);
printf("trd2 : dx1=%f, dx2=%f, dy1=%f, dy2=%f, dz=%fn",
dx1,dx2,dy1,dy2,dz);
}
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoTrd2::TGeoTrd2(const char * name, Double_t dx1, Double_t dx2, Double_t dy1, Double_t dy2, Double_t dz)
:TGeoBBox(name, 0,0,0)
{
// constructor.
SetShapeBit(kGeoTrd2);
fDx1 = dx1;
fDx2 = dx2;
fDy1 = dy1;
fDy2 = dy2;
fDz = dz;
if ((fDx1<0) || (fDx2<0) || (fDy1<0) || (fDy2<0) || (fDz<0)) {
SetShapeBit(kGeoRunTimeShape);
printf("trd2 : dx1=%f, dx2=%f, dy1=%f, dy2=%f, dz=%fn",
dx1,dx2,dy1,dy2,dz);
}
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoTrd2::TGeoTrd2(Double_t *param)
:TGeoBBox(0,0,0)
{
// ctor with an array of parameters
// param[0] = dx1
// param[1] = dx2
// param[2] = dy1
// param[3] = dy2
// param[4] = dz
SetShapeBit(kGeoTrd2);
SetDimensions(param);
if ((fDx1<0) || (fDx2<0) || (fDy1<0) || (fDy2<0) || (fDz<0)) SetShapeBit(kGeoRunTimeShape);
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoTrd2::~TGeoTrd2()
{
// destructor
}
//_____________________________________________________________________________
void TGeoTrd2::ComputeBBox()
{
// compute bounding box for a trd2
fDX = TMath::Max(fDx1, fDx2);
fDY = TMath::Max(fDy1, fDy2);
fDZ = fDz;
memset(fOrigin, 0, 3*sizeof(Double_t));
}
//_____________________________________________________________________________
void TGeoTrd2::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
Double_t safe, safemin;
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t calf = 1./TMath::Sqrt(1.0+fx*fx);
// check Z facettes
safe = safemin = TMath::Abs(fDz-TMath::Abs(point[2]));
norm[0] = norm[1] = 0;
norm[2] = (dir[2]>=0)?1:-1;
if (safe<1E-6) return;
// check X facettes
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
if (distx>=0) {
safe=TMath::Abs(distx-TMath::Abs(point[0]))*calf;
if (safe<safemin) {
safemin = safe;
norm[0] = calf;
norm[1] = 0;
norm[2] = calf*fx;
Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
if (dot<0) norm[0]=-norm[0];
if (safe<1E-6) return;
}
}
Double_t fy = 0.5*(fDy1-fDy2)/fDz;
calf = 1./TMath::Sqrt(1.0+fy*fy);
// check Y facettes
distx = 0.5*(fDy1+fDy2)-fy*point[2];
if (distx>=0) {
safe=TMath::Abs(distx-TMath::Abs(point[1]))*calf;
if (safe<safemin) {
safemin = safe;
norm[0] = 0;
norm[1] = calf;
norm[2] = calf*fx;
Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
if (dot<0) norm[1]=-norm[1];
}
}
}
//_____________________________________________________________________________
Bool_t TGeoTrd2::Contains(Double_t *point) const
{
// test if point is inside this shape
// check Z range
if (TMath::Abs(point[2]) > fDz) return kFALSE;
// then y
Double_t dy = 0.5*(fDy2*(point[2]+fDz)+fDy1*(fDz-point[2]))/fDz;
if (TMath::Abs(point[1]) > dy) return kFALSE;
// then x
Double_t dx = 0.5*(fDx2*(point[2]+fDz)+fDx1*(fDz-point[2]))/fDz;
if (TMath::Abs(point[0]) > dx) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Double_t TGeoTrd2::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the trd2
Double_t snxt = TGeoShape::Big();
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t fy = 0.5*(fDy1-fDy2)/fDz;
Double_t cn;
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
Double_t disty = 0.5*(fDy1+fDy2)-fy*point[2];
//--- Compute distance to this shape
// first check if Z facettes are crossed
Double_t dist[3];
for (Int_t i=0; i<3; i++) dist[i]=TGeoShape::Big();
if (dir[2]<0) {
dist[0]=-(point[2]+fDz)/dir[2];
} else if (dir[2]>0) {
dist[0]=(fDz-point[2])/dir[2];
}
// now check X facettes
cn = -dir[0]+fx*dir[2];
if (cn>0) dist[1] = (point[0]+distx)/cn;
cn = dir[0]+fx*dir[2];
if (cn>0) {
Double_t s = (distx-point[0])/cn;
if (s<dist[1]) dist[1] = s;
}
// now check Y facettes
cn = -dir[1]+fy*dir[2];
if (cn>0) dist[2] = (point[1]+disty)/cn;
cn = dir[1]+fy*dir[2];
if (cn>0) {
Double_t s = (disty-point[1])/cn;
if (s<dist[2]) dist[2] = s;
}
snxt = dist[TMath::LocMin(3,dist)];
return snxt;
}
//_____________________________________________________________________________
Double_t TGeoTrd2::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the trd2
Double_t snxt = TGeoShape::Big();
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
// find a visible face
Double_t xnew,ynew,znew;
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t fy = 0.5*(fDy1-fDy2)/fDz;
Double_t cn;
// check visibility of X faces
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
Double_t disty = 0.5*(fDy1+fDy2)-fy*point[2];
//--- Compute distance to this shape
// first check if Z facettes are crossed
if (point[2]<=-fDz) {
cn = -dir[2];
if (cn>=0) return TGeoShape::Big();
snxt = (fDz+point[2])/cn;
// find extrapolated X and Y
xnew = point[0]+snxt*dir[0];
if (TMath::Abs(xnew) < fDx1) {
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) < fDy1) return snxt;
}
} else if (point[2]>=fDz) {
cn = dir[2];
if (cn>=0) return TGeoShape::Big();
snxt = (fDz-point[2])/cn;
// find extrapolated X and Y
xnew = point[0]+snxt*dir[0];
if (TMath::Abs(xnew) < fDx2) {
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) < fDy2) return snxt;
}
}
// check if X facettes are crossed
if (point[0]<=-distx) {
cn = -dir[0]+fx*dir[2];
if (cn>=0) return TGeoShape::Big();
snxt = (point[0]+distx)/cn;
// find extrapolated Y and Z
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) {
Double_t dy = 0.5*(fDy1+fDy2)-fy*znew;
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) < dy) return snxt;
}
}
if (point[0]>=distx) {
cn = dir[0]+fx*dir[2];
if (cn>=0) return TGeoShape::Big();
snxt = (distx-point[0])/cn;
// find extrapolated Y and Z
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) {
Double_t dy = 0.5*(fDy1+fDy2)-fy*znew;
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) < dy) return snxt;
}
}
// finally check Y facettes
if (point[1]<=-disty) {
cn = -dir[1]+fy*dir[2];
if (cn>=0) return TGeoShape::Big();
snxt = (point[1]+disty)/cn;
// find extrapolated X and Z
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) {
Double_t dx = 0.5*(fDx1+fDx2)-fx*znew;
xnew = point[0]+snxt*dir[0];
if (TMath::Abs(xnew) < dx) return snxt;
}
}
if (point[1]>=disty) {
cn = dir[1]+fy*dir[2];
if (cn>=0) return TGeoShape::Big();
snxt = (disty-point[1])/cn;
// find extrapolated X and Z
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) {
Double_t dx = 0.5*(fDx1+fDx2)-fx*znew;
xnew = point[0]+snxt*dir[0];
if (TMath::Abs(xnew) < dx) return snxt;
}
}
return TGeoShape::Big();
}
//_____________________________________________________________________________
Double_t TGeoTrd2::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 3:
xlo = -fDz;
xhi = fDz;
dx = xhi-xlo;
return dx;
}
return dx;
}
//_____________________________________________________________________________
void TGeoTrd2::GetVisibleCorner(Double_t *point, Double_t *vertex, Double_t *normals) const
{
// get the most visible corner from outside point and the normals
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t fy = 0.5*(fDy1-fDy2)/fDz;
Double_t calf = 1./TMath::Sqrt(1.0+fx*fx);
Double_t salf = calf*fx;
Double_t cbet = 1./TMath::Sqrt(1.0+fy*fy);
Double_t sbet = cbet*fy;
// check visibility of X,Y faces
Double_t distx = fDx1-fx*(fDz+point[2]);
Double_t disty = fDy1-fy*(fDz+point[2]);
memset(normals, 0, 9*sizeof(Double_t));
TGeoTrd2 *trd2 = (TGeoTrd2*)this;
if (point[0]>distx) {
// hi x face visible
trd2->SetShapeBit(kGeoVisX);
normals[0]=calf;
normals[2]=salf;
} else {
trd2->SetShapeBit(kGeoVisX, kFALSE);
normals[0]=-calf;
normals[2]=salf;
}
if (point[1]>disty) {
// hi y face visible
trd2->SetShapeBit(kGeoVisY);
normals[4]=cbet;
normals[5]=sbet;
} else {
trd2->SetShapeBit(kGeoVisY, kFALSE);
normals[4]=-cbet;
normals[5]=sbet;
}
if (point[2]>fDz) {
// hi z face visible
trd2->SetShapeBit(kGeoVisZ);
normals[8]=1;
} else {
trd2->SetShapeBit(kGeoVisZ, kFALSE);
normals[8]=-1;
}
SetVertex(vertex);
}
//_____________________________________________________________________________
void TGeoTrd2::GetOppositeCorner(Double_t * /*point*/, Int_t inorm, Double_t *vertex, Double_t *normals) const
{
// get the opposite corner of the intersected face
TGeoTrd2 *trd2 = (TGeoTrd2*)this;
if (inorm != 0) {
// change x face
trd2->SetShapeBit(kGeoVisX, !TestShapeBit(kGeoVisX));
normals[0]=-normals[0];
}
if (inorm != 1) {
// change y face
trd2->SetShapeBit(kGeoVisY, !TestShapeBit(kGeoVisY));
normals[4]=-normals[4];
}
if (inorm != 2) {
// hi z face visible
trd2->SetShapeBit(kGeoVisZ, !TestShapeBit(kGeoVisZ));
normals[8]=-normals[8];
}
SetVertex(vertex);
}
//_____________________________________________________________________________
TGeoVolume *TGeoTrd2::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this trd2 shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Only Z divisions
// are supported. For Z divisions just return the pointer to the volume to be
// divided. In case a wrong division axis is supplied, returns pointer to
// volume that was divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t zmin, zmax, dx1n, dx2n, dy1n, dy2n;
Int_t id;
Double_t end = start+ndiv*step;
switch (iaxis) {
case 1:
Warning("Divide", "dividing a Trd2 on X not implemented");
return 0;
case 2:
Warning("Divide", "dividing a Trd2 on Y not implemented");
return 0;
case 3:
finder = new TGeoPatternZ(voldiv, ndiv, start, end);
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (id=0; id<ndiv; id++) {
zmin = start+id*step;
zmax = start+(id+1)*step;
dx1n = 0.5*(fDx1*(fDz-zmin)+fDx2*(fDz+zmin))/fDz;
dx2n = 0.5*(fDx1*(fDz-zmax)+fDx2*(fDz+zmax))/fDz;
dy1n = 0.5*(fDy1*(fDz-zmin)+fDy2*(fDz+zmin))/fDz;
dy2n = 0.5*(fDy1*(fDz-zmax)+fDy2*(fDz+zmax))/fDz;
shape = new TGeoTrd2(dx1n, dx2n, dy1n, dy2n, step/2.);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Z";
voldiv->AddNodeOffset(vol, id, start+step/2+id*step, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
}
//_____________________________________________________________________________
void TGeoTrd2::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
TGeoBBox::GetBoundingCylinder(param);
}
//_____________________________________________________________________________
Int_t TGeoTrd2::GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
{
// Fills real parameters of a positioned box inside this. Returns 0 if successfull.
dx=dy=dz=0;
if (mat->IsRotation()) {
Error("GetFittingBox", "cannot handle parametrized rotated volumes");
return 1; // ### rotation not accepted ###
}
//--> translate the origin of the parametrized box to the frame of this box.
Double_t origin[3];
mat->LocalToMaster(parambox->GetOrigin(), origin);
if (!Contains(origin)) {
Error("GetFittingBox", "wrong matrix - parametrized box is outside this");
return 1; // ### wrong matrix ###
}
//--> now we have to get the valid range for all parametrized axis
Double_t dd[3];
dd[0] = parambox->GetDX();
dd[1] = parambox->GetDY();
dd[2] = parambox->GetDZ();
//-> check if Z range is fixed
if (dd[2]<0) {
dd[2] = TMath::Min(origin[2]+fDz, fDz-origin[2]);
if (dd[2]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
}
if (dd[0]>=0 && dd[1]>=0) {
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//-> check now range at Z = origin[2] +/- dd[2]
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t fy = 0.5*(fDy1-fDy2)/fDz;
Double_t dx0 = 0.5*(fDx1+fDx2);
Double_t dy0 = 0.5*(fDy1+fDy2);
Double_t z=origin[2]-dd[2];
dd[0] = dx0-fx*z-origin[0];
dd[1] = dy0-fy*z-origin[1];
z=origin[2]+dd[2];
dd[0] = TMath::Min(dd[0], dx0-fx*z-origin[0]);
dd[1] = TMath::Min(dd[1], dy0-fy*z-origin[1]);
if (dd[0]<0 || dd[1]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//_____________________________________________________________________________
TGeoShape *TGeoTrd2::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
if (!mother->TestShapeBit(kGeoTrd2)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t dx1, dx2, dy1, dy2, dz;
if (fDx1<0) dx1=((TGeoTrd2*)mother)->GetDx1();
else dx1=fDx1;
if (fDx2<0) dx2=((TGeoTrd2*)mother)->GetDx2();
else dx2=fDx2;
if (fDy1<0) dy1=((TGeoTrd2*)mother)->GetDy1();
else dy1=fDy1;
if (fDy2<0) dy2=((TGeoTrd2*)mother)->GetDy2();
else dy2=fDy2;
if (fDz<0) dz=((TGeoTrd2*)mother)->GetDz();
else dz=fDz;
return (new TGeoTrd2(dx1, dx2, dy1, dy2, dz));
}
//_____________________________________________________________________________
void TGeoTrd2::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoTrd2 ***n", GetName());
printf(" dx1 = %11.5fn", fDx1);
printf(" dx2 = %11.5fn", fDx2);
printf(" dy1 = %11.5fn", fDy1);
printf(" dy2 = %11.5fn", fDy2);
printf(" dz = %11.5fn", fDz);
printf(" Bounding box:n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
Double_t TGeoTrd2::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[3];
//--- Compute safety first
// check Z facettes
saf[0] = fDz-TMath::Abs(point[2]);
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t calf = 1./TMath::Sqrt(1.0+fx*fx);
// check X facettes
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
if (distx<0) saf[1]=TGeoShape::Big();
else saf[1]=(distx-TMath::Abs(point[0]))*calf;
Double_t fy = 0.5*(fDy1-fDy2)/fDz;
calf = 1./TMath::Sqrt(1.0+fy*fy);
// check Y facettes
distx = 0.5*(fDy1+fDy2)-fy*point[2];
if (distx<0) saf[2]=TGeoShape::Big();
else saf[2]=(distx-TMath::Abs(point[1]))*calf;
if (in) return saf[TMath::LocMin(3,saf)];
for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(3,saf)];
}
//_____________________________________________________________________________
void TGeoTrd2::SetDimensions(Double_t *param)
{
// set arb8 params in one step :
fDx1 = param[0];
fDx2 = param[1];
fDy1 = param[2];
fDy2 = param[3];
fDz = param[4];
ComputeBBox();
}
//_____________________________________________________________________________
void TGeoTrd2::SetPoints(Double_t *buff) const
{
// create trd2 mesh points
if (!buff) return;
buff[ 0] = -fDx1; buff[ 1] = -fDy1; buff[ 2] = -fDz;
buff[ 3] = -fDx1; buff[ 4] = fDy1; buff[ 5] = -fDz;
buff[ 6] = fDx1; buff[ 7] = fDy1; buff[ 8] = -fDz;
buff[ 9] = fDx1; buff[10] = -fDy1; buff[11] = -fDz;
buff[12] = -fDx2; buff[13] = -fDy2; buff[14] = fDz;
buff[15] = -fDx2; buff[16] = fDy2; buff[17] = fDz;
buff[18] = fDx2; buff[19] = fDy2; buff[20] = fDz;
buff[21] = fDx2; buff[22] = -fDy2; buff[23] = fDz;
}
//_____________________________________________________________________________
void TGeoTrd2::SetPoints(Float_t *buff) const
{
// create trd2 mesh points
if (!buff) return;
buff[ 0] = -fDx1; buff[ 1] = -fDy1; buff[ 2] = -fDz;
buff[ 3] = -fDx1; buff[ 4] = fDy1; buff[ 5] = -fDz;
buff[ 6] = fDx1; buff[ 7] = fDy1; buff[ 8] = -fDz;
buff[ 9] = fDx1; buff[10] = -fDy1; buff[11] = -fDz;
buff[12] = -fDx2; buff[13] = -fDy2; buff[14] = fDz;
buff[15] = -fDx2; buff[16] = fDy2; buff[17] = fDz;
buff[18] = fDx2; buff[19] = fDy2; buff[20] = fDz;
buff[21] = fDx2; buff[22] = -fDy2; buff[23] = fDz;
}
//_____________________________________________________________________________
void TGeoTrd2::SetVertex(Double_t *vertex) const
{
// set vertex of a corner according to visibility flags
if (TestShapeBit(kGeoVisX)) {
if (TestShapeBit(kGeoVisZ)) {
vertex[0] = fDx2;
vertex[2] = fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy2:-fDy2;
} else {
vertex[0] = fDx1;
vertex[2] = -fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy1:-fDy1;
}
} else {
if (TestShapeBit(kGeoVisZ)) {
vertex[0] = -fDx2;
vertex[2] = fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy2:-fDy2;
} else {
vertex[0] = -fDx1;
vertex[2] = -fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy1:-fDy1;
}
}
}
//_____________________________________________________________________________
void TGeoTrd2::Sizeof3D() const
{
// fill size of this 3-D object
TGeoBBox::Sizeof3D();
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.