// @(#)root/quadp:$Name: $:$Id: TGondzioSolver.cxx,v 1.5 2004/06/09 22:08:32 brun Exp $
// Author: Eddy Offermann May 2004
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
/*************************************************************************
* Parts of this file are copied from the OOQP distribution and *
* are subject to the following license: *
* *
* COPYRIGHT 2001 UNIVERSITY OF CHICAGO *
* *
* The copyright holder hereby grants you royalty-free rights to use, *
* reproduce, prepare derivative works, and to redistribute this software*
* to others, provided that any changes are clearly documented. This *
* software was authored by: *
* *
* E. MICHAEL GERTZ gertz@mcs.anl.gov *
* Mathematics and Computer Science Division *
* Argonne National Laboratory *
* 9700 S. Cass Avenue *
* Argonne, IL 60439-4844 *
* *
* STEPHEN J. WRIGHT swright@cs.wisc.edu *
* Computer Sciences Department *
* University of Wisconsin *
* 1210 West Dayton Street *
* Madison, WI 53706 FAX: (608)262-9777 *
* *
* Any questions or comments may be directed to one of the authors. *
* *
* ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF *
* ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND *
* OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT *
* WITH THE DEPARTMENT OF ENERGY. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// TGondzioSolver //
// //
//////////////////////////////////////////////////////////////////////////
#include "Riostream.h"
#include "TGondzioSolver.h"
#include "TQpLinSolverDens.h"
ClassImp(TGondzioSolver)
//______________________________________________________________________________
TGondzioSolver::TGondzioSolver()
{
fPrintlevel = 0;
fTsig = 0.0;
fMaximum_correctors = 0;
fNumberGondzioCorrections = 0;
fStepFactor0 = 0.0;
fStepFactor1 = 0.0;
fAcceptTol = 0.0;
fBeta_min = 0.0;
fBeta_max = 0.0;
fCorrector_step = 0;
fStep = 0;
fCorrector_resid = 0;
fFactory = 0;
}
//______________________________________________________________________________
TGondzioSolver::TGondzioSolver(TQpProbBase *of,TQpDataBase *prob,Int_t verbose)
{
fFactory = of;
fStep = fFactory->MakeVariables(prob);
fCorrector_step = fFactory->MakeVariables(prob);
fCorrector_resid = fFactory->MakeResiduals(prob);
fPrintlevel = verbose;
fTsig = 3.0; // the usual value for the centering exponent (tau)
fMaximum_correctors = 3; // maximum number of Gondzio correctors
fNumberGondzioCorrections = 0;
// the two StepFactor constants set targets for increase in step
// length for each corrector
fStepFactor0 = 0.08;
fStepFactor1 = 1.08;
// accept the enhanced step if it produces a small improvement in
// the step length
fAcceptTol = 0.005;
//define the Gondzio correction box
fBeta_min = 0.1;
fBeta_max = 10.0;
}
//______________________________________________________________________________
TGondzioSolver::TGondzioSolver(const TGondzioSolver &another) : TQpSolverBase(another)
{
*this = another;
}
//______________________________________________________________________________
Int_t TGondzioSolver::Solve(TQpDataBase *prob,TQpVar *iterate,TQpResidual *resid)
{
Int_t status_code;
Double_t alpha = 1;
Double_t sigma = 1;
fDnorm = prob->DataNorm();
// initialization of (x,y,z) and factorization routine.
fSys = fFactory->MakeLinSys(prob);
this->Start(fFactory,iterate,prob,resid,fStep);
fIter = 0;
fNumberGondzioCorrections = 0;
Double_t mu = iterate->GetMu();
Int_t done = 0;
do
{
fIter++;
// evaluate residuals and update algorithm status:
resid->CalcResids(prob,iterate);
// termination test:
status_code = this->DoStatus(prob,iterate,resid,fIter,mu,0);
if (status_code != kNOT_FINISHED ) break;
if (fPrintlevel >= 10)
this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,0);
// *** Predictor step ***
resid->Set_r3_xz_alpha(iterate,0.0);
fSys->Factor(prob,iterate);
fSys->Solve(prob,iterate,resid,fStep);
fStep->Negate();
alpha = iterate->StepBound(fStep);
// calculate centering parameter
Double_t muaff = iterate->MuStep(fStep,alpha);
sigma = TMath::Power(muaff/mu,fTsig);
if (fPrintlevel >= 10)
this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,2);
// *** Corrector step ***
// form right hand side of linear system:
resid->Add_r3_xz_alpha(fStep,-sigma*mu);
fSys->Solve(prob,iterate,resid,fStep);
fStep->Negate();
// calculate distance to boundary along the Mehrotra
// predictor-corrector step:
alpha = iterate->StepBound(fStep);
// prepare for Gondzio corrector loop: zero out the
// corrector_resid structure:
fCorrector_resid->Clear_r1r2();
// calculate the target box:
Double_t rmin = sigma*mu*fBeta_min;
Double_t rmax = sigma*mu*fBeta_max;
Int_t StopCorrections = 0;
fNumberGondzioCorrections = 0;
// enter the Gondzio correction loop:
if (fPrintlevel >= 10)
cout << "**** Entering the correction loop ****" << endl;
while (fNumberGondzioCorrections < fMaximum_correctors &&
alpha < 1.0 && !StopCorrections) {
// copy current variables into fcorrector_step
*fCorrector_step = *iterate;
// calculate target steplength
Double_t alpha_target = fStepFactor1*alpha+fStepFactor0;
if (alpha_target > 1.0) alpha_target = 1.0;
// add a step of this length to corrector_step
fCorrector_step->Saxpy(fStep,alpha_target);
// place XZ into the r3 component of corrector_resids
fCorrector_resid->Set_r3_xz_alpha(fCorrector_step,0.0);
// do the projection operation
fCorrector_resid->Project_r3(rmin,rmax);
// solve for corrector direction
fSys->Solve(prob,iterate,fCorrector_resid,fCorrector_step);
// add the current step to corrector_step, and calculate the
// step to boundary along the resulting direction
fCorrector_step->Saxpy(fStep,1.0);
Double_t alpha_enhanced = iterate->StepBound(fCorrector_step);
// if the enhanced step length is actually 1, make it official
// and stop correcting
if (alpha_enhanced == 1.0) {
*fStep = *fCorrector_step;
alpha = alpha_enhanced;
fNumberGondzioCorrections++;
StopCorrections = 1;
} else if(alpha_enhanced >= (1.0+fAcceptTol)*alpha) {
// if enhanced step length is significantly better than the
// current alpha, make the enhanced step official, but maybe
// keep correcting
*fStep = *fCorrector_step;
alpha = alpha_enhanced;
fNumberGondzioCorrections++;
StopCorrections = 0;
} else {
// otherwise quit the correction loop
StopCorrections = 1;
}
}
// We've finally decided on a step direction, now calculate the
// length using Mehrotra's heuristic.x
alpha = this->FinalStepLength(iterate,fStep);
// alternatively, just use a crude step scaling factor.
// alpha = 0.995 * iterate->StepBound(fStep);
// actually take the step (at last!) and calculate the new mu
iterate->Saxpy(fStep,alpha);
mu = iterate->GetMu();
} while (!done);
resid->CalcResids(prob,iterate);
if (fPrintlevel >= 10)
this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,1);
return status_code;
}
//______________________________________________________________________________
void TGondzioSolver::DefMonitor(TQpDataBase* /* data */,TQpVar* /* vars */,
TQpResidual *resid,
Double_t alpha,Double_t sigma,Int_t i,Double_t mu,
Int_t status_code,Int_t level)
{
switch (level) {
case 0 : case 1: {
cout << endl << "Duality Gap: " << resid->GetDualityGap() << endl;
if (i > 1) {
cout << " Number of Corrections = " << fNumberGondzioCorrections
<< " alpha = " << alpha << endl;
}
cout << " *** Iteration " << i << " *** " << endl;
cout << " mu = " << mu << " relative residual norm = "
<< resid->GetResidualNorm()/fDnorm << endl;
if (level == 1) {
// Termination has been detected by the status check; print
// appropriate message
if (status_code == kSUCCESSFUL_TERMINATION) {
cout << endl
<< " *** SUCCESSFUL TERMINATION ***"
<< endl;
} else if (status_code == kMAX_ITS_EXCEEDED) {
cout << endl
<< " *** MAXIMUM ITERATIONS REACHED *** " << endl;
} else if (status_code == kINFEASIBLE) {
cout << endl
<< " *** TERMINATION: PROBABLY INFEASIBLE *** "
<< endl;
} else if (status_code == kUNKNOWN) {
cout << endl
<< " *** TERMINATION: STATUS UNKNOWN *** " << endl;
}
}
} break;
case 2:
cout << " *** sigma = " << sigma << endl;
break;
}
}
//______________________________________________________________________________
TGondzioSolver::~TGondzioSolver()
{
if (fCorrector_step) { delete fCorrector_step; fCorrector_step = 0; }
if (fStep) { delete fStep; fStep = 0; }
if (fCorrector_resid) { delete fCorrector_resid; fCorrector_resid = 0; }
}
//______________________________________________________________________________
TGondzioSolver &TGondzioSolver::operator=(const TGondzioSolver &source)
{
if (this != &source) {
TQpSolverBase::operator=(source);
fPrintlevel = source.fPrintlevel;
fTsig = source.fTsig ;
fMaximum_correctors = source.fMaximum_correctors;
fNumberGondzioCorrections = source.fNumberGondzioCorrections;
fStepFactor0 = source.fStepFactor0;
fStepFactor1 = source.fStepFactor1;
fAcceptTol = source.fAcceptTol;
fBeta_min = source.fBeta_min;
fBeta_max = source.fBeta_max;
if (fCorrector_step) delete fCorrector_step;
if (fStep) delete fStep;
if (fCorrector_resid) delete fCorrector_resid;
fCorrector_step = new TQpVar(*source.fCorrector_step);
fStep = new TQpVar(*source.fStep);
fCorrector_resid = new TQpResidual(*source.fCorrector_resid);
fFactory = source.fFactory;
}
return *this;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.