// @(#)root/graf:$Name: $:$Id: TGraphSmooth.cxx,v 1.7 2002/12/02 18:50:02 rdm Exp $
// Author: Christian Stratowa 30/09/2001
/******************************************************************************
* Copyright(c) 2001- , Dr. Christian Stratowa, Vienna, Austria. *
* Author: Christian Stratowa with help from Rene Brun. *
* *
* Algorithms for smooth regression adapted from: *
* R: A Computer Language for Statistical Data Analysis *
* Copyright (C) 1996 Robert Gentleman and Ross Ihaka *
* Copyright (C) 1999-2001 Robert Gentleman, Ross Ihaka and the *
* R Development Core Team *
* R is free software, for licensing see the GNU General Public License *
* http://www.ci.tuwien.ac.at/R-project/welcome.html *
* *
* Based on: "The ROOT System", All rights reserved. *
* Authors: Rene Brun and Fons Rademakers. *
* For the licensing terms of "The ROOT System" see $ROOTSYS/AA_LICENSE. *
* For the list of contributors to "The ROOT System" see $ROOTSYS/AA_CREDITS. *
******************************************************************************/
#include "Riostream.h"
#include "TMath.h"
#include "TGraphSmooth.h"
#include "TGraphErrors.h"
ClassImp(TGraphSmooth);
//______________________________________________________________________
// TGraphSmooth
//
// A helper class to smooth TGraph
// see examples in $ROOTSYS/tutorials/motorcycle.C and approx.C
//
//______________________________________________________________________
TGraphSmooth::TGraphSmooth(): TNamed()
{
//*-*-*-*-*-*-*-*-*Default GraphSmooth constructor *-*-*-*-*-*-*-*-*-*-*
// ===============================
fGin = 0;
fGout = 0;
}
//______________________________________________________________________
TGraphSmooth::TGraphSmooth(const char *name): TNamed(name,"")
{
//*-*-*-*-*-*-*-*-*GraphSmooth constructor *-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// =======================
fGin = 0;
fGout = 0;
}
//______________________________________________________________________
TGraphSmooth::~TGraphSmooth()
{
//*-*-*-*-*-*-*-*-*GraphSmooth destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// ======================
if (fGout) delete fGout;
fGin = 0;
fGout = 0;
}
//______________________________________________________________________
void TGraphSmooth::Smoothin(TGraph *grin)
{
//*-*-*-*-*-*-*-*-*Sort input data points*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// ======================
if (fGout) {delete fGout; fGout = 0;}
fGin = grin;
fNin = fGin->GetN();
Double_t *xin = new Double_t[fNin];
Double_t *yin = new Double_t[fNin];
Int_t i;
for (i=0;i<fNin;i++) {
xin[i] = fGin->GetX()[i];
yin[i] = fGin->GetY()[i];
}
// sort input x, y
Int_t *index = new Int_t[fNin];
TMath::Sort(fNin, xin, index, kFALSE);
for (i=0;i<fNin;i++) {
fGin->SetPoint(i, xin[index[i]], yin[index[i]]);
}
fMinX = fGin->GetX()[0]; //already sorted!
fMaxX = fGin->GetX()[fNin-1];
delete [] index;
delete [] xin;
delete [] yin;
}
//______________________________________________________________________
TGraph *TGraphSmooth::SmoothKern(TGraph *grin, Option_t *option,
Double_t bandwidth, Int_t nout, Double_t *xout)
{
//*-*-*-*-*-*-*-*-*Smooth data with Kernel smoother*-*-*-*-*-*-*-*-*-*-*
// ================================
//
// Smooth grin with the Nadaraya-Watson kernel regression estimate.
//
// Arguments:
// grin: input graph
//
// option: the kernel to be used: "box", "normal"
// bandwidth: the bandwidth. The kernels are scaled so that their quartiles
// (viewed as probability densities) are at +/- 0.25*bandwidth.
// nout: If xout is not specified, interpolation takes place at equally
// spaced points spanning the interval [min(x), max(x)], where
// nout = max(nout, number of input data).
// xout: an optional set of values at which to evaluate the fit
//
TString opt = option;
opt.ToLower();
Int_t kernel = 1;
if (opt.Contains("normal")) kernel = 2;
Smoothin(grin);
Double_t delta = 0;
Int_t *index = 0;
if (xout == 0) {
fNout = TMath::Max(nout, fNin);
delta = (fMaxX - fMinX)/(fNout - 1);
} else {
fNout = nout;
index = new Int_t[nout];
TMath::Sort(nout, xout, index, kFALSE);
}
fGout = new TGraph(fNout);
for (Int_t i=0;i<fNout;i++) {
if (xout == 0) fGout->SetPoint(i,fMinX + i*delta, 0);
else fGout->SetPoint(i,xout[index[i]], 0);
}
BDRksmooth(fGin->GetX(), fGin->GetY(), fNin, fGout->GetX(),
fGout->GetY(), fNout, kernel, bandwidth);
if (index) {delete [] index; index = 0;}
return fGout;
}
//______________________________________________________________________
void TGraphSmooth::BDRksmooth(Double_t *x, Double_t *y, Int_t n, Double_t *xp,
Double_t *yp, Int_t np, Int_t kernel, Double_t bw)
{
//*-*-*-*-*-*-*-*-*Smooth data with specified kernel*-*-*-*-*-*-*-*-*-*-*
//*-* =================================
//
// Based on R function ksmooth: Translated to C++ by C. Stratowa
// (R source file: ksmooth.c by B.D.Ripley Copyright (C) 1998)
//
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Int_t imin = 0;
Double_t cutoff = 0.0;
// bandwidth is in units of half inter-quartile range
if (kernel == 1) {
bw *= 0.5;
cutoff = bw;
}
if (kernel == 2) {
bw *= 0.3706506;
cutoff = 4*bw;
}
while ((x[imin] < xp[0] - cutoff) && (imin < n)) imin++;
for (Int_t j=0;j<np;j++) {
Double_t xx, w;
Double_t num = 0.0;
Double_t den = 0.0;
Double_t x0 = xp[j];
for (Int_t i=imin;i<n;i++) {
if (x[i] < x0 - cutoff) imin = i;
if (x[i] > x0 + cutoff) break;
xx = TMath::Abs(x[i] - x0)/bw;
if (kernel == 1) w = 1;
else w = TMath::Exp(-0.5*xx*xx);
num += w*y[i];
den += w;
}
if (den > 0) {
yp[j] = num/den;
} else {
yp[j] = 0; //should be NA_REAL (see R.h) or nan("NAN")
}
}
}
//______________________________________________________________________
TGraph *TGraphSmooth::SmoothLowess(TGraph *grin, Option_t *option ,
Double_t span, Int_t iter, Double_t delta)
{
//*-*-*-*-*-*-*-*-*Smooth data with Lowess smoother*-*-*-*-*-*-*-*-*-*-*
// ================================
//
// This function performs the computations for the LOWESS smoother
// (see the reference below). Lowess returns the output points
// x and y which give the coordinates of the smooth.
//
// Arguments:
// grin: Input graph
//
// span: the smoother span. This gives the proportion of points in the plot
// which influence the smooth at each value.
// Larger values give more smoothness.
// iter: the number of robustifying iterations which should be performed.
// Using smaller values of iter will make lowess run faster.
// delta: values of x which lie within delta of each other replaced by a
// single value in the output from lowess.
// For delta = 0, delta will be calculated.
//
// References:
// Cleveland, W. S. (1979) Robust locally weighted regression and smoothing
// scatterplots. J. Amer. Statist. Assoc. 74, 829-836.
// Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots
// by robust locally weighted regression.
// The American Statistician, 35, 54.
// ==================
TString opt = option;
opt.ToLower();
Smoothin(grin);
if (delta == 0) {delta = 0.01*(TMath::Abs(fMaxX - fMinX));}
// output X, Y
fNout = fNin;
fGout = new TGraphErrors(fNout);
for (Int_t i=0;i<fNout;i++) {
fGout->SetPoint(i,fGin->GetX()[i], 0);
}
Lowess(fGin->GetX(), fGin->GetY(), fNin, fGout->GetY(), span, iter, delta);
return fGout;
}
//______________________________________________________________________
void TGraphSmooth::Lowess(Double_t *x, Double_t *y, Int_t n, Double_t *ys,
Double_t span, Int_t iter, Double_t delta)
{
//*-*-*-*-*-*-*-*-*Lowess regression smoother*-*-*-*-*-*-*-*-*-*-*-*-*-*
// ==========================
// Based on R function clowess: Translated to C++ by C. Stratowa
// (R source file: lowess.c by R Development Core Team (C) 1999-2001)
//
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Int_t i, iiter, j, last, m1, m2, nleft, nright, ns;
Double_t alpha, c1, c9, cmad, cut, d1, d2, denom, r;
Bool_t ok;
if (n < 2) {
ys[0] = y[0];
return;
}
// nleft, nright, last, etc. must all be shifted to get rid of these:
x--;
y--;
ys--;
Double_t *RW = ((TGraphErrors*)fGout)->GetEX();
Double_t *res = ((TGraphErrors*)fGout)->GetEY();
// at least two, at most n poInt_ts
ns = TMath::Max(2, TMath::Min(n, (Int_t)(span*n + 1e-7)));
// robustness iterations
iiter = 1;
while (iiter <= iter+1) {
nleft = 1;
nright = ns;
last = 0; // index of prev estimated poInt_t
i = 1; // index of current poInt_t
for(;;) {
if (nright < n) {
// move nleft, nright to right if radius decreases
d1 = x[i] - x[nleft];
d2 = x[nright+1] - x[i];
// if d1 <= d2 with x[nright+1] == x[nright], lowest fixes
if (d1 > d2) {
// radius will not decrease by move right
nleft++;
nright++;
continue;
}
}
// fitted value at x[i]
Bool_t iterg1 = iiter>1;
Lowest(&x[1], &y[1], n, x[i], ys[i], nleft, nright,
res, iterg1, RW, ok);
if (!ok) ys[i] = y[i];
// all weights zero copy over value (all rw==0)
if (last < i-1) {
denom = x[i]-x[last];
// skipped poInt_ts -- Int_terpolate non-zero - proof?
for(j = last+1; j < i; j++) {
alpha = (x[j]-x[last])/denom;
ys[j] = alpha*ys[i] + (1.-alpha)*ys[last];
}
}
// last poInt_t actually estimated
last = i;
// x coord of close poInt_ts
cut = x[last] + delta;
for (i = last+1; i <= n; i++) {
if (x[i] > cut)
break;
if (x[i] == x[last]) {
ys[i] = ys[last];
last = i;
}
}
i = TMath::Max(last+1, i-1);
if (last >= n)
break;
}
// residuals
for(i=0; i < n; i++)
res[i] = y[i+1] - ys[i+1];
// compute robustness weights except last time
if (iiter > iter)
break;
for(i=0 ; i<n ; i++)
RW[i] = TMath::Abs(res[i]);
// compute cmad := 6 * median(rw[], n)
m1 = n/2;
// partial sort, for m1 & m2
Psort(RW, n, m1);
if(n % 2 == 0) {
m2 = n-m1-1;
Psort(RW, n, m2);
cmad = 3.*(RW[m1]+RW[m2]);
} else { /* n odd */
cmad = 6.*RW[m1];
}
c9 = 0.999*cmad;
c1 = 0.001*cmad;
for(i=0 ; i<n ; i++) {
r = TMath::Abs(res[i]);
if (r <= c1)
RW[i] = 1.;
else if (r <= c9)
RW[i] = (1.-(r/cmad)*(r/cmad))*(1.-(r/cmad)*(r/cmad));
else
RW[i] = 0.;
}
iiter++;
}
}
//______________________________________________________________________
void TGraphSmooth::Lowest(Double_t *x, Double_t *y, Int_t n, Double_t &xs,
Double_t &ys, Int_t nleft, Int_t nright, Double_t *w,
Bool_t userw, Double_t *rw, Bool_t &ok)
{
//*-*-*-*-*-*-*-*-*Fit value at x[i] *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// =================
// Based on R function lowest: Translated to C++ by C. Stratowa
// (R source file: lowess.c by R Development Core Team (C) 1999-2001)
//
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Int_t nrt, j;
Double_t a, b, c, d, h, h1, h9, r, range;
x--;
y--;
w--;
rw--;
range = x[n]-x[1];
h = TMath::Max(xs-x[nleft], x[nright]-xs);
h9 = 0.999*h;
h1 = 0.001*h;
// sum of weights
a = 0.;
j = nleft;
while (j <= n) {
// compute weights (pick up all ties on right)
w[j] = 0.;
r = TMath::Abs(x[j] - xs);
if (r <= h9) {
if (r <= h1) {
w[j] = 1.;
} else {
d = (r/h)*(r/h)*(r/h);
w[j] = (1.- d)*(1.- d)*(1.- d);
}
if (userw)
w[j] *= rw[j];
a += w[j];
} else if (x[j] > xs)
break;
j = j+1;
}
// rightmost pt (may be greater than nright because of ties)
nrt = j-1;
if (a <= 0.)
ok = kFALSE;
else {
ok = kTRUE;
// weighted least squares: make sum of w[j] == 1
for(j=nleft ; j<=nrt ; j++)
w[j] /= a;
if (h > 0.) {
a = 0.;
// use linear fit weighted center of x values
for(j=nleft ; j<=nrt ; j++)
a += w[j] * x[j];
b = xs - a;
c = 0.;
for(j=nleft ; j<=nrt ; j++)
c += w[j]*(x[j]-a)*(x[j]-a);
if (TMath::Sqrt(c) > 0.001*range) {
b /= c;
// poInt_ts are spread out enough to compute slope
for(j=nleft; j <= nrt; j++)
w[j] *= (b*(x[j]-a) + 1.);
}
}
ys = 0.;
for(j=nleft; j <= nrt; j++)
ys += w[j] * y[j];
}
}
//______________________________________________________________________
TGraph *TGraphSmooth::SmoothSuper(TGraph *grin, Option_t *,
Double_t bass, Double_t span, Bool_t isPeriodic, Double_t *w)
{
//*-*-*-*-*-*-*-*-*Smooth data with Super smoother*-*-*-*-*-*-*-*-*-*-*-*
// ===============================
//
// Smooth the (x, y) values by Friedman's ``super smoother''.
//
// Arguments:
// grin: graph for smoothing
//
// span: the fraction of the observations in the span of the running lines
// smoother, or 0 to choose this by leave-one-out cross-validation.
// bass: controls the smoothness of the fitted curve.
// Values of up to 10 indicate increasing smoothness.
// isPeriodic: if TRUE, the x values are assumed to be in [0, 1]
// and of period 1.
// w: case weights
//
// Details:
// supsmu is a running lines smoother which chooses between three spans for
// the lines. The running lines smoothers are symmetric, with k/2 data points
// each side of the predicted point, and values of k as 0.5 * n, 0.2 * n and
// 0.05 * n, where n is the number of data points. If span is specified,
// a single smoother with span span * n is used.
//
// The best of the three smoothers is chosen by cross-validation for each
// prediction. The best spans are then smoothed by a running lines smoother
// and the final prediction chosen by linear interpolation.
//
// The FORTRAN code says: ``For small samples (n < 40) or if there are
// substantial serial correlations between observations close in x - value,
// then a prespecified fixed span smoother (span > 0) should be used.
// Reasonable span values are 0.2 to 0.4.''
//
// References:
// Friedman, J. H. (1984) SMART User's Guide.
// Laboratory for Computational Statistics,
// Stanford University Technical Report No. 1.
//
// Friedman, J. H. (1984) A variable span scatterplot smoother.
// Laboratory for Computational Statistics,
// Stanford University Technical Report No. 5.
// ==================
if (span < 0 || span > 1) {
cout << "Error: Span must be between 0 and 1" << endl;
return 0;
}
Smoothin(grin);
Int_t iper = 1;
if (isPeriodic) {
iper = 2;
if (fMinX < 0 || fMaxX > 1) {
cout << "Error: x must be between 0 and 1 for periodic smooth" << endl;
return 0;
}
}
// output X, Y
fNout = fNin;
fGout = new TGraph(fNout);
Int_t i;
for (i=0; i<fNout; i++) {
fGout->SetPoint(i,fGin->GetX()[i], 0);
}
// weights
Double_t *weight = new Double_t[fNin];
for (i=0; i<fNin; i++) {
if (w == 0) weight[i] = 1;
else weight[i] = w[i];
}
// temporary storage array
Int_t NTmp = (fNin+1)*8;
Double_t *Tmp = new Double_t[NTmp];
for (i=0; i<NTmp; i++) {
Tmp[i] = 0;
}
BDRsupsmu(fNin, fGin->GetX(), fGin->GetY(), weight, iper, span, bass, fGout->GetY(), Tmp);
delete [] Tmp;
delete [] weight;
return fGout;
}
//______________________________________________________________________
void TGraphSmooth::BDRsupsmu(Int_t n, Double_t *x, Double_t *y, Double_t *w,
Int_t iper, Double_t span, Double_t alpha, Double_t *smo, Double_t *sc)
{
//*-*-*-*-*-*-*-*-*Friedmannīs super smoother *-*-*-*-*-*-*-*-*-*-*-*-*-*
// ==========================
//
// super smoother (Friedman, 1984).
//
// version 10/10/84
//
// coded and copywrite (c) 1984 by:
//
// Jerome H. Friedman
// department of statistics
// and
// stanford linear accelerator center
// stanford university
//
// all rights reserved.
//
//
// input:
// n : number of observations (x,y - pairs).
// x(n) : ordered abscissa values.
// y(n) : corresponding ordinate (response) values.
// w(n) : weight for each (x,y) observation.
// iper : periodic variable flag.
// iper=1 => x is ordered interval variable.
// iper=2 => x is a periodic variable with values
// in the range (0.0,1.0) and period 1.0.
// span : smoother span (fraction of observations in window).
// span=0.0 => automatic (variable) span selection.
// alpha : controls high frequency (small span) penality
// used with automatic span selection (bass tone control).
// (alpha.le.0.0 or alpha.gt.10.0 => no effect.)
// output:
// smo(n) : smoothed ordinate (response) values.
// scratch:
// sc(n,7) : internal working storage.
//
// note:
// for small samples (n < 40) or if there are substantial serial
// correlations between observations close in x - value, then
// a prespecified fixed span smoother (span > 0) should be
// used. reasonable span values are 0.2 to 0.4.
//
// current implementation:
// Based on R function supsmu: Translated to C++ by C. Stratowa
// (R source file: ppr.f by B.D.Ripley Copyright (C) 1994-97)
//
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// Local variables
Int_t sc_offset;
Int_t i, j, jper;
Double_t a, f;
Double_t sw, sy, resmin, vsmlsq;
Double_t scale;
Double_t d1, d2;
Double_t spans[3] = { 0.05, 0.2, 0.5 };
Double_t big = 1e20;
Double_t sml = 1e-7;
Double_t eps = 0.001;
// Parameter adjustments
sc_offset = n + 1;
sc -= sc_offset;
--smo;
--w;
--y;
--x;
// Function Body
if (x[n] <= x[1]) {
sy = 0.0;
sw = sy;
for (j=1;j<=n;++j) {
sy += w[j] * y[j];
sw += w[j];
}
a = 0.0;
if (sw > 0.0) a = sy / sw;
for (j=1;j<=n;++j) smo[j] = a;
return;
}
i = (Int_t)(n / 4);
j = i * 3;
scale = x[j] - x[i];
while (scale <= 0.0) {
if (j < n) ++j;
if (i > 1) --i;
scale = x[j] - x[i];
}
// Computing 2nd power
d1 = eps * scale;
vsmlsq = d1 * d1;
jper = iper;
if (iper == 2 && (x[1] < 0.0 || x[n] > 1.0)) {
jper = 1;
}
if (jper < 1 || jper > 2) {
jper = 1;
}
if (span > 0.0) {
BDRsmooth(n, &x[1], &y[1], &w[1], span, jper, vsmlsq,
&smo[1], &sc[sc_offset]);
return;
}
Double_t *h = new Double_t[n+1];
for (i = 1; i <= 3; ++i) {
BDRsmooth(n, &x[1], &y[1], &w[1], spans[i - 1], jper, vsmlsq,
&sc[((i<<1)-1)*n + 1], &sc[n*7 + 1]);
BDRsmooth(n, &x[1], &sc[n*7 + 1], &w[1], spans[1], -jper, vsmlsq,
&sc[(i<<1)*n + 1], &h[1]);
}
for (j=1; j<=n; ++j) {
resmin = big;
for (i=1; i<=3; ++i) {
if (sc[j + (i<<1)*n] < resmin) {
resmin = sc[j + (i<<1)*n];
sc[j + n*7] = spans[i-1];
}
}
if (alpha>0.0 && alpha<=10.0 && resmin<sc[j + n*6] && resmin>0.0) {
// Computing MAX
d1 = TMath::Max(sml,(resmin/sc[j + n*6]));
d2 = 10. - alpha;
sc[j + n*7] += (spans[2] - sc[j + n*7]) * TMath::Power(d1, d2);
}
}
BDRsmooth(n, &x[1], &sc[n*7 + 1], &w[1], spans[1], -jper, vsmlsq,
&sc[(n<<1) + 1], &h[1]);
for (j=1; j<=n; ++j) {
if (sc[j + (n<<1)] <= spans[0]) {
sc[j + (n<<1)] = spans[0];
}
if (sc[j + (n<<1)] >= spans[2]) {
sc[j + (n<<1)] = spans[2];
}
f = sc[j + (n<<1)] - spans[1];
if (f < 0.0) {
f = -f / (spans[1] - spans[0]);
sc[j + (n<<2)] = (1.0 - f) * sc[j + n*3] + f * sc[j + n];
} else {
f /= spans[2] - spans[1];
sc[j + (n<<2)] = (1.0 - f) * sc[j + n*3] + f * sc[j + n*5];
}
}
BDRsmooth(n, &x[1], &sc[(n<<2) + 1], &w[1], spans[0], -jper, vsmlsq,
&smo[1], &h[1]);
delete [] h;
return;
}
//______________________________________________________________________
void TGraphSmooth::BDRsmooth(Int_t n, Double_t *x, Double_t *y, Double_t *w,
Double_t span, Int_t iper, Double_t vsmlsq, Double_t *smo, Double_t *acvr)
{
//*-*-*-*-*-*-*-*-* Function for super smoother *-*-*-*-*-*-*-*-*-*-*-*
// ============================
//
// Based on R function supsmu: Translated to C++ by C. Stratowa
// (R source file: ppr.f by B.D.Ripley Copyright (C) 1994-97)
//
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// Local variables
Int_t i, j, j0, in, out, it, jper, ibw;
Double_t a, h1, d1;
Double_t xm, ym, wt, sy, fbo, fbw;
Double_t cvar, var, tmp, xti, xto;
// Parameter adjustments
--acvr;
--smo;
--w;
--y;
--x;
// Function Body
xm = 0.;
ym = xm;
var = ym;
cvar = var;
fbw = cvar;
jper = TMath::Abs(iper);
ibw = (Int_t)(span * 0.5 * n + 0.5);
if (ibw < 2) {
ibw = 2;
}
it = 2*ibw + 1;
for (i=1; i<=it; ++i) {
j = i;
if (jper == 2) {
j = i - ibw - 1;
}
xti = x[j];
if (j < 1) {
j = n + j;
xti = x[j] - 1.0;
}
wt = w[j];
fbo = fbw;
fbw += wt;
if (fbw > 0.0) {
xm = (fbo * xm + wt * xti) / fbw;
ym = (fbo * ym + wt * y[j]) / fbw;
}
tmp = 0.0;
if (fbo > 0.0) {
tmp = fbw * wt * (xti - xm) / fbo;
}
var += tmp * (xti - xm);
cvar += tmp * (y[j] - ym);
}
for (j=1; j<=n; ++j) {
out = j - ibw - 1;
in = j + ibw;
if (!(jper != 2 && (out < 1 || in > n))) {
if (out < 1) {
out = n + out;
xto = x[out] - 1.0;
xti = x[in];
} else if (in > n) {
in -= n;
xti = x[in] + 1.0;
xto = x[out];
} else {
xto = x[out];
xti = x[in];
}
wt = w[out];
fbo = fbw;
fbw -= wt;
tmp = 0.0;
if (fbw > 0.0) {
tmp = fbo * wt * (xto - xm) / fbw;
}
var -= tmp * (xto - xm);
cvar -= tmp * (y[out] - ym);
if (fbw > 0.0) {
xm = (fbo * xm - wt * xto) / fbw;
ym = (fbo * ym - wt * y[out]) / fbw;
}
wt = w[in];
fbo = fbw;
fbw += wt;
if (fbw > 0.0) {
xm = (fbo * xm + wt * xti) / fbw;
ym = (fbo * ym + wt * y[in]) / fbw;
}
tmp = 0.0;
if (fbo > 0.0) {
tmp = fbw * wt * (xti - xm) / fbo;
}
var += tmp * (xti - xm);
cvar += tmp * (y[in] - ym);
}
a = 0.0;
if (var > vsmlsq) {
a = cvar / var;
}
smo[j] = a * (x[j] - xm) + ym;
if (iper <= 0) {
continue;
}
h1 = 0.0;
if (fbw > 0.0) {
h1 = 1.0 / fbw;
}
if (var > vsmlsq) {
// Computing 2nd power
d1 = x[j] - xm;
h1 += d1 * d1 / var;
}
acvr[j] = 0.0;
a = 1.0 - w[j] * h1;
if (a > 0.0) {
acvr[j] = TMath::Abs(y[j] - smo[j]) / a;
continue;
}
if (j > 1) {
acvr[j] = acvr[j-1];
}
}
j = 1;
do {
j0 = j;
sy = smo[j] * w[j];
fbw = w[j];
if (j < n) {
do {
if (x[j + 1] > x[j]) {
break;
}
++j;
sy += w[j] * smo[j];
fbw += w[j];
} while (j < n);
}
if (j > j0) {
a = 0.0;
if (fbw > 0.0) {
a = sy / fbw;
}
for (i=j0; i<=j; ++i) {
smo[i] = a;
}
}
++j;
} while (j <= n);
return;
}
//______________________________________________________________________
void TGraphSmooth::Approxin(TGraph *grin, Int_t /*iKind*/, Double_t &Ylow,
Double_t &Yhigh, Int_t rule, Int_t iTies)
{
//*-*-*-*-*-*-*-*-*Sort data points and eliminate double x values*-*-*-*
// ==============================================
if (fGout) {delete fGout; fGout = 0;}
fGin = grin;
fNin = fGin->GetN();
Double_t *xin = new Double_t[fNin];
Double_t *yin = new Double_t[fNin];
Int_t i;
for (i=0;i<fNin;i++) {
xin[i] = fGin->GetX()[i];
yin[i] = fGin->GetY()[i];
}
// sort/rank input x, y
Int_t *index = new Int_t[fNin];
Int_t *rank = new Int_t[fNin];
Rank(fNin, xin, index, rank, kFALSE);
// input X, Y
Int_t vNDup = 0;
Int_t k = 0;
Int_t *dup = new Int_t[fNin];
Double_t *x = new Double_t[fNin];
Double_t *y = new Double_t[fNin];
Double_t vMean, vMin, vMax;
for (i=1;i<fNin+1;i++) {
Int_t ndup = 1;
vMin = vMean = vMax = yin[index[i-1]];
while ((i < fNin) && (rank[index[i]] == rank[index[i-1]])) {
vMean += yin[index[i]];
vMax = (vMax < yin[index[i]]) ? yin[index[i]] : vMax;
vMin = (vMin > yin[index[i]]) ? yin[index[i]] : vMin;
dup[vNDup] = i;
i++;
ndup++;
vNDup++;
}
x[k] = xin[index[i-1]];
if (ndup == 1) {y[k++] = yin[index[i-1]];}
else switch(iTies) {
case 1:
y[k++] = vMean/ndup;
break;
case 2:
y[k++] = vMin;
break;
case 3:
y[k++] = vMax;
break;
default:
y[k++] = vMean/ndup;
break;
}
}
fNin = k;
// set unique sorted input data x,y as final graph points
fGin->Set(fNin);
for (i=0;i<fNin;i++) {
fGin->SetPoint(i, x[i], y[i]);
}
fMinX = fGin->GetX()[0]; //already sorted!
fMaxX = fGin->GetX()[fNin-1];
// interpolate outside interval [min(x),max(x)]
switch(rule) {
case 1:
Ylow = 0; // = nan("NAN") ??
Yhigh = 0; // = nan("NAN") ??
break;
case 2:
Ylow = fGin->GetY()[0];
Yhigh = fGin->GetY()[fNin-1];
break;
default:
break;
}
// cleanup
delete [] x;
delete [] y;
delete [] dup;
delete [] rank;
delete [] index;
delete [] xin;
delete [] yin;
}
//______________________________________________________________________
TGraph *TGraphSmooth::Approx(TGraph *grin, Option_t *option, Int_t nout, Double_t *xout,
Double_t yleft, Double_t yright, Int_t rule, Double_t f, Option_t *ties)
{
//*-*-*-*-*-*-*-*-*Approximate data points*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// =======================
//
// Arguments:
// grin: graph giving the coordinates of the points to be interpolated.
// Alternatively a single plotting structure can be specified:
//
// option: specifies the interpolation method to be used.
// Choices are "linear" (iKind = 1) or "constant" (iKind = 2).
// nout: If xout is not specified, interpolation takes place at n equally
// spaced points spanning the interval [min(x), max(x)], where
// nout = max(nout, number of input data).
// xout: an optional set of values specifying where interpolation is to
// take place.
// yleft: the value to be returned when input x values less than min(x).
// The default is defined by the value of rule given below.
// yright: the value to be returned when input x values greater than max(x).
// The default is defined by the value of rule given below.
// rule: an integer describing how interpolation is to take place outside
// the interval [min(x), max(x)]. If rule is 0 then the given yleft
// and yright values are returned, if it is 1 then 0 is returned
// for such points and if it is 2, the value at the closest data
// extreme is used.
// f: For method="constant" a number between 0 and 1 inclusive,
// indicating a compromise between left- and right-continuous step
// functions. If y0 and y1 are the values to the left and right of
// the point then the value is y0*f+y1*(1-f) so that f=0 is
// right-continuous and f=1 is left-continuous
// ties: Handling of tied x values. An integer describing a function with
// a single vector argument returning a single number result:
// ties = "ordered" (iTies = 0): input x are "ordered"
// ties = "mean" (iTies = 1): function "mean"
// ties = "min" (iTies = 2): function "min"
// ties = "max" (iTies = 3): function "max"
//
// Details:
// At least two complete (x, y) pairs are required.
// If there are duplicated (tied) x values and ties is a function it is
// applied to the y values for each distinct x value. Useful functions in
// this context include mean, min, and max.
// If ties="ordered" the x values are assumed to be already ordered. The
// first y value will be used for interpolation to the left and the last
// one for interpolation to the right.
//
// Value:
// approx returns a graph with components x and y, containing n coordinates
// which interpolate the given data points according to the method (and rule)
// desired.
TString opt = option;
opt.ToLower();
Int_t iKind = 0;
if (opt.Contains("linear")) iKind = 1;
else if (opt.Contains("constant")) iKind = 2;
if (f < 0 || f > 1) {
cout << "Error: Invalid f value" << endl;
return 0;
}
opt = ties;
opt.ToLower();
Int_t iTies = 0;
if (opt.Contains("ordered")) {
iTies = 0;
} else if (opt.Contains("mean")) {
iTies = 1;
} else if (opt.Contains("min")) {
iTies = 2;
} else if (opt.Contains("max")) {
iTies = 3;
} else {
cout << "Error: Method not known: " << ties << endl;
return 0;
}
// input X, Y
Double_t Ylow = yleft;
Double_t Yhigh = yright;
Approxin(grin, iKind, Ylow, Yhigh, rule, iTies);
// output X, Y
Double_t delta = 0;
fNout = nout;
if (xout == 0) {
fNout = TMath::Max(nout, fNin);
delta = (fMaxX - fMinX)/(fNout - 1);
}
fGout = new TGraph(fNout);
Double_t x;
for (Int_t i=0;i<fNout;i++) {
if (xout == 0) x = fMinX + i*delta;
else x = xout[i];
Double_t yout = Approx1(x, f, fGin->GetX(), fGin->GetY(), fNin, iKind, Ylow, Yhigh);
fGout->SetPoint(i,x, yout);
}
return fGout;
}
//______________________________________________________________________
Double_t TGraphSmooth::Approx1(Double_t v, Double_t f, Double_t *x, Double_t *y,
Int_t n, Int_t iKind, Double_t Ylow, Double_t Yhigh)
{
//*-*-*-*-*-*-*-*-*Approximate one data point*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
//
// Approximate y(v), given (x,y)[i], i = 0,..,n-1
// Based on R function approx1: Translated to C++ by Christian Stratowa
// (R source file: approx.c by R Development Core Team (C) 1999-2001)
//
Int_t i = 0;
Int_t j = n - 1;
// handle out-of-domain points
if(v < x[i]) return Ylow;
if(v > x[j]) return Yhigh;
// find the correct interval by bisection
while(i < j - 1) {
Int_t ij = (i + j)/2;
if(v < x[ij]) j = ij;
else i = ij;
}
// interpolation
if(v == x[j]) return y[j];
if(v == x[i]) return y[i];
if(iKind == 1) { // linear
return y[i] + (y[j] - y[i]) * ((v - x[i])/(x[j] - x[i]));
} else { // 2 : constant
return y[i] * (1-f) + y[j] * f;
}
}
// helper functions
//______________________________________________________________________
Int_t TGraphSmooth::Rcmp(Double_t x, Double_t y)
{
// static function
// if (ISNAN(x)) return 1;
// if (ISNAN(y)) return -1;
if (x < y) return -1;
if (x > y) return 1;
return 0;
}
//______________________________________________________________________
void TGraphSmooth::Psort(Double_t *x, Int_t n, Int_t k)
{
// static function
// based on R function rPsort: adapted to C++ by Christian Stratowa
// (R source file: R_sort.c by R Development Core Team (C) 1999-2001)
//
Double_t v, w;
Int_t L, R, i, j;
for (L = 0, R = n - 1; L < R; ) {
v = x[k];
for(i = L, j = R; i <= j;) {
while (TGraphSmooth::Rcmp(x[i], v) < 0) i++;
while (TGraphSmooth::Rcmp(v, x[j]) < 0) j--;
if (i <= j) { w = x[i]; x[i++] = x[j]; x[j--] = w; }
}
if (j < k) L = i;
if (k < i) R = j;
}
}
//______________________________________________________________________
void TGraphSmooth::Rank(Int_t n, Double_t *a, Int_t *index, Int_t *rank, Bool_t down)
{
// static function
if (n <= 0) return;
if (n == 1) {
index[0] = 0;
rank[0] = 0;
return;
}
TMath::Sort(n,a,index,down);
Int_t k = 0;
for (Int_t i=0;i<n;i++) {
if ((i > 0) && (a[index[i]] == a[index[i-1]])) {
rank[index[i]] = i-1;
k++;
}
rank[index[i]] = i-k;
}
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.