// @(#)root/matrix:$Name: $:$Id: TMatrixFLazy.cxx,v 1.4 2004/01/27 08:12:26 brun Exp $
// Authors: Fons Rademakers, Eddy Offermann Nov 2003
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// Lazy Matrix classes. //
// //
// TMatrixFLazy //
// TMatrixFSymLazy //
// THaarMatrixF //
// THilbertMatrixF //
// //
//////////////////////////////////////////////////////////////////////////
#include "TMatrixFBase.h"
ClassImp(TMatrixFLazy)
ClassImp(TMatrixFSymLazy)
ClassImp(THaarMatrixF)
ClassImp(THilbertMatrixF)
//______________________________________________________________________________
THaarMatrixF::THaarMatrixF(Int_t order,Int_t no_cols)
: TMatrixFLazy(1<<order, no_cols == 0 ? 1<<order : no_cols)
{
Assert(order > 0 && no_cols >= 0);
}
//______________________________________________________________________________
void MakeHaarMat(TMatrixF &m)
{
// Create an orthonormal (2^n)*(no_cols) Haar (sub)matrix, whose columns
// are Haar functions. If no_cols is 0, create the complete matrix with
// 2^n columns. Example, the complete Haar matrix of the second order is:
// column 1: [ 1 1 1 1]/2
// column 2: [ 1 1 -1 -1]/2
// column 3: [ 1 -1 0 0]/sqrt(2)
// column 4: [ 0 0 1 -1]/sqrt(2)
// Matrix m is assumed to be zero originally.
Assert(m.IsValid());
const Int_t no_rows = m.GetNrows();
const Int_t no_cols = m.GetNcols();
Assert(no_rows >= no_cols && no_cols > 0);
// It is easier to calculate a Haar matrix when the elements are stored
// column-wise . Since we are row-wise, the transposed Haar is calculted
TMatrixF mtr(no_cols,no_rows);
Float_t *cp = mtr.GetMatrixArray();
const Float_t *m_end = mtr.GetMatrixArray()+no_rows*no_cols;
Float_t norm_factor = 1/TMath::Sqrt((Float_t)no_rows);
// First row is always 1 (up to normalization)
Int_t j;
for (j = 0; j < no_rows; j++)
*cp++ = norm_factor;
// The other functions are kind of steps: stretch of 1 followed by the
// equally long stretch of -1. The functions can be grouped in families
// according to their order (step size), differing only in the location
// of the step
Int_t step_length = no_rows/2;
while (cp < m_end && step_length > 0) {
for (Int_t step_position = 0; cp < m_end && step_position < no_rows;
step_position += 2*step_length, cp += no_rows) {
Float_t *ccp = cp+step_position;
for (j = 0; j < step_length; j++)
*ccp++ = norm_factor;
for (j = 0; j < step_length; j++)
*ccp++ = -norm_factor;
}
step_length /= 2;
norm_factor *= TMath::Sqrt(2.0);
}
Assert(step_length != 0 || cp == m_end);
Assert(no_rows != no_cols || step_length == 0);
m.Transpose(mtr);
}
//______________________________________________________________________________
void THaarMatrixF::FillIn(TMatrixF &m) const
{
MakeHaarMat(m);
}
//______________________________________________________________________________
THilbertMatrixF::THilbertMatrixF(Int_t no_rows,Int_t no_cols)
: TMatrixFLazy(no_rows,no_cols)
{
Assert(no_rows > 0 && no_cols > 0);
}
//______________________________________________________________________________
THilbertMatrixF::THilbertMatrixF(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)
: TMatrixFLazy(row_lwb,row_upb,col_lwb,col_upb)
{
Assert(row_upb-row_lwb+1 > 0 && col_upb-col_lwb+1 > 0);
}
//______________________________________________________________________________
void MakeHilbertMat(TMatrixF &m)
{
// Make a Hilbert matrix. Hilb[i,j] = 1/(i+j+1),
// i,j=0...max-1 (matrix need not be a square one).
Assert(m.IsValid());
const Int_t no_rows = m.GetNrows();
const Int_t no_cols = m.GetNcols();
Assert(no_rows > 0 && no_cols > 0);
Float_t *cp = m.GetMatrixArray();
for (Int_t i = 0; i < no_rows; i++)
for (Int_t j = 0; j < no_cols; j++)
*cp++ = 1.0/(i+j+1.0);
}
//______________________________________________________________________________
void THilbertMatrixF::FillIn(TMatrixF &m) const
{
MakeHilbertMat(m);
}
//______________________________________________________________________________
THilbertMatrixFSym::THilbertMatrixFSym(Int_t no_rows)
: TMatrixFSymLazy(no_rows)
{
Assert(no_rows > 0);
}
//______________________________________________________________________________
THilbertMatrixFSym::THilbertMatrixFSym(Int_t row_lwb,Int_t row_upb)
: TMatrixFSymLazy(row_lwb,row_upb)
{
Assert(row_upb-row_lwb+1 > 0);
}
//______________________________________________________________________________
void MakeHilbertMat(TMatrixFSym &m)
{
// Make a Hilbert matrix. Hilb[i,j] = 1/(i+j+1),
// i,j=0...max-1 (matrix must be square).
Assert(m.IsValid());
const Int_t no_rows = m.GetNrows();
Assert(no_rows > 0);
Float_t *cp = m.GetMatrixArray();
for (Int_t i = 0; i < no_rows; i++)
for (Int_t j = 0; j < no_rows; j++)
*cp++ = 1.0/(i+j+1.0);
}
//______________________________________________________________________________
void THilbertMatrixFSym::FillIn(TMatrixFSym &m) const
{
MakeHilbertMat(m);
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.