// @(#)root/g3d:$Name: $:$Id: TRotMatrix.cxx,v 1.3 2000/11/21 20:18:03 brun Exp $
// Author: Rene Brun 14/09/95
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TGeometry.h"
#include "TRotMatrix.h"
#include "TClass.h"
ClassImp(TRotMatrix)
//______________________________________________________________________________
//
// Manages a detector rotation matrix. See class TGeometry.
//
//______________________________________________________________________________
TRotMatrix::TRotMatrix()
{
//*-*-*-*-*-*-*-*-*-*-*RotMatrix default constructor*-*-*-*-*-*-*-*-*-*-*-*
//*-* ============================
//do nothing
}
//______________________________________________________________________________
TRotMatrix::TRotMatrix(const char *name, const char *title, Double_t *matrix)
:TNamed(name,title)
{
if (!matrix) { Error("ctor","No rotation is supplied"); return; }
SetMatrix(matrix);
if (!gGeometry) gGeometry = new TGeometry();
fNumber = gGeometry->GetListOfMatrices()->GetSize();
gGeometry->GetListOfMatrices()->Add(this);
}
//______________________________________________________________________________
TRotMatrix::TRotMatrix(const char *name, const char *title, Double_t theta, Double_t phi, Double_t psi)
:TNamed(name,title)
{
//*-*-*-*-*-*-*-*-*-*-*RotMatrix normal constructor*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ============================
printf("ERROR: This form of TRotMatrix constructor not implemented yetn");
Int_t i;
fTheta = theta;
fPhi = phi;
fPsi = psi;
fType = 2;
for (i=0;i<9;i++) fMatrix[i] = 0;
fMatrix[0] = 1; fMatrix[4] = 1; fMatrix[8] = 1;
if (!gGeometry) gGeometry = new TGeometry();
fNumber = gGeometry->GetListOfMatrices()->GetSize();
gGeometry->GetListOfMatrices()->Add(this);
}
//______________________________________________________________________________
TRotMatrix::TRotMatrix(const char *name, const char *title, Double_t theta1, Double_t phi1
, Double_t theta2, Double_t phi2
, Double_t theta3, Double_t phi3)
:TNamed(name,title)
{
//*-*-*-*-*-*RotMatrix normal constructor defined a la GEANT*-*-*-*-*-*-*
//*-* ===============================================
//
// The TRotMatrix constructor with six angles uses the GEANT convention:
//
// theta1 is the polar angle of the x-prim axis in the main reference system
// (MRS), theta2 and theta3 have the same meaning for the y-prim and z-prim
// axis.
//
// Phi1 is the azimuthal angle of the x-prim in the MRS and phi2 and phi3
// have the same meaning for y-prim and z-prim.
//
//
// for example, the unit matrix is defined in the following way.
//
// x-prim || x, y-prim || y, z-prim || z
//
// means: theta1=90, theta2=90, theta3=0, phi1=0, phi2=90, phi3=0
SetAngles(theta1,phi1,theta2,phi2,theta3,phi3);
if (!gGeometry) gGeometry = new TGeometry();
fNumber = gGeometry->GetListOfMatrices()->GetSize();
gGeometry->GetListOfMatrices()->Add(this);
}
//______________________________________________________________________________
TRotMatrix::~TRotMatrix()
{
//*-*-*-*-*-*-*-*-*-*-*RotMatrix default destructor*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ============================
if (gGeometry) gGeometry->GetListOfMatrices()->Remove(this);
}
//______________________________________________________________________________
Double_t TRotMatrix::Determinant() const
{
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-*
//*-* Determinant() returns the value of the determiant of this matrix
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
return
fMatrix[0] * (fMatrix[4]*fMatrix[8] - fMatrix[7]*fMatrix[5])
- fMatrix[3] * (fMatrix[1]*fMatrix[8] - fMatrix[7]*fMatrix[2])
+ fMatrix[6] * (fMatrix[1]*fMatrix[5] - fMatrix[4]*fMatrix[2]);
}
//______________________________________________________________________________
Double_t* TRotMatrix::GetGLMatrix(Double_t *rGLMatrix) const
{
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* Convert this matrix to the OpenGL [4x4]
//*-*
//*-* [ fMatrix[0] fMatrix[1] fMatrix[2] 0 ]
//*-* [ fMatrix[3] fMatrix[4] fMatrix[5] 0 ]
//*-* [ fMatrix[6] fMatrix[7] fMatrix[8] 0 ]
//*-* [ 0 0 0 1 ]
//*-*
//*-* Input:
//*-* -----
//*-* Double_t *rGLMatrix - pointer to Double_t 4x4 buffer array
//*-*
//*-* Return:
//*-* ------
//*-* Double_t pointer to the input buffer
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Double_t *glmatrix = rGLMatrix;
const Double_t *matrix = fMatrix;
if (rGLMatrix)
{
for (Int_t i=0;i<3;i++)
{
for (Int_t j=0;j<3;j++)
memcpy(glmatrix,matrix,3*sizeof(Double_t));
matrix += 3;
glmatrix += 3;
*glmatrix = 0.0;
glmatrix++;
}
for (Int_t j=0;j<3;j++) {
*glmatrix = 0.0;
glmatrix++;
}
*glmatrix = 1.0;
}
return rGLMatrix;
}
//______________________________________________________________________________
const Double_t* TRotMatrix::SetAngles(Double_t theta1, Double_t phi1,
Double_t theta2, Double_t phi2,Double_t theta3, Double_t phi3)
{
// theta1 is the polar angle of the x-prim axis in the main reference system
// (MRS), theta2 and theta3 have the same meaning for the y-prim and z-prim
// axis.
//
// Phi1 is the azimuthal angle of the x-prim in the MRS and phi2 and phi3
// have the same meaning for y-prim and z-prim.
//
//
// for example, the unit matrix is defined in the following way.
//
// x-prim || x, y-prim || y, z-prim || z
//
// means: theta1=90, theta2=90, theta3=0, phi1=0, phi2=90, phi3=0
const Double_t degrad = 0.0174532925199432958;
fTheta = theta1;
fPhi = phi1;
fPsi = theta2;
fType = 2;
if (!strcmp(GetName(),"Identity")) fType = 0;
fMatrix[0] = TMath::Sin(theta1*degrad)*TMath::Cos(phi1*degrad);
fMatrix[1] = TMath::Sin(theta1*degrad)*TMath::Sin(phi1*degrad);
fMatrix[2] = TMath::Cos(theta1*degrad);
fMatrix[3] = TMath::Sin(theta2*degrad)*TMath::Cos(phi2*degrad);
fMatrix[4] = TMath::Sin(theta2*degrad)*TMath::Sin(phi2*degrad);
fMatrix[5] = TMath::Cos(theta2*degrad);
fMatrix[6] = TMath::Sin(theta3*degrad)*TMath::Cos(phi3*degrad);
fMatrix[7] = TMath::Sin(theta3*degrad)*TMath::Sin(phi3*degrad);
fMatrix[8] = TMath::Cos(theta3*degrad);
SetReflection();
return fMatrix;
}
//______________________________________________________________________________
void TRotMatrix::SetMatrix(const Double_t *matrix)
{
// copy predefined 3x3 matrix into TRotMatrix object
fTheta = 0;
fPhi = 0;
fPsi = 0;
fType = 0;
if (!matrix) return;
fType = 2;
memcpy(fMatrix,matrix,9*sizeof(Double_t));
SetReflection();
}
//______________________________________________________________________________
void TRotMatrix::SetReflection()
{
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* SetReflection() - checks whether the determinant of this
//*-* matrix defines the reflection transformation
//*-* and set the "reflection" flag if any
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
ResetBit(kReflection);
if (Determinant() < 0) { fType=1; SetBit(kReflection);}
}
//______________________________________________________________________________
void TRotMatrix::Streamer(TBuffer &R__b)
{
// Stream an object of class TRotMatrix.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 1) {
TRotMatrix::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
TNamed::Streamer(R__b);
R__b >> fNumber;
R__b >> fType;
R__b >> fTheta;
R__b >> fPhi;
R__b >> fPsi;
R__b.ReadStaticArray(fMatrix);
R__b.CheckByteCount(R__s, R__c, TRotMatrix::IsA());
//====end of old versions
} else {
TRotMatrix::Class()->WriteBuffer(R__b,this);
}
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.