| #include "TMatrixDSymEigen.h" | 
TMatrixDSymEigen
class description - source file - inheritance tree (.pdf)
    protected:
      static void MakeEigenVectors(TMatrixD& v, TVectorD& d, TVectorD& e)
      static void MakeTridiagonal(TMatrixD& v, TVectorD& d, TVectorD& e)
    public:
                        TMatrixDSymEigen()
                        TMatrixDSymEigen(const TMatrixDSym& a)
                        TMatrixDSymEigen(const TMatrixDSymEigen& another)
                virtual ~TMatrixDSymEigen()
         static TClass* Class()
        const TVectorD& GetEigenValues() const
        const TMatrixD& GetEigenVectors() const
        virtual TClass* IsA() const
      TMatrixDSymEigen& operator=(const TMatrixDSymEigen& source)
           virtual void ShowMembers(TMemberInspector& insp, char* parent)
           virtual void Streamer(TBuffer& b)
                   void StreamerNVirtual(TBuffer& b)
    protected:
      TMatrixD fEigenVectors  Eigen-vectors of matrix
      TVectorD fEigenValues   Eigen-values
    public:
      static const enum TMatrixDSymEigen:: kWorkMax  
                                                                      
 TMatrixDSymEigen                                                     
                                                                      
 Eigenvalues and eigenvectors of a real symmetric matrix.             
                                                                      
 If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is  
 diagonal and the eigenvector matrix V is orthogonal. That is, the    
 diagonal values of D are the eigenvalues, and V*V' = I, where I is   
 the identity matrix.  The columns of V represent the eigenvectors in 
 the sense that A*V = V*D.                                            
                                                                      
 TMatrixDSymEigen(const TMatrixDSym &a)
 TMatrixDSymEigen(const TMatrixDSymEigen &another)
void MakeTridiagonal(TMatrixD &v,TVectorD &d,TVectorD &e)
 This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and
 Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 Fortran subroutine in EISPACK.
void MakeEigenVectors(TMatrixD &v,TVectorD &d,TVectorD &e)
 Symmetric tridiagonal QL algorithm.
 This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and
 Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 Fortran subroutine in EISPACK.
Inline Functions
                     void ~TMatrixDSymEigen()
         TMatrixDSymEigen TMatrixDSymEigen(const TMatrixDSymEigen& another)
          const TMatrixD& GetEigenVectors() const
          const TVectorD& GetEigenValues() const
        TMatrixDSymEigen& operator=(const TMatrixDSymEigen& source)
                  TClass* Class()
                  TClass* IsA() const
                     void ShowMembers(TMemberInspector& insp, char* parent)
                     void Streamer(TBuffer& b)
                     void StreamerNVirtual(TBuffer& b)
Last update: root/matrix:$Name:  $:$Id: TMatrixDSymEigen.cxx,v 1.9 2005/02/15 16:17:10 brun Exp $
Copyright  (C) 1995-2000, Rene Brun and Fons Rademakers.               *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.