library: libMathCore #include "CylindricalEta3D.h" |
~CylindricalEta3D<double>() | |
ROOT::Math::CylindricalEta3D<double> | CylindricalEta3D<double>() |
ROOT::Math::CylindricalEta3D<double> | CylindricalEta3D<double>(const ROOT::Math::CylindricalEta3D<double>&) |
ROOT::Math::CylindricalEta3D<double> | CylindricalEta3D<double>(ROOT::Math::CylindricalEta3D<double>::Scalar rho, ROOT::Math::CylindricalEta3D<double>::Scalar eta, ROOT::Math::CylindricalEta3D<double>::Scalar phi) |
double | Eta() const |
void | GetCoordinates(ROOT::Math::CylindricalEta3D<double>::Scalar* dest) const |
void | GetCoordinates(ROOT::Math::CylindricalEta3D<double>::Scalar& rho, ROOT::Math::CylindricalEta3D<double>::Scalar& eta, ROOT::Math::CylindricalEta3D<double>::Scalar& phi) const |
double | Mag2() const |
void | Negate() |
bool | operator!=(const ROOT::Math::CylindricalEta3D<double>& rhs) const |
ROOT::Math::CylindricalEta3D<double>& | operator=(const ROOT::Math::CylindricalEta3D<double>&) |
bool | operator==(const ROOT::Math::CylindricalEta3D<double>& rhs) const |
double | Perp2() const |
double | Phi() const |
double | R() const |
double | Rho() const |
void | Scale(double a) |
void | SetCoordinates(const ROOT::Math::CylindricalEta3D<double>::Scalar* src) |
void | SetCoordinates(ROOT::Math::CylindricalEta3D<double>::Scalar rho, ROOT::Math::CylindricalEta3D<double>::Scalar eta, ROOT::Math::CylindricalEta3D<double>::Scalar phi) |
void | SetEta(double eta) |
void | SetPhi(double phi) |
void | SetR(ROOT::Math::CylindricalEta3D<double>::Scalar r) |
void | SetRho(double rho) |
void | SetTheta(ROOT::Math::CylindricalEta3D<double>::Scalar theta) |
void | setValues(double rho, double eta, double phi) |
void | SetX(ROOT::Math::CylindricalEta3D<double>::Scalar x) |
void | SetY(ROOT::Math::CylindricalEta3D<double>::Scalar y) |
void | SetZ(ROOT::Math::CylindricalEta3D<double>::Scalar z) |
double | Theta() const |
double | X() const |
double | x() const |
double | Y() const |
double | y() const |
double | Z() const |
double | z() const |
which, for large eta, results in a significant improvement in the faithfullness of reproducing z.
The following make this coordinate system look enough like a CLHEP vector that an assignment member template can work with either
{ return X();}