#include "LorentzVector.h"

ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >


class description - header file
viewCVS header

class ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >

Inheritance Inherited Members Includes Libraries
Class Charts

Function Members (Methods)

Display options:
Show inherited
Show non-public
public:
~LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >()
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarBeta() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::BetaVectorBoostToCM() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarColinearRapidity() const
const ROOT::Math::PtEtaPhiM4D<double>&Coordinates() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarE() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalare() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarenergy() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarEt() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarEt2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarEta() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalareta() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarGamma() const
voidGetCoordinates(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar* dest) const
voidGetCoordinates(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& a, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& b, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& c, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& d) const
boolisLightlike(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar tolerance = 100*std::numeric_limits<Scalar>::epsilon()) const
boolisSpacelike() const
boolisTimelike() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >()
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >&)
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& a, const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& b, const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& c, const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& d)
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarM() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarM2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarmag() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarmag2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarmass() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarmass2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarMt() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarmt() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarMt2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarmt2() const
booloperator!=(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >& rhs) const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >operator*(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& a) const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >&operator*=(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >operator+() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >operator-() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >operator/(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar& a) const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >&operator/=(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >&operator=(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >&)
booloperator==(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >& rhs) const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarP() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarP2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarPerp2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarperp2() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarPhi() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarphi() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarPt() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarpt() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarPx() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarpx() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarPy() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarpy() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarPz() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarpz() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarR() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarr() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarRapidity() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarRho() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarrho() const
voidSetCoordinates(const ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar* src)
voidSetCoordinates(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar b, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar c, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar d)
voidSetE(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetEta(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetM(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetPhi(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetPt(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetPx(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetPy(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetPz(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar a)
voidSetXYZT(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar x, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar y, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar z, ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalar t)
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarT() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalart() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarTheta() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalartheta() const
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>Vect() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarX() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarx() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarY() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalary() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::ScalarZ() const
ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<double> >::Scalarz() const

Data Members

private:
ROOT::Math::PtEtaPhiM4D<double>fCoordinates

Class Description

fCoordinates = v. Coordinates()
SetXYZT( v.x(), v.y(), v.z(), v.t() )
fCoordinates. SetCoordinates( v[index0], v[index0+1], v[index0+2], v[index0+3] )
void SetCoordinates( const Scalar src[] )
{ fCoordinates.SetCoordinates(src); }
void GetCoordinates( Scalar& a, Scalar& b, Scalar& c, Scalar & d )
{ fCoordinates.GetCoordinates(a, b, c, d); }
void GetCoordinates( Scalar dest[] )
{ fCoordinates.GetCoordinates(dest); }
bool operator==(const LorentzVector & rhs)
Scalar Px()
{ return fCoordinates.Px(); }
Scalar X()
*
spatial Y component
{ return Px(); }
Scalar Py()
{ return fCoordinates.Py(); }
Scalar Y()
*
spatial Z component
{ return Py(); }
Scalar Pz()
{ return fCoordinates.Pz(); }
Scalar Z()
*
return 4-th component (time, or energy for a 4-momentum vector)
{ return Pz(); }
Scalar E()
{ return fCoordinates.E(); }
Scalar T()
*
return magnitude (mass) squared  M2 = T**2 - X**2 - Y**2 - Z**2
(we use -,-,-,+ metric)
{ return E(); }
Scalar M2()
*
return magnitude (mass) using the  (-,-,-,+)  metric.
If M2 is negative (space-like vector) a GenVector_exception
is suggested and if continuing, - sqrt( -M2) is returned
{ return fCoordinates.M2(); }
Scalar M()
*
return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )
{ return fCoordinates.M();}
Scalar R()
{ return fCoordinates.R(); }
Scalar P()
*
return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )
{ return R(); }
Scalar P2()
*
return the square of the transverse spatial component ( X**2 + Y**2 )
{ return P() * P(); }
Scalar Perp2( )
{ return fCoordinates.Perp2();}
Scalar Pt()
{ return fCoordinates.Pt();}
Scalar Rho()
{ return Pt();}
Scalar Mt2()
{ return fCoordinates.Mt2(); }
Scalar Mt()
{ return fCoordinates.Mt(); }
Scalar Et2()
{ return fCoordinates.Et2(); }
Scalar Et()
{ return fCoordinates.Et(); }
Scalar Phi()
{ return fCoordinates.Phi();}
Scalar Theta()
{ return fCoordinates.Theta(); }
Scalar Eta()
{ return fCoordinates.Eta(); }
::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> > Vect()
return t()
return operator*( Scalar(-1) )
LorentzVector<CoordinateType> v(*this);
v.Negate();
Scalar Rapidity()
 TODO - It would be good to check that E > Pz and use the Throw()
        mechanism or at least load a NAN if not.
        We should then move the code to a .cpp file.
Scalar ColinearRapidity()
 TODO - It would be good to check that E > Pz and use the Throw()
        mechanism or at least load a NAN if not.
bool isTimelike( )
bool isLightlike( Scalar tolerance = 100*std::numeric_limits<Scalar>::epsilon() )
bool isSpacelike( )
BetaVector BoostToCM( )
Scalar Beta()
Scalar Gamma()
Scalar x()
{ return X(); }
Scalar y()
{ return Y(); }
Scalar z()
{ return Z(); }
Scalar px()
{ return X(); }
Scalar py()
{ return Y(); }
Scalar pz()
{ return Z(); }
Scalar e()
{ return E(); }
Scalar r()
{ return R(); }
Scalar theta()
{ return Theta(); }
Scalar phi()
{ return Phi(); }
Scalar rho()
{ return Rho(); }
Scalar eta()
{ return Eta(); }
Scalar pt()
{ return Pt(); }
Scalar perp2()
{ return Perp2(); }
Scalar mag2()
{ return M2(); }
Scalar mag()
{ return M(); }
Scalar mt()
{ return Mt(); }
Scalar mt2()
{ return Mt2(); }
Scalar energy()
---- requested by CMS ---
{ return E(); }
Scalar mass()
{ return M(); }
Scalar mass2()
{ return M2(); }
void SetEta( Scalar a )
{ fCoordinates.SetEta(a); }
void SetPhi( Scalar a )
{ fCoordinates.SetPhi(a); }

Last update: Tue Nov 21 09:01:07 2006


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.