library: libMathCore
#include "PtEtaPhiE4D.h"

ROOT::Math::PtEtaPhiE4D<double>


class description - header file
viewCVS header

class ROOT::Math::PtEtaPhiE4D<double>

Inheritance Inherited Members Includes Libraries
Class Charts

Function Members (Methods)

Display options:
Show inherited
Show non-public
public:
~PtEtaPhiE4D<double>()
ROOT::Math::PtEtaPhiE4D<double>::ScalarE() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarEt() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarEt2() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarEta() const
voidGetCoordinates(ROOT::Math::PtEtaPhiE4D<double>::Scalar* dest) const
voidGetCoordinates(ROOT::Math::PtEtaPhiE4D<double>::Scalar& pt, ROOT::Math::PtEtaPhiE4D<double>::Scalar& eta, ROOT::Math::PtEtaPhiE4D<double>::Scalar& phi, ROOT::Math::PtEtaPhiE4D<double>::Scalar& e) const
ROOT::Math::PtEtaPhiE4D<double>::ScalarM() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarM2() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarMag() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarMag2() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarMt() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarMt2() const
voidNegate()
booloperator!=(const ROOT::Math::PtEtaPhiE4D<double>& rhs) const
ROOT::Math::PtEtaPhiE4D<double>&operator=(const ROOT::Math::PtEtaPhiE4D<double>&)
booloperator==(const ROOT::Math::PtEtaPhiE4D<double>& rhs) const
ROOT::Math::PtEtaPhiE4D<double>::ScalarP() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarP2() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPerp() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPerp2() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPhi() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPt() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPt2() const
ROOT::Math::PtEtaPhiE4D<double>PtEtaPhiE4D<double>()
ROOT::Math::PtEtaPhiE4D<double>PtEtaPhiE4D<double>(const ROOT::Math::PtEtaPhiE4D<double>&)
ROOT::Math::PtEtaPhiE4D<double>PtEtaPhiE4D<double>(ROOT::Math::PtEtaPhiE4D<double>::Scalar pt, ROOT::Math::PtEtaPhiE4D<double>::Scalar eta, ROOT::Math::PtEtaPhiE4D<double>::Scalar phi, ROOT::Math::PtEtaPhiE4D<double>::Scalar e)
ROOT::Math::PtEtaPhiE4D<double>::ScalarPx() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPy() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarPz() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarR() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarRho() const
voidScale(ROOT::Math::PtEtaPhiE4D<double>::Scalar a)
voidSetCoordinates(const ROOT::Math::PtEtaPhiE4D<double>::Scalar* src)
voidSetCoordinates(ROOT::Math::PtEtaPhiE4D<double>::Scalar pt, ROOT::Math::PtEtaPhiE4D<double>::Scalar eta, ROOT::Math::PtEtaPhiE4D<double>::Scalar phi, ROOT::Math::PtEtaPhiE4D<double>::Scalar e)
voidSetE(ROOT::Math::PtEtaPhiE4D<double>::Scalar e)
voidSetEta(ROOT::Math::PtEtaPhiE4D<double>::Scalar eta)
voidSetM(ROOT::Math::PtEtaPhiE4D<double>::Scalar m)
voidSetPhi(ROOT::Math::PtEtaPhiE4D<double>::Scalar phi)
voidSetPt(ROOT::Math::PtEtaPhiE4D<double>::Scalar pt)
voidSetPx(ROOT::Math::PtEtaPhiE4D<double>::Scalar px)
voidSetPy(ROOT::Math::PtEtaPhiE4D<double>::Scalar py)
voidSetPz(ROOT::Math::PtEtaPhiE4D<double>::Scalar pz)
ROOT::Math::PtEtaPhiE4D<double>::ScalarT() const
ROOT::Math::PtEtaPhiE4D<double>::Scalart() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarTheta() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarX() const
ROOT::Math::PtEtaPhiE4D<double>::Scalarx() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarY() const
ROOT::Math::PtEtaPhiE4D<double>::Scalary() const
ROOT::Math::PtEtaPhiE4D<double>::ScalarZ() const
ROOT::Math::PtEtaPhiE4D<double>::Scalarz() const
private:
static doublepi()
voidRestrict()

Data Members

private:
doublefPt
doublefEta
doublefPhi
doublefE

Class Description

void SetCoordinates( const Scalar src[] )
{ fPt=src[0]; fEta=src[1]; fPhi=src[2]; fE=src[3]; Restrict(); }
void GetCoordinates( Scalar dest[] )
{ dest[0] = fPt; dest[1] = fEta; dest[2] = fPhi; dest[3] = fE; }
void SetCoordinates(Scalar pt, Scalar eta, Scalar phi, Scalar e)
{ fPt=pt; fEta = eta; fPhi = phi; fE = e; Restrict(); }
GetCoordinates(Scalar& pt, Scalar & eta, Scalar & phi, Scalar& e)
{ pt=fPt; eta=fEta; phi = fPhi; e = fE; }
Scalar Pt()
{ return fPt; }
Scalar Eta()
{ return fEta; }
Scalar Phi()
{ return fPhi; }
Scalar E()
{ return fE; }
Scalar Perp()
{ return Pt(); }
Scalar Rho()
{ return Pt(); }
Scalar T()
{ return E(); }
Scalar Px()
{ return fPt*cos(fPhi);}
Scalar Py()
{ return fPt*sin(fPhi);}
Scalar Pz()
Scalar P()
Scalar R()
{ return P(); }
Scalar P2()
{ Scalar p = P(); return p*p; }
Scalar M2()
{ Scalar p = P(); return fE*fE - p*p; }
Scalar Mag2()
{ return M2(); }
Scalar M()
Scalar Mag()
{ return M(); }
Scalar Pt2()
{ return fPt*fPt;}
Scalar Perp2()
{ return Pt2(); }
Scalar Mt2()
{ Scalar pz = Pz(); return fE*fE - pz*pz; }
Scalar Mt()
Scalar Et()
Scalar Et2()
{ Scalar et = Et(); return et*et; }
double pi()
{ return 3.14159265358979323; }
void Restrict()
Scalar Theta()
void SetPt( Scalar pt)
void SetEta( Scalar eta)
void SetPhi( Scalar phi)
void SetE( Scalar e)
void Negate( )
{ fPhi = - fPhi; fEta = - fEta; fE = - fE; }
void Scale( Scalar a)
Scalar x()
 The following make this coordinate system look enough like a CLHEP
 vector that an assignment member template can work with either
{ return X(); }
Scalar y()
{ return Y(); }
Scalar z()
{ return Z(); }
Scalar t()
{ return E(); }
void SetPx(Scalar px)
void SetPy(Scalar py)
void SetPz(Scalar pz)
void SetM(Scalar m)

Last update: Sat Nov 25 10:43:43 2006


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.