library: libGraf #include "TGraphSmooth.h" |
TGraphSmooth() | |
TGraphSmooth(const char* name) | |
TGraphSmooth(const TGraphSmooth&) | |
virtual | ~TGraphSmooth() |
void | TObject::AbstractMethod(const char* method) const |
virtual void | TObject::AppendPad(Option_t* option = "") |
TGraph* | Approx(TGraph* grin, Option_t* option = "linear", Int_t nout = 50, Double_t* xout = 0, Double_t yleft = 0, Double_t yright = 0, Int_t rule = 0, Double_t f = 0, Option_t* ties = "mean") |
static Double_t | Approx1(Double_t v, Double_t f, Double_t* x, Double_t* y, Int_t n, Int_t iKind, Double_t Ylow, Double_t Yhigh) |
void | Approxin(TGraph* grin, Int_t iKind, Double_t& Ylow, Double_t& Yhigh, Int_t rule, Int_t iTies) |
static void | BDRksmooth(Double_t* x, Double_t* y, Int_t n, Double_t* xp, Double_t* yp, Int_t np, Int_t kernel, Double_t bw) |
static void | BDRsmooth(Int_t n, Double_t* x, Double_t* y, Double_t* w, Double_t span, Int_t iper, Double_t vsmlsq, Double_t* smo, Double_t* acvr) |
static void | BDRsupsmu(Int_t n, Double_t* x, Double_t* y, Double_t* w, Int_t iper, Double_t span, Double_t alpha, Double_t* smo, Double_t* sc) |
virtual void | TObject::Browse(TBrowser* b) |
static TClass* | Class() |
virtual const char* | TObject::ClassName() const |
virtual void | TNamed::Clear(Option_t* option = "") |
virtual TObject* | TNamed::Clone(const char* newname = "") const |
virtual Int_t | TNamed::Compare(const TObject* obj) const |
virtual void | TNamed::Copy(TObject& named) const |
virtual void | TObject::Delete(Option_t* option = "") |
virtual Int_t | TObject::DistancetoPrimitive(Int_t px, Int_t py) |
virtual void | TObject::Draw(Option_t* option = "") |
virtual void | TObject::DrawClass() const |
virtual TObject* | TObject::DrawClone(Option_t* option = "") const |
virtual void | TObject::Dump() const |
virtual void | TObject::Error(const char* method, const char* msgfmt) const |
virtual void | TObject::Execute(const char* method, const char* params, Int_t* error = 0) |
virtual void | TObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0) |
virtual void | TObject::ExecuteEvent(Int_t event, Int_t px, Int_t py) |
virtual void | TObject::Fatal(const char* method, const char* msgfmt) const |
virtual void | TNamed::FillBuffer(char*& buffer) |
virtual TObject* | TObject::FindObject(const char* name) const |
virtual TObject* | TObject::FindObject(const TObject* obj) const |
virtual Option_t* | TObject::GetDrawOption() const |
static Long_t | TObject::GetDtorOnly() |
virtual const char* | TObject::GetIconName() const |
virtual const char* | TNamed::GetName() const |
virtual char* | TObject::GetObjectInfo(Int_t px, Int_t py) const |
static Bool_t | TObject::GetObjectStat() |
virtual Option_t* | TObject::GetOption() const |
virtual const char* | TNamed::GetTitle() const |
virtual UInt_t | TObject::GetUniqueID() const |
virtual Bool_t | TObject::HandleTimer(TTimer* timer) |
virtual ULong_t | TNamed::Hash() const |
virtual void | TObject::Info(const char* method, const char* msgfmt) const |
virtual Bool_t | TObject::InheritsFrom(const char* classname) const |
virtual Bool_t | TObject::InheritsFrom(const TClass* cl) const |
virtual void | TObject::Inspect() const |
void | TObject::InvertBit(UInt_t f) |
virtual TClass* | IsA() const |
virtual Bool_t | TObject::IsEqual(const TObject* obj) const |
virtual Bool_t | TObject::IsFolder() const |
Bool_t | TObject::IsOnHeap() const |
virtual Bool_t | TNamed::IsSortable() const |
Bool_t | TObject::IsZombie() const |
void | Lowess(Double_t* x, Double_t* y, Int_t n, Double_t* ys, Double_t span, Int_t iter, Double_t delta) |
static void | Lowest(Double_t* x, Double_t* y, Int_t n, Double_t& xs, Double_t& ys, Int_t nleft, Int_t nright, Double_t* w, Bool_t userw, Double_t* rw, Bool_t& ok) |
virtual void | TNamed::ls(Option_t* option = "") const |
void | TObject::MayNotUse(const char* method) const |
virtual Bool_t | TObject::Notify() |
static void | TObject::operator delete(void* ptr) |
static void | TObject::operator delete(void* ptr, void* vp) |
static void | TObject::operator delete[](void* ptr) |
static void | TObject::operator delete[](void* ptr, void* vp) |
void* | TObject::operator new(size_t sz) |
void* | TObject::operator new(size_t sz, void* vp) |
void* | TObject::operator new[](size_t sz) |
void* | TObject::operator new[](size_t sz, void* vp) |
TGraphSmooth& | operator=(const TGraphSmooth&) |
virtual void | TObject::Paint(Option_t* option = "") |
virtual void | TObject::Pop() |
virtual void | TNamed::Print(Option_t* option = "") const |
static void | Psort(Double_t* x, Int_t n, Int_t k) |
static void | Rank(Int_t n, Double_t* a, Int_t* index, Int_t* rank, Bool_t down = kTRUE) |
static Int_t | Rcmp(Double_t x, Double_t y) |
virtual Int_t | TObject::Read(const char* name) |
virtual void | TObject::RecursiveRemove(TObject* obj) |
void | TObject::ResetBit(UInt_t f) |
virtual void | TObject::SaveAs(const char* filename = "", Option_t* option = "") const |
virtual void | TObject::SavePrimitive(ostream& out, Option_t* option = "") |
void | TObject::SetBit(UInt_t f) |
void | TObject::SetBit(UInt_t f, Bool_t set) |
virtual void | TObject::SetDrawOption(Option_t* option = "") |
static void | TObject::SetDtorOnly(void* obj) |
virtual void | TNamed::SetName(const char* name) |
virtual void | TNamed::SetNameTitle(const char* name, const char* title) |
static void | TObject::SetObjectStat(Bool_t stat) |
virtual void | TNamed::SetTitle(const char* title = "") |
virtual void | TObject::SetUniqueID(UInt_t uid) |
virtual void | ShowMembers(TMemberInspector& insp, char* parent) |
virtual Int_t | TNamed::Sizeof() const |
void | Smoothin(TGraph* grin) |
TGraph* | SmoothKern(TGraph* grin, Option_t* option = "normal", Double_t bandwidth = 0.5, Int_t nout = 100, Double_t* xout = 0) |
TGraph* | SmoothLowess(TGraph* grin, Option_t* option = "", Double_t span = 0.67, Int_t iter = 3, Double_t delta = 0) |
TGraph* | SmoothSuper(TGraph* grin, Option_t* option = "", Double_t bass = 0, Double_t span = 0, Bool_t isPeriodic = kFALSE, Double_t* w = 0) |
virtual void | Streamer(TBuffer& b) |
void | StreamerNVirtual(TBuffer& b) |
virtual void | TObject::SysError(const char* method, const char* msgfmt) const |
Bool_t | TObject::TestBit(UInt_t f) const |
Int_t | TObject::TestBits(UInt_t f) const |
virtual void | TObject::UseCurrentStyle() |
virtual void | TObject::Warning(const char* method, const char* msgfmt) const |
virtual Int_t | TObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0) |
virtual Int_t | TObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0) const |
virtual void | TObject::DoError(int level, const char* location, const char* fmt, va_list va) const |
void | TObject::MakeZombie() |
enum TObject::EStatusBits { | kCanDelete | |
kMustCleanup | ||
kObjInCanvas | ||
kIsReferenced | ||
kHasUUID | ||
kCannotPick | ||
kNoContextMenu | ||
kInvalidObject | ||
}; | ||
enum TObject::[unnamed] { | kIsOnHeap | |
kNotDeleted | ||
kZombie | ||
kBitMask | ||
kSingleKey | ||
kOverwrite | ||
kWriteDelete | ||
}; |
Int_t | fNin | Number of input points |
Int_t | fNout | Number of output points |
TGraph* | fGin | Input graph |
TGraph* | fGout | Output graph |
Double_t | fMinX | Minimum value of array X |
Double_t | fMaxX | Maximum value of array X |
TString | TNamed::fName | object identifier |
TString | TNamed::fTitle | object title |
TGraphSmooth A helper class to smooth TGraph see examples in $ROOTSYS/tutorials/graphs/motorcycle.C and approx.C ______________________________________________________________________
*-*-*-*-*-*-*-*-*Default GraphSmooth constructor *-*-*-*-*-*-*-*-*-*-* ===============================
*-*-*-*-*-*-*-*-*GraphSmooth constructor *-*-*-*-*-*-*-*-*-*-*-*-*-*-* =======================
*-*-*-*-*-*-*-*-*GraphSmooth destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* ======================
*-*-*-*-*-*-*-*-*Sort input data points*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* ======================
*-*-*-*-*-*-*-*-*Smooth data with Kernel smoother*-*-*-*-*-*-*-*-*-*-* ================================ Smooth grin with the Nadaraya-Watson kernel regression estimate. Arguments: grin: input graph option: the kernel to be used: "box", "normal" bandwidth: the bandwidth. The kernels are scaled so that their quartiles (viewed as probability densities) are at +/- 0.25*bandwidth. nout: If xout is not specified, interpolation takes place at equally spaced points spanning the interval [min(x), max(x)], where nout = max(nout, number of input data). xout: an optional set of values at which to evaluate the fit
*-*-*-*-*-*-*-*-*Smooth data with specified kernel*-*-*-*-*-*-*-*-*-*-* *-* ================================= Based on R function ksmooth: Translated to C++ by C. Stratowa (R source file: ksmooth.c by B.D.Ripley Copyright (C) 1998) *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-*Smooth data with Lowess smoother*-*-*-*-*-*-*-*-*-*-* ================================ This function performs the computations for the LOWESS smoother (see the reference below). Lowess returns the output points x and y which give the coordinates of the smooth. Arguments: grin: Input graph span: the smoother span. This gives the proportion of points in the plot which influence the smooth at each value. Larger values give more smoothness. iter: the number of robustifying iterations which should be performed. Using smaller values of iter will make lowess run faster. delta: values of x which lie within delta of each other replaced by a single value in the output from lowess. For delta = 0, delta will be calculated. References: Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829-836. Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35, 54. ==================
*-*-*-*-*-*-*-*-*Lowess regression smoother*-*-*-*-*-*-*-*-*-*-*-*-*-* ========================== Based on R function clowess: Translated to C++ by C. Stratowa (R source file: lowess.c by R Development Core Team (C) 1999-2001) *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-*Fit value at x[i] *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* ================= Based on R function lowest: Translated to C++ by C. Stratowa (R source file: lowess.c by R Development Core Team (C) 1999-2001) *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-*Smooth data with Super smoother*-*-*-*-*-*-*-*-*-*-*-* =============================== Smooth the (x, y) values by Friedman's ``super smoother''. Arguments: grin: graph for smoothing span: the fraction of the observations in the span of the running lines smoother, or 0 to choose this by leave-one-out cross-validation. bass: controls the smoothness of the fitted curve. Values of up to 10 indicate increasing smoothness. isPeriodic: if TRUE, the x values are assumed to be in [0, 1] and of period 1. w: case weights Details: supsmu is a running lines smoother which chooses between three spans for the lines. The running lines smoothers are symmetric, with k/2 data points each side of the predicted point, and values of k as 0.5 * n, 0.2 * n and 0.05 * n, where n is the number of data points. If span is specified, a single smoother with span span * n is used. The best of the three smoothers is chosen by cross-validation for each prediction. The best spans are then smoothed by a running lines smoother and the final prediction chosen by linear interpolation. The FORTRAN code says: ``For small samples (n < 40) or if there are substantial serial correlations between observations close in x - value, then a prespecified fixed span smoother (span > 0) should be used. Reasonable span values are 0.2 to 0.4.'' References: Friedman, J. H. (1984) SMART User's Guide. Laboratory for Computational Statistics, Stanford University Technical Report No. 1. Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational Statistics, Stanford University Technical Report No. 5. ==================
*-*-*-*-*-*-*-*-*Friedmannīs super smoother *-*-*-*-*-*-*-*-*-*-*-*-*-* ========================== super smoother (Friedman, 1984). version 10/10/84 coded and copywrite (c) 1984 by: Jerome H. Friedman department of statistics and stanford linear accelerator center stanford university all rights reserved. input: n : number of observations (x,y - pairs). x(n) : ordered abscissa values. y(n) : corresponding ordinate (response) values. w(n) : weight for each (x,y) observation. iper : periodic variable flag. iper=1 => x is ordered interval variable. iper=2 => x is a periodic variable with values in the range (0.0,1.0) and period 1.0. span : smoother span (fraction of observations in window). span=0.0 => automatic (variable) span selection. alpha : controls high frequency (small span) penality used with automatic span selection (bass tone control). (alpha.le.0.0 or alpha.gt.10.0 => no effect.) output: smo(n) : smoothed ordinate (response) values. scratch: sc(n,7) : internal working storage. note: for small samples (n < 40) or if there are substantial serial correlations between observations close in x - value, then a prespecified fixed span smoother (span > 0) should be used. reasonable span values are 0.2 to 0.4. current implementation: Based on R function supsmu: Translated to C++ by C. Stratowa (R source file: ppr.f by B.D.Ripley Copyright (C) 1994-97) *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-* Function for super smoother *-*-*-*-*-*-*-*-*-*-*-* ============================ Based on R function supsmu: Translated to C++ by C. Stratowa (R source file: ppr.f by B.D.Ripley Copyright (C) 1994-97) *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-*Sort data points and eliminate double x values*-*-*-* ==============================================
*-*-*-*-*-*-*-*-*Approximate data points*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* ======================= Arguments: grin: graph giving the coordinates of the points to be interpolated. Alternatively a single plotting structure can be specified: option: specifies the interpolation method to be used. Choices are "linear" (iKind = 1) or "constant" (iKind = 2). nout: If xout is not specified, interpolation takes place at n equally spaced points spanning the interval [min(x), max(x)], where nout = max(nout, number of input data). xout: an optional set of values specifying where interpolation is to take place. yleft: the value to be returned when input x values less than min(x). The default is defined by the value of rule given below. yright: the value to be returned when input x values greater than max(x). The default is defined by the value of rule given below. rule: an integer describing how interpolation is to take place outside the interval [min(x), max(x)]. If rule is 0 then the given yleft and yright values are returned, if it is 1 then 0 is returned for such points and if it is 2, the value at the closest data extreme is used. f: For method="constant" a number between 0 and 1 inclusive, indicating a compromise between left- and right-continuous step functions. If y0 and y1 are the values to the left and right of the point then the value is y0*f+y1*(1-f) so that f=0 is right-continuous and f=1 is left-continuous ties: Handling of tied x values. An integer describing a function with a single vector argument returning a single number result: ties = "ordered" (iTies = 0): input x are "ordered" ties = "mean" (iTies = 1): function "mean" ties = "min" (iTies = 2): function "min" ties = "max" (iTies = 3): function "max" Details: At least two complete (x, y) pairs are required. If there are duplicated (tied) x values and ties is a function it is applied to the y values for each distinct x value. Useful functions in this context include mean, min, and max. If ties="ordered" the x values are assumed to be already ordered. The first y value will be used for interpolation to the left and the last one for interpolation to the right. Value: approx returns a graph with components x and y, containing n coordinates which interpolate the given data points according to the method (and rule) desired.
*-*-*-*-*-*-*-*-*Approximate one data point*-*-*-*-*-*-*-*-*-*-*-*-*-* *-* ========================== Approximate y(v), given (x,y)[i], i = 0,..,n-1 Based on R function approx1: Translated to C++ by Christian Stratowa (R source file: approx.c by R Development Core Team (C) 1999-2001)
static function based on R function rPsort: adapted to C++ by Christian Stratowa (R source file: R_sort.c by R Development Core Team (C) 1999-2001)