virtual | ~RuleFit() |
void | CalcImportance() |
static TClass* | Class() |
Double_t | EvalEvent(const TMVA::Event& e) |
void | FitCoefficients() |
void | ForestStatistics() |
const vector<const TMVA::DecisionTree*>& | GetForest() const |
const TMVA::MethodRuleFit* | GetMethodRuleFit() const |
const UInt_t | GetNSubsamples() const |
const TMVA::RuleEnsemble& | GetRuleEnsemble() const |
TMVA::RuleEnsemble* | GetRuleEnsemblePtr() |
const TMVA::RuleFitParams& | GetRuleFitParams() const |
TMVA::RuleFitParams* | GetRuleFitParamsPtr() |
const vector<Int_t>& | GetSubsampleEvents() const |
void | GetSubsampleEvents(Int_t sub, UInt_t& ibeg, UInt_t& iend) const |
const TMVA::Event* | GetTrainingEvent(UInt_t i) const |
const TMVA::Event* | GetTrainingEvent(UInt_t i, UInt_t isub) const |
const vector<const TMVA::Event*>& | GetTrainingEvents() const |
void | Initialise(const TMVA::MethodRuleFit* rfbase, const vector<TMVA::DecisionTree*>& forest, const vector<TMVA::Event*,allocator<TMVA::Event*> >& trainingEvents, Double_t samplefrac) |
virtual TClass* | IsA() const |
TMVA::RuleFit | RuleFit() |
TMVA::RuleFit | RuleFit(const TMVA::MethodRuleFit* rfbase, const vector<TMVA::DecisionTree*>& forest, const vector<TMVA::Event*,allocator<TMVA::Event*> >& trainingEvents, Double_t samplefrac) |
void | SetGDNPathSteps(Int_t n = 100) |
void | SetGDPathStep(Double_t s = 0.01) |
void | SetGDTau(Double_t t = 0.0) |
void | SetImportanceCut(Double_t minimp = 0) |
void | SetMaxRuleDist(Double_t maxd) |
void | SetModelFull() |
void | SetModelLinear() |
void | SetModelRules() |
void | SetTrainingEvents(const vector<TMVA::Event*,allocator<TMVA::Event*> >& el, Double_t sampfrac) |
virtual void | ShowMembers(TMemberInspector& insp, char* parent) |
virtual void | Streamer(TBuffer& b) |
void | StreamerNVirtual(TBuffer& b) |