library: libTMVA
#include "RuleFit.h"

TMVA::RuleFit


class description - header file - source file
viewCVS header - viewCVS source

class TMVA::RuleFit

Inheritance Inherited Members Includes Libraries
Class Charts

Function Members (Methods)

Display options:
Show inherited
Show non-public
public:
virtual~RuleFit()
voidCalcImportance()
static TClass*Class()
Double_tEvalEvent(const TMVA::Event& e)
voidFitCoefficients()
voidForestStatistics()
const vector<const TMVA::DecisionTree*>&GetForest() const
const TMVA::MethodRuleFit*GetMethodRuleFit() const
const UInt_tGetNSubsamples() const
const TMVA::RuleEnsemble&GetRuleEnsemble() const
TMVA::RuleEnsemble*GetRuleEnsemblePtr()
const TMVA::RuleFitParams&GetRuleFitParams() const
TMVA::RuleFitParams*GetRuleFitParamsPtr()
const vector<Int_t>&GetSubsampleEvents() const
voidGetSubsampleEvents(Int_t sub, UInt_t& ibeg, UInt_t& iend) const
const TMVA::Event*GetTrainingEvent(UInt_t i) const
const TMVA::Event*GetTrainingEvent(UInt_t i, UInt_t isub) const
const vector<const TMVA::Event*>&GetTrainingEvents() const
voidInitialise(const TMVA::MethodRuleFit* rfbase, const vector<TMVA::DecisionTree*>& forest, const vector<TMVA::Event*,allocator<TMVA::Event*> >& trainingEvents, Double_t samplefrac)
virtual TClass*IsA() const
TMVA::RuleFitRuleFit()
TMVA::RuleFitRuleFit(const TMVA::MethodRuleFit* rfbase, const vector<TMVA::DecisionTree*>& forest, const vector<TMVA::Event*,allocator<TMVA::Event*> >& trainingEvents, Double_t samplefrac)
voidSetGDNPathSteps(Int_t n = 100)
voidSetGDPathStep(Double_t s = 0.01)
voidSetGDTau(Double_t t = 0.0)
voidSetImportanceCut(Double_t minimp = 0)
voidSetMaxRuleDist(Double_t maxd)
voidSetModelFull()
voidSetModelLinear()
voidSetModelRules()
voidSetTrainingEvents(const vector<TMVA::Event*,allocator<TMVA::Event*> >& el, Double_t sampfrac)
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
private:
voidCopy(const TMVA::RuleFit& other)
TMVA::RuleFitRuleFit(const TMVA::RuleFit& other)

Data Members

private:
vector<const TMVA::Event*>fTrainingEventsall training events
vector<Int_t>fSubsampleEventsiterators marking the beginning of each cross validation sample
vector<const TMVA::DecisionTree*>fForestthe input forest of decision trees
TMVA::RuleEnsemblefRuleEnsemblethe ensemble of rules
TMVA::RuleFitParamsfRuleFitParamsfit rule parameters
const TMVA::MethodRuleFit*fMethodRuleFitpointer the method which initialised this RuleFit instance
TMVA::MsgLoggerfLoggermessage logger

Class Description

RuleFit( const TMVA::MethodRuleFit *rfbase, const std::vector< TMVA::DecisionTree *> & forest, const std::vector<TMVA::Event *> & trainingEvents, Double_t samplefrac )
 constructor
RuleFit()
 default constructor
~RuleFit()
 destructor
void Initialise( const TMVA::MethodRuleFit *rfbase, const std::vector< TMVA::DecisionTree *> & forest, const std::vector< TMVA::Event *> & events, Double_t sampfrac )
 initialize the parameters of the RuleFit method
void Copy( const TMVA::RuleFit& other )
 copy method
void ForestStatistics()
 summary of statistics of all trees
 * end-nodes: average and spread
void FitCoefficients()
 Fit the coefficients for the rule ensemble

    fRuleFitParams.SetGDNPathSteps( 100 );
    fRuleFitParams.SetGDPathStep( 0.01 );
    fRuleFitParams.SetGDTau( 0.0 );
void CalcImportance()
 calculates the importance of each rule
Double_t EvalEvent( const TMVA::Event& e )
 evaluate single event
void SetTrainingEvents( const std::vector<TMVA::Event *>& el, Double_t sampfrac )
 set the training events randomly
void GetSubsampleEvents(Int_t sub, UInt_t& ibeg, UInt_t& iend)
 get the events for subsample sub
RuleFit( const TMVA::MethodRuleFit *rfbase, const std::vector<TMVA::DecisionTree *> & forest, const std::vector<Event *> & trainingEvents, Double_t samplefrac )
 main constructor
 empty constructor
void SetModelLinear()
 set usage of linear term
 set usage of rules
{ fRuleEnsemble.SetModelLinear(); }
void SetModelRules()
 set usage of linear term
{ fRuleEnsemble.SetModelRules(); }
void SetModelFull()
 set minimum importance allowed
{ fRuleEnsemble.SetModelFull(); }
void SetImportanceCut( Double_t minimp=0 )
 set max rule distance - see RuleEnsemble
{ fRuleEnsemble.SetImportanceCut(minimp); }
void SetMaxRuleDist( Double_t maxd )
 set path related parameters
{ fRuleEnsemble.SetMaxRuleDist(maxd); }
void SetGDTau( Double_t t=0.0 )
{ fRuleFitParams.SetGDTau(t); }
void SetGDPathStep( Double_t s=0.01 )
{ fRuleFitParams.SetGDPathStep(s); }
void SetGDNPathSteps( Int_t n=100 )
 accessors
{ fRuleFitParams.SetGDNPathSteps(n); }
const UInt_t GetNSubsamples()
{ return (fSubsampleEvents.size()>1 ? fSubsampleEvents.size()-1:0); }
const Event* GetTrainingEvent(UInt_t i)
{ return fTrainingEvents[i]; }
const Event* GetTrainingEvent(UInt_t i, UInt_t isub)
{ return &(fTrainingEvents[fSubsampleEvents[isub]])[i]; }
const std::vector< const TMVA::Event * > & GetTrainingEvents()
{ return fTrainingEvents; }
const std::vector< Int_t > & GetSubsampleEvents()
{ return fSubsampleEvents; }
const std::vector< const TMVA::DecisionTree *> & GetForest()


{ return fForest; }
const RuleEnsemble & GetRuleEnsemble()
{ return fRuleEnsemble; }
RuleEnsemble * GetRuleEnsemblePtr()
{ return &fRuleEnsemble; }
const RuleFitParams & GetRuleFitParams()
{ return fRuleFitParams; }
RuleFitParams * GetRuleFitParamsPtr()
{ return &fRuleFitParams; }
const MethodRuleFit * GetMethodRuleFit()
{ return fMethodRuleFit; }

Author: Andreas Hoecker, Joerg Stelzer, Fredrik Tegenfeldt, Helge Voss
Last update: root/tmva $Id: RuleFit.cxx,v 1.6 2006/11/20 15:35:28 brun Exp $
Copyright (c) 2005: *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.