library: libMatrix
#include "TMatrixDSymEigen.h"

TMatrixDSymEigen


class description - header file - source file
viewCVS header - viewCVS source

class TMatrixDSymEigen

Inheritance Inherited Members Includes Libraries
Class Charts

Function Members (Methods)

Display options:
Show inherited
Show non-public
public:
TMatrixDSymEigen()
TMatrixDSymEigen(const TMatrixDSym& a)
TMatrixDSymEigen(const TMatrixDSymEigen& another)
virtual~TMatrixDSymEigen()
static TClass*Class()
const TVectorD&GetEigenValues() const
const TMatrixD&GetEigenVectors() const
virtual TClass*IsA() const
TMatrixDSymEigen&operator=(const TMatrixDSymEigen& source)
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
protected:
static voidMakeEigenVectors(TMatrixD& v, TVectorD& d, TVectorD& e)
static voidMakeTridiagonal(TMatrixD& v, TVectorD& d, TVectorD& e)

Data Members

public:
enum { kWorkMax
};
protected:
TMatrixDfEigenVectorsEigen-vectors of matrix
TVectorDfEigenValuesEigen-values

Class Description

                                                                      
 TMatrixDSymEigen                                                     
                                                                      
 Eigenvalues and eigenvectors of a real symmetric matrix.             
                                                                      
 If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is  
 diagonal and the eigenvector matrix V is orthogonal. That is, the    
 diagonal values of D are the eigenvalues, and V*V' = I, where I is   
 the identity matrix.  The columns of V represent the eigenvectors in 
 the sense that A*V = V*D.                                            
                                                                      

TMatrixDSymEigen(const TMatrixDSym &a)
 Constructor for eigen-problem of symmetric matrix A .
TMatrixDSymEigen(const TMatrixDSymEigen &another)
 Copy constructor
void MakeTridiagonal(TMatrixD &v,TVectorD &d,TVectorD &e)
 This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and
 Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 Fortran subroutine in EISPACK.
void MakeEigenVectors(TMatrixD &v,TVectorD &d,TVectorD &e)
 Symmetric tridiagonal QL algorithm.
 This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and
 Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 Fortran subroutine in EISPACK.
TMatrixDSymEigen & operator=(const TMatrixDSymEigen &source)
 Assignment operator
TMatrixDSymEigen()
{}
virtual ~TMatrixDSymEigen()
{}
const TMatrixD & GetEigenVectors()
{ return fEigenVectors; }

Last update: root/matrix:$Name: $:$Id: TMatrixDSymEigen.cxx,v 1.12 2006/06/02 05:11:20 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.