| library: libMatrix #include "TMatrixDSymEigen.h" |

| TMatrixDSymEigen() | |
| TMatrixDSymEigen(const TMatrixDSym& a) | |
| TMatrixDSymEigen(const TMatrixDSymEigen& another) | |
| virtual | ~TMatrixDSymEigen() |
| static TClass* | Class() |
| const TVectorD& | GetEigenValues() const |
| const TMatrixD& | GetEigenVectors() const |
| virtual TClass* | IsA() const |
| TMatrixDSymEigen& | operator=(const TMatrixDSymEigen& source) |
| virtual void | ShowMembers(TMemberInspector& insp, char* parent) |
| virtual void | Streamer(TBuffer& b) |
| void | StreamerNVirtual(TBuffer& b) |
| static void | MakeEigenVectors(TMatrixD& v, TVectorD& d, TVectorD& e) |
| static void | MakeTridiagonal(TMatrixD& v, TVectorD& d, TVectorD& e) |
TMatrixDSymEigen
Eigenvalues and eigenvectors of a real symmetric matrix.
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
diagonal and the eigenvector matrix V is orthogonal. That is, the
diagonal values of D are the eigenvalues, and V*V' = I, where I is
the identity matrix. The columns of V represent the eigenvectors in
the sense that A*V = V*D.
This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
Symmetric tridiagonal QL algorithm. This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.