// @(#)root/mathcore:$Name:  $:$Id: Plane3D.h,v 1.6 2006/06/08 15:42:01 moneta Exp $
// Authors: L. Moneta    12/2005  

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// Header file for class LorentzVector
//
// Created by:    moneta   at Fri Dec 02   2005
//
// Last update: $Id: Plane3D.h,v 1.6 2006/06/08 15:42:01 moneta Exp $
//
#ifndef ROOT_Math_GenVector_Plane3D
#define ROOT_Math_GenVector_Plane3D  1

#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"



namespace ROOT {

  namespace Math {



    /**
        Class describing a geometrical plane in 3D.
	A Plane3D is a 2 dimensional surface spanned by two linearly independent vectors.
        The plane is described by the equation
	\f$ a*x + b*y + c*z + d = 0 \f$ where (a,b,c) are the components of the
        normal vector to the plane \f$ n = (a,b,c)  \f$ and \f$ d = - n \dot x \f$, where x is any point
	belonging to plane.
	More information on the mathematics describing a plane in 3D is available on
	<A HREF=http://mathworld.wolfram.com/Plane.html>MathWord</A>.
	The Plane3D class contains the 4 scalar values in double which represent the
	four coefficients, fA, fB, fC, fD. fA, fB, fC are the normal components normalized to 1,
	i.e. fA**2 + fB**2 + fC**2 = 1

	@ingroup GenVector
    */
    class Plane3D {

    public:

      // ------ ctors ------

      typedef double Scalar;

      typedef  DisplacementVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > Vector;
      typedef  PositionVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag >     Point;



      /**
         default constructor create plane z = 0
      */
      Plane3D ( ) : fA(0), fB(0), fC(1.), fD(0) { }

      /**
         generic constructors from the four scalar values describing the plane
	 according to the equation ax + by + cz + d = 0
         \param a scalar value
         \param b scalar value
         \param c scalar value
         \param d sxcalar value
      */
      Plane3D(const Scalar & a, const Scalar & b, const Scalar & c, const Scalar & d);

      /**
         constructor a Plane3D from a normal vector and a point coplanar to the plane
	 \param n normal expressed as a ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
	 \param p point  expressed as a  ROOT::Math::PositionVector3D<Cartesian3D<double> >
      */
      Plane3D(const Vector & n, const Point & p );


      /**
        Construct from a generic DisplacementVector3D (normal vector) and PositionVector3D (point coplanar to
        the plane)
	 \param n normal expressed as a generic ROOT::Math::DisplacementVector3D
	 \param p point  expressed as a generic ROOT::Math::PositionVector3D
      */
      template<class T1, class T2, class U>
      Plane3D( const  DisplacementVector3D<T1,U> & n, const  PositionVector3D<T2,U> & p) :
	Plane3D( Vector(n.X(), n.Y(), n.Z()), Point(p.X(), p.Y(), p.Z()) )
      {}

      /**
         constructor from three Cartesian point belonging to the plane
	 \param p1 point1  expressed as a generic ROOT::Math::PositionVector3D
	 \param p2 point2  expressed as a generic ROOT::Math::PositionVector3D
	 \param p3 point3  expressed as a generic ROOT::Math::PositionVector3D

      */
      Plane3D(const Point & p1, const Point & p2, const Point & p3  );

      /**
         constructor from three generic point belonging to the plane
	 \param p1 point1 expressed as  ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
	 \param p2 point2 expressed as  ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
	 \param p3 point3 expressed as  ROOT::Math::DisplacementVector3D<Cartesian3D<double> >
      */
      template <class T1, class T2, class T3, class U>
      Plane3D(const  PositionVector3D<T1,U> & p1, const  PositionVector3D<T2,U> & p2, const  PositionVector3D<T3,U> & p3  ) :
	Plane3D (  Point(p1.X(), p1.Y(), p1.Z()),
		   Point(p2.X(), p2.Y(), p2.Z()),
		   Point(p3.X(), p3.Y(), p3.Z()) )
      {}



      // compiler-generated copy ctor and dtor are fine.

      // ------ assignment ------

      /**
         Assignment operator from other Plane3D class
      */
      Plane3D & operator= ( const Plane3D & plane) {
        fA = plane.fA;
        fB = plane.fB;
        fC = plane.fC;
        fD = plane.fD;
        return *this;
      }

      // needed A(), B() , C() , D() ??? for the moment skip them


      /**
         Return normal vector to the plane as Cartesian DisplacementVector
      */
      Vector Normal() const {
        return Vector(fA, fB, fC);
      }

      /**
	  Return the Hesse Distance (distance from the origin) of the plane or
          the d coefficient expressed in normalize form
      */
      Scalar HesseDistance() const {
	return fD;
      }


      /**
	 Return the signed distance to a Point.
	 The distance is signed positive if the Point is in the same side of the
	 normal vector to the plane.
	 \param p Point expressed in Cartesian Coordinates
       */
      Scalar Distance(const Point & p) const;

      /**
	 Return the distance to a Point described with generic coordinates
	 \param p Point expressed as generic ROOT::Math::PositionVector3D
       */
      template <class T, class U>
      Scalar Distance(const PositionVector3D<T,U> & p) const {
	return Distance( Point(p.X(), p.Y(), p.Z() ) );
      }

      /**
	 Return the projection of a Cartesian point to a plane
	 \param p Point expressed as PositionVector3D<Cartesian3D<double> >
      */
      Point ProjectOntoPlane(const Point & p) const;

      /**
	 Return the projection of a point to a plane
	 \param p Point expressed as generic ROOT::Math::PositionVector3D
      */
      template <class T, class U>
      PositionVector3D<T,U> ProjectOntoPlane(const PositionVector3D<T,U> & p) const {
	Point pxyz = ProjectOntoPlane(Point(p.X(), p.Y(), p.Z() ) );
	PositionVector3D<T,U> p2;
	p2.SetXYZ( pxyz.X(), pxyz.Y(), pxyz.Z() );
	return p2;
      }



      // ------------------- Equality -----------------

      /**
        Exact equality
       */
      bool operator==(const Plane3D & rhs) const {
        return  fA  == rhs.fA &&  fB == rhs.fB  &&  fC == rhs.fC && fD == rhs.fD;
      }
      bool operator!= (const Plane3D & rhs) const {
        return !(operator==(rhs));
      }

    protected:

      /**
         Normalize the normal (a,b,c) plane components
      */
      void Normalize();


    private:

      // plane data members the four scalar which  satisfies fA*x + fB*y + fC*z + fD = 0
      // for every point (x,y,z) belonging to the plane.
      // fA**2 + fB**2 + fC** =1 plane is stored in normalized form
      Scalar  fA;
      Scalar  fB;
      Scalar  fC;
      Scalar  fD;


    };  // Plane3D<>

    /**
       Stream Output and Input
    */
    // TODO - I/O should be put in the manipulator form 

    std::ostream & operator<< (std::ostream & os, const Plane3D & p);


  } // end namespace Math

} // end namespace ROOT


#endif






ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.