```// @(#)root/geom:\$Name:  \$:\$Id: TGeoNode.cxx,v 1.40 2006/12/06 15:09:11 brun Exp \$
// Author: Andrei Gheata   24/10/01

/*************************************************************************
*                                                                       *
* For the licensing terms see \$ROOTSYS/LICENSE.                         *
* For the list of contributors see \$ROOTSYS/README/CREDITS.             *
*************************************************************************/

////////////////////////////////////////////////////////////////////////////////
// TGeoNode
//_________
//   A node represent a volume positioned inside another.They store links to both
// volumes and to the TGeoMatrix representing the relative positioning. Node are
// never instanciated directly by users, but created as a result of volume operations.
// Adding a volume named A with a given user ID inside a volume B will create a node
// node named A_ID. This will be added to the list of nodes stored by B. Also,
// when applying a division operation in N slices to a volume A, a list of nodes
// B_1, B_2, ..., B_N is also created. A node B_i does not represent a unique
// object in the geometry because its container A might be at its turn positioned
// as node inside several other volumes. Only when a complete branch of nodes
// is fully defined up to the top node in the geometry, a given path like:
//       /TOP_1/.../A_3/B_7 will represent an unique object. Its global transformation
// matrix can be computed as the pile-up of all local transformations in its
// branch. We will therefore call "logical graph" the hierarchy defined by nodes
// and volumes. The expansion of the logical graph by all possible paths defines
// a tree sructure where all nodes are unique "touchable" objects. We will call
// this the "physical tree". Unlike the logical graph, the physical tree can
// become a huge structure with several milions of nodes in case of complex
// geometries, therefore it is not always a good idea to keep it transient
// in memory. Since a the logical and physical structures are correlated, the
// modeller rather keeps track only of the current branch, updating the current
// global matrix at each change of the level in geometry. The current physical node
// is not an object that can be asked for at a given moment, but rather represented
// by the combination: current node + current global matrix. However, physical nodes
// have unique ID's that can be retreived for a given modeler state. These can be
// fed back to the modeler in order to force a physical node to become current.
// The advantage of this comes from the fact that all navigation queries check
// first the current node, therefore knowing the location of a point in the
// geometry can be saved as a starting state for later use.
//
//   Nodes can be declared as "overlapping" in case they do overlap with other
// nodes inside the same container or extrude this container. Non-overlapping
// nodes can be created with:
//
//      TGeoVolume::AddNode(TGeoVolume *daughter, Int_t copy_No, TGeoMatrix *matr);
//
// The creation of overapping nodes can be done with a similar prototype:
//
//
// When closing the geometry, overlapping nodes perform a check of possible
// overlaps with their neighbours. These are stored and checked all the time
// into geometry.
//
//   Node have visualization attributes as volume have. When undefined by users,
// painting a node on a pad will take the corresponding volume attributes.
//
//Begin_Html
/*
<img src="gif/t_node.jpg">
*/
//End_Html

#include "Riostream.h"

#include "TBrowser.h"
#include "TObjArray.h"
#include "TStyle.h"

#include "TGeoManager.h"
#include "TGeoMatrix.h"
#include "TGeoShape.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoNode.h"

// statics and globals

ClassImp(TGeoNode)

//_____________________________________________________________________________
TGeoNode::TGeoNode()
{
// Default constructor
fVolume       = 0;
fMother       = 0;
fNumber       = 0;
fOverlaps     = 0;
fNovlp        = 0;
}

//_____________________________________________________________________________
TGeoNode::TGeoNode(const TGeoVolume *vol)
{
// Constructor
if (!vol) {
Error("ctor", "volume not specified");
return;
}
fVolume       = (TGeoVolume*)vol;
fMother       = 0;
fNumber       = 0;
fOverlaps     = 0;
fNovlp        = 0;
}

//_____________________________________________________________________________
TGeoNode::TGeoNode(const TGeoNode& gn) :
TNamed(gn),
TGeoAtt(gn),
fVolume(gn.fVolume),
fMother(gn.fMother),
fNumber(gn.fNumber),
fNovlp(gn.fNovlp),
fOverlaps(gn.fOverlaps)
{
//copy constructor
}

//_____________________________________________________________________________
TGeoNode& TGeoNode::operator=(const TGeoNode& gn)
{
//assignment operator
if(this!=&gn) {
TNamed::operator=(gn);
TGeoAtt::operator=(gn);
fVolume=gn.fVolume;
fMother=gn.fMother;
fNumber=gn.fNumber;
fNovlp=gn.fNovlp;
fOverlaps=gn.fOverlaps;
}
return *this;
}

//_____________________________________________________________________________
TGeoNode::~TGeoNode()
{
// Destructor
if (fOverlaps) delete [] fOverlaps;
}

//_____________________________________________________________________________
void TGeoNode::Browse(TBrowser *b)
{
// How-to-browse for a node.
if (!b) return;
if (!GetNdaughters()) return;
TGeoNode *daughter;
TString title;
for (Int_t i=0; i<GetNdaughters(); i++) {
daughter = GetDaughter(i);
}
}

//_____________________________________________________________________________
void TGeoNode::CheckOverlaps(Double_t ovlp)
{
// Check overlaps bigger than OVLP hierarchically, starting with this node.
static Int_t icall = 0;
Int_t i, nd;
Bool_t clear;
TGeoNode *daughter;
TGeoManager *geom = fVolume->GetGeoManager();
if (icall == 0) {
geom->ClearOverlaps();
geom->SetCheckingOverlaps(kTRUE);
Info("CheckOverlaps", "Checking overlaps for %s and daughters within %g", fVolume->GetName(),ovlp);
}
icall++;
if (!fVolume->IsSelected()) {
// this branch was not checked -> check it
fVolume->SelectVolume(clear=kFALSE);
fVolume->CheckOverlaps(ovlp);
nd = GetNdaughters();
for (i=0; i<nd; i++) {
daughter = fVolume->GetNode(i);
daughter->CheckOverlaps(ovlp);
}
}
icall--;
if (icall == 0) {
// reset the selection for volumes
fVolume->SelectVolume(clear=kTRUE);
geom->SortOverlaps();
TObjArray *overlaps = geom->GetListOfOverlaps();
Int_t novlps = overlaps->GetEntriesFast();
TNamed *obj;
char name[15];
char num[15];
Int_t ndigits=1;
Int_t j, result=novlps;
while ((result /= 10)) ndigits++;
for (i=0; i<novlps; i++) {
obj = (TNamed*)overlaps->At(i);
result = i;
name[0] = 'o';
name[1] = 'v';
for (j=0; j<ndigits; j++) name[j+2]='0';
name[ndigits+2] = 0;
sprintf(num,"%i", i);
memcpy(name+2+ndigits-strlen(num), num, strlen(num));
obj->SetName(name);
}
Info("CheckOverlaps", "Number of illegal overlaps/extrusions : %d\n", novlps);
geom->SetCheckingOverlaps(kFALSE);
}
}

//_____________________________________________________________________________
Int_t TGeoNode::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute the closest distance of approach from point px,py to this node
Int_t dist = 9999;
if (!fVolume) return dist;
if (gGeoManager != fVolume->GetGeoManager()) gGeoManager = fVolume->GetGeoManager();
TVirtualGeoPainter *painter = gGeoManager->GetPainter();
if (!painter) return dist;
dist = painter->DistanceToPrimitiveVol(fVolume, px, py);
return dist;
}

//_____________________________________________________________________________
void TGeoNode::ExecuteEvent(Int_t event, Int_t px, Int_t py)
{
// Execute mouse actions on this volume.
if (!fVolume) return;
TVirtualGeoPainter *painter = fVolume->GetGeoManager()->GetPainter();
if (!painter) return;
painter->ExecuteVolumeEvent(fVolume, event, px, py);
}

//_____________________________________________________________________________
char *TGeoNode::GetObjectInfo(Int_t px, Int_t py) const
{
// Get node info for the browser.
if (!fVolume) return 0;
TVirtualGeoPainter *painter = fVolume->GetGeoManager()->GetPainter();
if (!painter) return 0;
return painter->GetVolumeInfo(fVolume, px, py);
}

//_____________________________________________________________________________
Bool_t TGeoNode::IsOnScreen() const
{
// check if this node is drawn. Assumes that this node is current

if (fVolume->TestAttBit(TGeoAtt::kVisOnScreen)) return kTRUE;
return kFALSE;
}

//_____________________________________________________________________________
void TGeoNode::InspectNode() const
{
// Inspect this node.
Info("InspectNode","Inspecting node %s", GetName());
if (IsOverlapping()) Info("InspectNode","node is MANY");
if (fOverlaps && fMother) {
Info("InspectNode","possibly overlaping with :");
for (Int_t i=0; i<fNovlp; i++)
Info("InspectNode","   node %s", fMother->GetNode(fOverlaps[i])->GetName());
}
Info("InspectNode","Transformation matrix:\n");
TGeoMatrix *matrix = GetMatrix();
if (matrix) matrix->Print();
if (fMother)
Info("InspectNode","Mother volume %s\n", fMother->GetName());
fVolume->InspectShape();
}

//_____________________________________________________________________________
void TGeoNode::CheckShapes()
{
// check for wrong parameters in shapes
fVolume->CheckShapes();
Int_t nd = GetNdaughters();
if (!nd) return;
for (Int_t i=0; i<nd; i++) fVolume->GetNode(i)->CheckShapes();
}

//_____________________________________________________________________________
void TGeoNode::DrawOnly(Option_t *option)
{
// draw only this node independently of its vis options
fVolume->DrawOnly(option);
}

//_____________________________________________________________________________
void TGeoNode::Draw(Option_t *option)
{
// draw current node according to option
gGeoManager->FindNode();
gGeoManager->CdUp();
Double_t point[3];
gGeoManager->MasterToLocal(gGeoManager->GetCurrentPoint(), &point[0]);
gGeoManager->SetCurrentPoint(&point[0]);
gGeoManager->GetCurrentVolume()->Draw(option);
}

//_____________________________________________________________________________
void TGeoNode::DrawOverlaps()
{
// Method drawing the overlap candidates with this node.
if (!fNovlp) {printf("node %s is ONLY\n", GetName()); return;}
if (!fOverlaps) {printf("node %s no overlaps\n", GetName()); return;}
TGeoNode *node;
Int_t i;
Int_t nd = fMother->GetNdaughters();
for (i=0; i<nd; i++) {
node = fMother->GetNode(i);
node->GetVolume()->SetVisibility(kFALSE);
}
fVolume->SetVisibility(kTRUE);
for (i=0; i<fNovlp; i++) {
node = fMother->GetNode(fOverlaps[i]);
node->GetVolume()->SetVisibility(kTRUE);
}
gGeoManager->SetVisLevel(1);
fMother->Draw();
}

//_____________________________________________________________________________
void TGeoNode::FillIdArray(Int_t &ifree, Int_t &nodeid, Int_t *array) const
{
// Fill array with node id. Recursive on node branch.
Int_t nd = GetNdaughters();
if (!nd) return;
TGeoNode *daughter;
Int_t istart = ifree; // start index for daughters
ifree += nd;
for (Int_t id=0; id<nd; id++) {
daughter = GetDaughter(id);
array[istart+id] = ifree;
array[ifree++] = ++nodeid;
daughter->FillIdArray(ifree, nodeid, array);
}
}

//_____________________________________________________________________________
Int_t TGeoNode::FindNode(const TGeoNode *node, Int_t level)
{
// Search for a node within the branch of this one.
Int_t nd = GetNdaughters();
if (!nd) return -1;
TIter next(fVolume->GetNodes());
TGeoNode *daughter;
while ((daughter=(TGeoNode*)next())) {
if (daughter==node) {
return (level+1);
}
}
next.Reset();
Int_t new_level;
while ((daughter=(TGeoNode*)next())) {
new_level = daughter->FindNode(node, level+1);
if (new_level>=0) {
return new_level;
}
}
return -1;
}

//_____________________________________________________________________________
void TGeoNode::SaveAttributes(ostream &out)
{
// save attributes for this node
if (IsVisStreamed()) return;
SetVisStreamed(kTRUE);
char quote='"';
Bool_t voldef = kFALSE;
if ((fVolume->IsVisTouched()) && (!fVolume->IsVisStreamed())) {
fVolume->SetVisStreamed(kTRUE);
out << "   vol = gGeoManager->GetVolume("<<quote<<fVolume->GetName()<<quote<<");"<<endl;
voldef = kTRUE;
if (!fVolume->IsVisDaughters())
out << "   vol->SetVisDaughters(kFALSE);"<<endl;
if (fVolume->IsVisible()) {
/*
if (fVolume->GetLineColor() != gStyle->GetLineColor())
out<<"   vol->SetLineColor("<<fVolume->GetLineColor()<<");"<<endl;
if (fVolume->GetLineStyle() != gStyle->GetLineStyle())
out<<"   vol->SetLineStyle("<<fVolume->GetLineStyle()<<");"<<endl;
if (fVolume->GetLineWidth() != gStyle->GetLineWidth())
out<<"   vol->SetLineWidth("<<fVolume->GetLineWidth()<<");"<<endl;
*/
} else {
out <<"   vol->SetVisibility(kFALSE);"<<endl;
}
}
if (!IsVisDaughters()) return;
Int_t nd = GetNdaughters();
if (!nd) return;
TGeoNode *node;
for (Int_t i=0; i<nd; i++) {
node = GetDaughter(i);
if (node->IsVisStreamed()) continue;
if (node->IsVisTouched()) {
if (!voldef)
out << "   vol = gGeoManager->GetVolume("<<quote<<fVolume->GetName()<<quote<<");"<<endl;
out<<"   node = vol->GetNode("<<i<<");"<<endl;
if (!node->IsVisDaughters()) {
out<<"   node->VisibleDaughters(kFALSE);"<<endl;
node->SetVisStreamed(kTRUE);
continue;
}
if (!node->IsVisible())
out<<"   node->SetVisibility(kFALSE);"<<endl;
}
node->SaveAttributes(out);
node->SetVisStreamed(kTRUE);
}
}

//_____________________________________________________________________________
Bool_t TGeoNode::MayOverlap(Int_t iother) const
{
// Check the overlab between the bounding box of the node overlaps with the one
// the brother with index IOTHER.
if (!fOverlaps) return kFALSE;
for (Int_t i=0; i<fNovlp; i++) if (fOverlaps[i]==iother) return kTRUE;
return kFALSE;
}

//_____________________________________________________________________________
void TGeoNode::MasterToLocal(const Double_t *master, Double_t *local) const
{
// Convert the point coordinates from mother reference to local reference system
GetMatrix()->MasterToLocal(master, local);
}

//_____________________________________________________________________________
void TGeoNode::MasterToLocalVect(const Double_t *master, Double_t *local) const
{
// Convert a vector from mother reference to local reference system
GetMatrix()->MasterToLocalVect(master, local);
}

//_____________________________________________________________________________
void TGeoNode::LocalToMaster(const Double_t *local, Double_t *master) const
{
// Convert the point coordinates from local reference system to mother reference
GetMatrix()->LocalToMaster(local, master);
}

//_____________________________________________________________________________
void TGeoNode::LocalToMasterVect(const Double_t *local, Double_t *master) const
{
// Convert a vector from local reference system to mother reference
GetMatrix()->LocalToMasterVect(local, master);
}

//_____________________________________________________________________________
void TGeoNode::ls(Option_t * /*option*/) const
{
// Print the path (A/B/C/...) to this node on stdout
}

//_____________________________________________________________________________
void TGeoNode::Paint(Option_t *option)
{
// Paint this node and its content according to visualization settings.
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
painter->PaintNode(this, option);
}

//_____________________________________________________________________________
void TGeoNode::PrintCandidates() const
{
// print daughters candidates for containing current point
//   cd();
Double_t point[3];
gGeoManager->MasterToLocal(gGeoManager->GetCurrentPoint(), &point[0]);
printf("   Local : %g, %g, %g\n", point[0], point[1], point[2]);
if (!fVolume->Contains(&point[0])) {
printf("current point not inside this\n");
return;
}
TGeoPatternFinder *finder = fVolume->GetFinder();
TGeoNode *node;
if (finder) {
printf("current node divided\n");
node = finder->FindNode(&point[0]);
if (!node) {
printf("point not inside division element\n");
return;
}
printf("inside division element %s\n", node->GetName());
return;
}
TGeoVoxelFinder *voxels = fVolume->GetVoxels();
if (!voxels) {
printf("volume not voxelized\n");
return;
}
Int_t ncheck = 0;
Int_t *check_list = voxels->GetCheckList(&point[0], ncheck);
voxels->PrintVoxelLimits(&point[0]);
if (!check_list) {
printf("no candidates for current point\n");
return;
}
TString overlap = "ONLY";
for (Int_t id=0; id<ncheck; id++) {
node = fVolume->GetNode(check_list[id]);
if (node->IsOverlapping()) overlap = "MANY";
else overlap = "ONLY";
printf("%i %s %s\n", check_list[id], node->GetName(), overlap.Data());
}
PrintOverlaps();
}

//_____________________________________________________________________________
void TGeoNode::PrintOverlaps() const
{
// print possible overlapping nodes
//   if (!IsOverlapping()) {printf("node %s is ONLY\n", GetName()); return;}
if (!fOverlaps) {printf("node %s no overlaps\n", GetName()); return;}
printf("Overlaps for node %s :\n", GetName());
TGeoNode *node;
for (Int_t i=0; i<fNovlp; i++) {
node = fMother->GetNode(fOverlaps[i]);
printf("   %s\n", node->GetName());
}
}

//_____________________________________________________________________________
Double_t TGeoNode::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape

Double_t local[3];
GetMatrix()->MasterToLocal(point,local);
return fVolume->GetShape()->Safety(local,in);
}

//_____________________________________________________________________________
void TGeoNode::SetOverlaps(Int_t *ovlp, Int_t novlp)
{
// set the list of overlaps for this node (ovlp must be created with operator new)
if (fOverlaps) delete [] fOverlaps;
fOverlaps = ovlp;
fNovlp = novlp;
}

//_____________________________________________________________________________
void TGeoNode::SetVisibility(Bool_t vis)
{
// Set visibility of the node (obsolete).
if (gGeoManager->IsClosed()) SetVisTouched(kTRUE);
TGeoAtt::SetVisibility(vis);
if (vis && !fVolume->IsVisible()) fVolume->SetVisibility(vis);
}

//_____________________________________________________________________________
void TGeoNode::VisibleDaughters(Bool_t vis)
{
// Set visibility of the daughters (obsolete).
if (gGeoManager->IsClosed()) SetVisTouched(kTRUE);
SetVisDaughters(vis);
}

////////////////////////////////////////////////////////////////////////////////
// TGeoNodeMatrix - a node containing local transformation
//
//
//
//
//Begin_Html
/*
<img src=".gif">
*/
//End_Html

ClassImp(TGeoNodeMatrix)

//_____________________________________________________________________________
TGeoNodeMatrix::TGeoNodeMatrix()
{
// Default constructor
fMatrix       = 0;
}

//_____________________________________________________________________________
TGeoNodeMatrix::TGeoNodeMatrix(const TGeoVolume *vol, const TGeoMatrix *matrix) :
TGeoNode(vol)
{
// Constructor.
fMatrix = (TGeoMatrix*)matrix;
if (!fMatrix) fMatrix = gGeoIdentity;
}

//_____________________________________________________________________________
TGeoNodeMatrix::~TGeoNodeMatrix()
{
// Destructor
}

//_____________________________________________________________________________
Int_t TGeoNodeMatrix::GetByteCount() const
{
// return the total size in bytes of this node
Int_t count = 40 + 4; // TGeoNode + fMatrix
//   if (fMatrix) count += fMatrix->GetByteCount();
return count;
}

//_____________________________________________________________________________
Int_t TGeoNodeMatrix::GetOptimalVoxels() const
{
//--- Returns type of optimal voxelization for this node.
// type = 0 -> cartesian
// type = 1 -> cylindrical
Bool_t type = fVolume->GetShape()->IsCylType();
if (!type) return 0;
const Double_t *transl = fMatrix->GetTranslation();
if (TMath::Abs(transl[0])>1E-10) return 0;
if (TMath::Abs(transl[1])>1E-10) return 0;
return 1;
}

//_____________________________________________________________________________
TGeoNode *TGeoNodeMatrix::MakeCopyNode() const
{
// Make a copy of this node.
TGeoNodeMatrix *node = new TGeoNodeMatrix(fVolume, fMatrix);
node->SetName(GetName());
// set the mother
node->SetMotherVolume(fMother);
// set the copy number
node->SetNumber(fNumber);
// copy overlaps
if (fNovlp>0) {
if (fOverlaps) {
Int_t *ovlps = new Int_t[fNovlp];
memcpy(ovlps, fOverlaps, fNovlp*sizeof(Int_t));
node->SetOverlaps(ovlps, fNovlp);
} else {
node->SetOverlaps(fOverlaps, fNovlp);
}
}
// copy VC
if (IsVirtual()) node->SetVirtual();
return node;
}

/*************************************************************************
* TGeoNodeOffset - node containing an offset
*
*************************************************************************/
ClassImp(TGeoNodeOffset)

//_____________________________________________________________________________
TGeoNodeOffset::TGeoNodeOffset()
{
// Default constructor
TObject::SetBit(kGeoNodeOffset);
fOffset = 0;
fIndex = 0;
fFinder = 0;
}

//_____________________________________________________________________________
TGeoNodeOffset::TGeoNodeOffset(const TGeoVolume *vol, Int_t index, Double_t offset) :
TGeoNode(vol)
{
// Constructor. Null pointer to matrix means identity transformation
TObject::SetBit(kGeoNodeOffset);
fOffset = offset;
fIndex = index;
fFinder = 0;
}

//_____________________________________________________________________________
TGeoNodeOffset::TGeoNodeOffset(const TGeoNodeOffset& gno) :
TGeoNode(gno),
fOffset(gno.fOffset),
fIndex(gno.fIndex),
fFinder(gno.fFinder)
{
//copy constructor
}

//_____________________________________________________________________________
TGeoNodeOffset& TGeoNodeOffset::operator=(const TGeoNodeOffset& gno)
{
//assignment operator
if(this!=&gno) {
TGeoNode::operator=(gno);
fOffset=gno.fOffset;
fIndex=gno.fIndex;
fFinder=gno.fFinder;
}
return *this;
}

//_____________________________________________________________________________
TGeoNodeOffset::~TGeoNodeOffset()
{
// Destructor
}

//_____________________________________________________________________________
Int_t TGeoNodeOffset::GetIndex() const
{
// Get the index of this offset.
return (fIndex+fFinder->GetDivIndex());
}

//_____________________________________________________________________________
TGeoNode *TGeoNodeOffset::MakeCopyNode() const
{
// make a copy of this node
TGeoNodeOffset *node = new TGeoNodeOffset(fVolume, GetIndex(), fOffset);
node->SetName(GetName());
// set the mother
node->SetMotherVolume(fMother);
// set the copy number
node->SetNumber(fNumber);
if (IsVirtual()) node->SetVirtual();
// set the finder
node->SetFinder(GetFinder());
return node;
}

/*************************************************************************
* TGeoIterator - a geometry iterator
*
*************************************************************************/

////////////////////////////////////////////////////////////////////////////////
// TGeoIterator
//==============
// A geometry iterator that sequentially follows all nodes of the geometrical
// hierarchy of a volume. The iterator has to be initiated with a top volume
// pointer:
//
//    TGeoIterator next(myVolume);
//
// One can use the iterator as any other in ROOT:
//
//    TGeoNode *node;
//    while ((node=next())) {
//       ...
//    }
//
// The iterator can perform 2 types of iterations that can be selected via:
//
//    next.SetType(Int_t type);
//
// Here TYPE can be:
//    0 (default) - 'first daughter next' behavior
//    1           - iteration at the current level only
//
// Supposing the tree structure looks like:
//
// TOP ___ A_1 ___ A1_1 ___ A11_1
//    |       |        |___ A12_1
//    |      |_____A2_1 ___ A21_1
//    |                |___ A21_2
//    |___ B_1 ...
//
// The order of iteration for TYPE=0 is: A_1, A1_1, A11_1, A12_1, A2_1, A21_1,
// A21_2, B_1, ...
// The order of iteration for TYPE=1 is: A_1, B_1, ...
// At any moment during iteration, TYPE can be changed. If the last iterated node
// is for instance A1_1 and the iteration type was 0, one can do:
//
//    next.SetType(1);
// The next iterated nodes will be the rest of A daughters: A2,A3,... The iterator
// will return 0 after finishing all daughters of A.
//
// During iteration, the following can be retreived:
// - Top volume where iteration started:    TGeoIterator::GetTopVolume()
// - Node at level I in the current branch: TGeoIterator::GetNode(Int_t i)
// - Iteration type:                        TGeoIterator::GetType()
// - Global matrix of the current node with respect to the top volume:
//                                          TGeoIterator::GetCurrentMatrix()
//
// The iterator can be reset by changing (or not) the top volume:
//
//    TGeoIterator::Reset(TGeoVolume *top);
//
// Example:
//==========
// We want to find out a volume named "MyVol" in the hierarchy of TOP volume.
//
//    TIter next(TOP);
//    TGeoNode *node;
//    TString name("MyVol");
//    while ((node=next()))
//       if (name == node->GetVolume()->GetName()) return node->GetVolume();
//
////////////////////////////////////////////////////////////////////////////////

ClassImp(TGeoIterator)

//_____________________________________________________________________________
TGeoIterator::TGeoIterator(TGeoVolume *top)
{
// Geometry iterator for a branch starting with a TOP node.
fTop = top;
fLevel = 0;
fMustResume = kFALSE;
fMustStop = kFALSE;
fType = 0;
fArray = new Int_t[30];
fMatrix = new TGeoHMatrix();
fTopName = fTop->GetName();
}

//_____________________________________________________________________________
TGeoIterator::TGeoIterator(const TGeoIterator &iter)
{
// Copy ctor.
fTop = iter.GetTopVolume();
fLevel = iter.GetLevel();
fMustResume = kFALSE;
fMustStop = kFALSE;
fType = iter.GetType();
fArray = new Int_t[30+ 30*Int_t(fLevel/30)];
for (Int_t i=0; i<fLevel+1; i++) fArray[i] = iter.GetIndex(i);
fMatrix = new TGeoHMatrix(*iter.GetCurrentMatrix());
fTopName = fTop->GetName();
}

//_____________________________________________________________________________
TGeoIterator::~TGeoIterator()
{
// Destructor.
if (fArray) delete [] fArray;
delete fMatrix;
}

//_____________________________________________________________________________
TGeoIterator &TGeoIterator::operator=(const TGeoIterator &iter)
{
// Assignment.
fTop = iter.GetTopVolume();
fLevel = iter.GetLevel();
fMustResume = kFALSE;
fMustStop = kFALSE;
fType = iter.GetType();
if (fArray) delete [] fArray;
fArray = new Int_t[30+ 30*Int_t(fLevel/30)];
for (Int_t i=0; i<fLevel+1; i++) fArray[i] = iter.GetIndex(i);
if (!fMatrix) fMatrix = new TGeoHMatrix();
*fMatrix = *iter.GetCurrentMatrix();
fTopName = fTop->GetName();
return *this;
}

//_____________________________________________________________________________
TGeoNode *TGeoIterator::Next()
{
// Returns next node.
if (fMustStop) return 0;
TGeoNode *mother = 0;
TGeoNode *next = 0;
Int_t i;
Int_t nd = fTop->GetNdaughters();
if (!nd) {
fMustStop = kTRUE;
return 0;
}
if (!fLevel) {
fArray[++fLevel] = 0;
next = fTop->GetNode(0);
return next;
}
next = fTop->GetNode(fArray[1]);
// Move to current node
for (i=2; i<fLevel+1; i++) {
mother = next;
next = mother->GetDaughter(fArray[i]);
}
if (fMustResume) {
fMustResume = kFALSE;
return next;
}

switch (fType) {
case 0:  // default next daughter behavior
nd = next->GetNdaughters();
if (nd) {
// First daughter next
fLevel++;
if ((fLevel%30)==0) IncreaseArray();
fArray[fLevel] = 0;
return next->GetDaughter(0);
}
// cd up and pick next
while (next) {
next = GetNode(fLevel-1);
if (!next) {
nd = fTop->GetNdaughters();
if (fArray[fLevel]<nd-1) return fTop->GetNode(++fArray[fLevel]);
fMustStop = kTRUE;
return 0;
} else {
nd = next->GetNdaughters();
if (fArray[fLevel]<nd-1) return next->GetDaughter(++fArray[fLevel]);
}
fLevel--;
}
break;
case 1:  // one level search
if (mother) nd = mother->GetNdaughters();
if (fArray[fLevel]<nd-1) {
if (!mother) return fTop->GetNode(++fArray[fLevel]);
else return mother->GetDaughter(++fArray[fLevel]);
}
}
fMustStop = kTRUE;
return 0;
}

//_____________________________________________________________________________
TGeoNode *TGeoIterator::operator()()
{
// Returns next node.
return Next();
}

//_____________________________________________________________________________
const TGeoMatrix *TGeoIterator::GetCurrentMatrix() const
{
// Returns global matrix for current node.
fMatrix->Clear();
if (!fLevel) return fMatrix;
TGeoNode *node = fTop->GetNode(fArray[1]);
fMatrix->Multiply(node->GetMatrix());
for (Int_t i=2; i<fLevel+1; i++) {
node = node->GetDaughter(fArray[i]);
fMatrix->Multiply(node->GetMatrix());
}
return fMatrix;
}

//_____________________________________________________________________________
TGeoNode *TGeoIterator::GetNode(Int_t level) const
{
// Returns current node at a given level.
if (!level || level>fLevel) return 0;
TGeoNode *node = fTop->GetNode(fArray[1]);
for (Int_t i=2; i<level+1; i++) node = node->GetDaughter(fArray[i]);
return node;
}

//_____________________________________________________________________________
void TGeoIterator::GetPath(TString &path) const
{
// Returns the path for the current node.
path = fTopName;
if (!fLevel) return;
TGeoNode *node = fTop->GetNode(fArray[1]);
path += "/";
path += node->GetName();
for (Int_t i=2; i<fLevel+1; i++) {
node = node->GetDaughter(fArray[i]);
path += "/";
path += node->GetName();
}
}

//_____________________________________________________________________________
void TGeoIterator::IncreaseArray()
{
// Increase by 30 the size of the array.
Int_t *array = new Int_t[fLevel+30];
memcpy(array, fArray, fLevel*sizeof(Int_t));
delete [] fArray;
fArray = array;
}

//_____________________________________________________________________________
void TGeoIterator::Reset(TGeoVolume *top)
{
// Resets the iterator for volume TOP.
if (top) fTop = top;
fLevel = 0;
fMustResume = kFALSE;
fMustStop = kFALSE;
}

//_____________________________________________________________________________
void TGeoIterator::SetTopName(const char *name)
{
// Set the top name for path
fTopName = name;
}

//_____________________________________________________________________________
void TGeoIterator::Skip()
{
// Stop iterating the current branch. The iteration of the next node will
// behave as if the branch starting from the current node (included) is not existing.
fMustResume = kTRUE;
TGeoNode *next = GetNode(fLevel);
if (!next) return;
Int_t nd;
switch (fType) {
case 0:  // default next daughter behavior
// cd up and pick next
while (next) {
next = GetNode(fLevel-1);
nd = (next==0)?fTop->GetNdaughters():next->GetNdaughters();
if (fArray[fLevel]<nd-1) {
++fArray[fLevel];
return;
}
fLevel--;
if (!fLevel) {
fMustStop = kTRUE;
return;
}
}
break;
case 1:  // one level search
next = GetNode(fLevel-1);
nd = (next==0)?fTop->GetNdaughters():next->GetNdaughters();
if (fArray[fLevel]<nd-1) {
++fArray[fLevel];
return;
}
fMustStop = kTRUE;
break;
}
}
```

ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.