| virtual | ~BrentRootFinder() | 
| ROOT::Math::BrentRootFinder | BrentRootFinder() | 
| ROOT::Math::BrentRootFinder | BrentRootFinder(const ROOT::Math::BrentRootFinder&) | 
| virtual int | ROOT::Math::IRootFinderMethod::Iterate() | 
| virtual int | ROOT::Math::IRootFinderMethod::Iterations() const | 
| virtual const char* | Name() const | 
| ROOT::Math::IRootFinderMethod& | ROOT::Math::IRootFinderMethod::operator=(const ROOT::Math::IRootFinderMethod&) | 
| virtual double | Root() const | 
| virtual int | SetFunction(const ROOT::Math::IGenFunction& f, double xlow, double xup) | 
| virtual int | Solve(int maxIter = 100, double absTol = 1E-3, double relTol = 1E-6) | 

 Returns the X value corresponding to the function value fy for (xmin<x<xmax).
          Method:
          First, the grid search is used to bracket the maximum
          with the step size = (xmax-xmin)/fNpx. This way, the step size
          can be controlled via the SetNpx() function. If the function is
          unimodal or if its extrema are far apart, setting the fNpx to
          a small value speeds the algorithm up many times.
          Then, Brent's method is applied on the bracketed interval.
          \@param maxIter maximum number of iterations.
          \@param absTol desired absolute error in the minimum position.
          \@param absTol desired relative error in the minimum position.