| virtual | ~Derivator() | 
| ROOT::Math::Derivator | Derivator() | 
| ROOT::Math::Derivator | Derivator(const ROOT::Math::IGenFunction& f) | 
| ROOT::Math::Derivator | Derivator(const ROOT::Math::Derivator::GSLFuncPointer& f, void* p = 0) | 
| double | Error() const | 
| double | Eval(double x, double h = 1E-8) const | 
| static double | Eval(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) | 
| static double | Eval(const ROOT::Math::IMultiGenFunction& f, const double* x, unsigned int icoord = 0, double h = 1E-8) | 
| static double | Eval(ROOT::Math::IParamFunction& f, double x, const double* p, unsigned int ipar = 0, double h = 1E-8) | 
| static double | Eval(ROOT::Math::IParamMultiFunction& f, const double* x, const double* p, unsigned int ipar = 0, double h = 1E-8) | 
| double | EvalBackward(double x, double h = 1E-8) const | 
| static double | EvalBackward(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) | 
| double | EvalCentral(double x, double h = 1E-8) const | 
| static double | EvalCentral(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) | 
| double | EvalForward(double x, double h = 1E-8) const | 
| static double | EvalForward(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) | 
| double | Result() const | 
| void | SetFunction(const ROOT::Math::IGenFunction& f) | 
| void | SetFunction(const ROOT::Math::Derivator::GSLFuncPointer& f, void* p = 0) | 
| int | Status() const | 

      Empty Construct for a Derivator class
      Need to set the function afterwards with Derivator::SetFunction
      Construct using a GSL function pointer type
       @param f :  free function pointer of the GSL required type
       @param p :  pointer to the object carrying the function state
                    (for example the function object itself)
       Computes the numerical derivative of a function f at a point x.
       It uses Derivator::EvalCentral to compute the derivative using an
       adaptive central difference algorithm with a step size h
       Computes the numerical derivative at a point x using an adaptive central
       difference algorithm with a step size h.
       Computes the numerical derivative at a point x using an adaptive forward
       difference algorithm with a step size h.
       The function is evaluated only at points greater than x and at x itself.
       Computes the numerical derivative at a point x using an adaptive backward
       difference algorithm with a step size h.
       The function is evaluated only at points less than x and at x itself.
 @name --- Static methods ---
       This methods don't require to use a Derivator object, and are designed to be used in
       fast calculation. Error and status code cannot be retrieved in this case
       Computes the numerical derivative of a function f at a point x.
       It uses Derivator::EvalCentral to compute the derivative using an
       adaptive central difference algorithm with a step size h
       Computes the numerical derivative of a function f at a point x using an adaptive central
       difference algorithm with a step size h
       Computes the numerical derivative of a function f at a point x using an adaptive forward
       difference algorithm with a step size h.
       The function is evaluated only at points greater than x and at x itself
       Computes the numerical derivative of a function f at a point x using an adaptive backward
       difference algorithm with a step size h.
       The function is evaluated only at points less than x and at x itself
 Derivatives for multi-dimension functions
      Evaluate the partial derivative of a multi-dim function
      with respect coordinate x_icoord at the point x[]
      Evaluate the derivative with respect a parameter for one-dim parameteric function
      at the point ( x,p[]) with respect the parameter p_ipar
      Evaluate the derivative with respect a parameter for a multi-dim parameteric function
      at the point ( x[],p[]) with respect the parameter p_ipar