ROOT logo
ROOT » MATH » MATHMORE » ROOT::Math::GSLIntegrator

class ROOT::Math::GSLIntegrator: public ROOT::Math::VirtualIntegratorOneDim



   Class for performing numerical integration of a function in one dimension.
   It uses the numerical integration algorithms of GSL, which reimplements the
   algorithms used in the QUADPACK, a numerical integration package written in Fortran.

   Various types of adaptive and non-adaptive integration are supported. These include
   integration over infinite and semi-infinite ranges and singular integrals.

   The integration type is selected using the Integration::type enumeration
   in the class constructor.
   The default type is adaptive integration with singularity
   (ADAPTIVESINGULAR or QAGS in the QUADPACK convention) applying a Gauss-Kronrod 21-point integration rule.
   In the case of ADAPTIVE type, the integration rule can also be specified via the
   Integration::GKRule. The default rule is 31 points.

   In the case of integration over infinite and semi-infinite ranges, the type used is always
   ADAPTIVESINGULAR applying a transformation from the original interval into (0,1).

   The ADAPTIVESINGULAR type is the most sophicticated type. When performances are
   important, it is then recommened to use the NONADAPTIVE type in case of smooth functions or
   ADAPTIVE with a lower Gauss-Kronrod rule.

   For detailed description on GSL integration algorithms see the
   <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Numerical-Integration.html">GSL Manual</A>.


   @ingroup Integration

Function Members (Methods)

public:
virtual~GSLIntegrator()
virtual doubleError() const
virtual doubleROOT::Math::VirtualIntegrator::Error() const
ROOT::Math::GSLIntegratorGSLIntegrator(double absTol = 1.E-9, double relTol = 1E-6, size_t size = 1000)
ROOT::Math::GSLIntegratorGSLIntegrator(const ROOT::Math::IntegrationOneDim::Type type, double absTol = 1.E-9, double relTol = 1E-6, size_t size = 1000)
ROOT::Math::GSLIntegratorGSLIntegrator(const ROOT::Math::IntegrationOneDim::Type type, const ROOT::Math::Integration::GKRule rule, double absTol = 1.E-9, double relTol = 1E-6, size_t size = 1000)
ROOT::Math::GSLIntegratorGSLIntegrator(const char* type, int rule, double absTol, double relTol, size_t size)
virtual doubleIntegral()
virtual doubleROOT::Math::VirtualIntegratorOneDim::Integral()
doubleIntegral(const ROOT::Math::IGenFunction& f)
virtual doubleIntegral(const vector<double>& pts)
virtual doubleROOT::Math::VirtualIntegratorOneDim::Integral(const vector<double>& pts)
doubleIntegral(const ROOT::Math::IGenFunction& f, const vector<double>& pts)
virtual doubleIntegral(double a, double b)
doubleIntegral(ROOT::Math::GSLFuncPointer f, void* p)
virtual doubleROOT::Math::VirtualIntegratorOneDim::Integral(double a, double b)
doubleIntegral(const ROOT::Math::IGenFunction& f, double a, double b)
doubleIntegral(ROOT::Math::GSLFuncPointer f, void* p, const vector<double>& pts)
doubleIntegral(ROOT::Math::GSLFuncPointer f, void* p, double a, double b)
virtual doubleIntegralCauchy(double a, double b, double c)
virtual doubleROOT::Math::VirtualIntegratorOneDim::IntegralCauchy(double a, double b, double c)
doubleIntegralCauchy(const ROOT::Math::IGenFunction& f, double a, double b, double c)
virtual doubleIntegralLow(double b)
virtual doubleROOT::Math::VirtualIntegratorOneDim::IntegralLow(double b)
doubleIntegralLow(const ROOT::Math::IGenFunction& f, double b)
doubleIntegralLow(ROOT::Math::GSLFuncPointer f, void* p, double b)
virtual doubleIntegralUp(double a)
virtual doubleROOT::Math::VirtualIntegratorOneDim::IntegralUp(double a)
doubleIntegralUp(const ROOT::Math::IGenFunction& f, double a)
doubleIntegralUp(ROOT::Math::GSLFuncPointer f, void* p, double a)
ROOT::Math::VirtualIntegratorOneDim&ROOT::Math::VirtualIntegratorOneDim::operator=(const ROOT::Math::VirtualIntegratorOneDim&)
ROOT::Math::VirtualIntegrator&ROOT::Math::VirtualIntegrator::operator=(const ROOT::Math::VirtualIntegrator&)
virtual doubleResult() const
virtual doubleROOT::Math::VirtualIntegrator::Result() const
virtual voidSetAbsTolerance(double absTolerance)
virtual voidROOT::Math::VirtualIntegrator::SetAbsTolerance(double)
virtual voidSetFunction(const ROOT::Math::IGenFunction& f, bool copyFunc = false)
voidSetFunction(ROOT::Math::GSLFuncPointer f, void* p = 0)
virtual voidROOT::Math::VirtualIntegratorOneDim::SetFunction(const ROOT::Math::IGenFunction&, bool copy = false)
voidSetIntegrationRule(ROOT::Math::Integration::GKRule)
virtual voidSetRelTolerance(double relTolerance)
virtual voidROOT::Math::VirtualIntegrator::SetRelTolerance(double)
virtual intStatus() const
protected:
boolCheckFunction()

Data Members

private:
doublefAbsTol
doublefError
ROOT::Math::GSLFunctionWrapper*fFunction
size_tfMaxIntervals
doublefRelTol
doublefResult
ROOT::Math::Integration::GKRulefRule
size_tfSize
intfStatus
ROOT::Math::IntegrationOneDim::TypefType
ROOT::Math::GSLIntegrationWorkspace*fWorkspace

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

GSLIntegrator(double absTol = 1.E-9, double relTol = 1E-6, size_t size = 1000)
 constructors
 Default constructor of GSL Integrator for Adaptive Singular integration

      @param absTol desired absolute Error
      @param relTol desired relative Error
      @param size maximum number of sub-intervals

GSLIntegrator(const ROOT::Math::IntegrationOneDim::Type type, double absTol = 1.E-9, double relTol = 1E-6, size_t size = 1000)
 constructor of GSL Integrator. In the case of Adaptive integration the Gauss-Krond rule of 31 points is used

         @param type type of integration. The possible types are defined in the Integration::Type enumeration
         @param absTol desired absolute Error
         @param relTol desired relative Error
         @param size maximum number of sub-intervals

GSLIntegrator(const Integration::Type type, const Integration::GKRule rule, double absTol = 1.E-9, double relTol = 1E-6, size_t size = 1000)
         generic constructor for GSL Integrator

       @param type type of integration. The possible types are defined in the Integration::Type enumeration
       @param rule Gauss-Kronrod rule. It is used only for ADAPTIVE::Integration types. The possible rules are defined in the Integration::GKRule enumeration
       @param absTol desired absolute Error
       @param relTol desired relative Error
       @param size maximum number of sub-intervals


GSLIntegrator(const char * type, int rule, double absTol, double relTol, size_t size )
 constructor of GSL Integrator. In the case of Adaptive integration the Gauss-Krond rule of 31 points is used
          This is used by the plug-in manager (need a char * instead of enumerations)

         @param type type of integration. The possible types are defined in the Integration::Type enumeration
         @param rule Gauss-Kronrod rule (from 1 to 6)
         @param absTol desired absolute Error
         @param relTol desired relative Error
         @param size maximum number of sub-intervals

virtual ~GSLIntegrator()
GSLIntegrator(const ROOT::Math::GSLIntegrator& )
 disable copy ctrs
GSLIntegrator & operator=(const ROOT::Math::GSLIntegrator& )
void SetFunction(const IGenFunction &f, bool copyFunc = false)
 template methods for generic functors

         method to set the a generic integration function

          @param f integration function. The function type must implement the assigment operator, <em>  double  operator() (  double  x ) </em>


void SetFunction( GSLFuncPointer f, void * p = 0)
         Set function from a GSL pointer function type

double Integral(const IGenFunction & f, double a, double b)
 methods using IGenFunction

         evaluate the Integral of a function f over the defined interval (a,b)
       @param f integration function. The function type must implement the mathlib::IGenFunction interface
       @param a lower value of the integration interval
       @param b upper value of the integration interval

double Integral(const IGenFunction & f)
         evaluate the Integral of a function f over the infinite interval (-inf,+inf)
       @param f integration function. The function type must implement the mathlib::IGenFunction interface

double IntegralCauchy(double a, double b, double c)
	evaluate the Cauchy principal value of the integral of  a previously defined function f over
        the defined interval (a,b) with a singularity at c
        @param a lower interval value
        @param b lower interval value
        @param c singular value of f

double IntegralCauchy(const ROOT::Math::IGenFunction& f, double a, double b, double c)
	evaluate the Cauchy principal value of the integral of  a function f over the defined interval (a,b)
        with a singularity at c
        @param f integration function. The function type must implement the mathlib::IGenFunction interface
        @param a lower interval value
        @param b lower interval value
        @param c singular value of f

double IntegralUp(const ROOT::Math::IGenFunction& f, double a)
         evaluate the Integral of a function f over the semi-infinite interval (a,+inf)
       @param f integration function. The function type must implement the mathlib::IGenFunction interface
       @param a lower value of the integration interval


double IntegralLow(const ROOT::Math::IGenFunction& f, double b)
         evaluate the Integral of a function f over the over the semi-infinite interval (-inf,b)
       @param f integration function. The function type must implement the mathlib::IGenFunction interface
       @param b upper value of the integration interval

double Integral(const IGenFunction & f, const std::vector<double> & pts )
         evaluate the Integral of a function f with known singular points over the defined Integral (a,b)
       @param f integration function. The function type must implement the mathlib::IGenFunction interface
       @param pts vector containing both the function singular points and the lower/upper edges of the interval. The vector must have as first element the lower edge of the integration Integral ( \a a) and last element the upper value.


double Integral(double a, double b)
 evaluate using cached function

         evaluate the Integral over the defined interval (a,b) using the function previously set with GSLIntegrator::SetFunction method
       @param a lower value of the integration interval
       @param b upper value of the integration interval

double Integral()
         evaluate the Integral over the infinite interval (-inf,+inf) using the function previously set with GSLIntegrator::SetFunction method.

double IntegralUp(double a)
         evaluate the Integral of a function f over the semi-infinite interval (a,+inf) using the function previously set with GSLIntegrator::SetFunction method.
       @param a lower value of the integration interval

double IntegralLow(double b)
         evaluate the Integral of a function f over the over the semi-infinite interval (-inf,b) using the function previously set with GSLIntegrator::SetFunction method.
       @param b upper value of the integration interval

double Integral( const std::vector<double> & pts)
         evaluate the Integral over the defined interval (a,b) using the function previously set with GSLIntegrator::SetFunction method. The function has known singular points.
       @param pts vector containing both the function singular points and the lower/upper edges of the interval. The vector must have as first element the lower edge of the integration Integral ( \a a) and last element the upper value.


double Integral(ROOT::Math::GSLFuncPointer f, void* p, double a, double b)
 evaluate using free function pointer (same GSL signature)

         signature for function pointers used by GSL

typedef double ( * GSLFuncPointer ) ( double, void * );

         evaluate the Integral of  of a function f over the defined interval (a,b) passing a free function pointer
       The integration function must be a free function and have a signature consistent with GSL functions:

       <em>double my_function ( double x, void * p ) { ...... } </em>

       This method is the most efficient since no internal adapter to GSL function is created.
       @param f pointer to the integration function
       @param p pointer to the Parameters of the function
       @param a lower value of the integration interval
       @param b upper value of the integration interval


double Integral(GSLFuncPointer f, void * p)
         evaluate the Integral  of a function f over the infinite interval (-inf,+inf) passing a free function pointer

double IntegralUp(ROOT::Math::GSLFuncPointer f, void* p, double a)
         evaluate the Integral of a function f over the semi-infinite interval (a,+inf) passing a free function pointer

double IntegralLow(ROOT::Math::GSLFuncPointer f, void* p, double b)
         evaluate the Integral of a function f over the over the semi-infinite interval (-inf,b) passing a free function pointer

double Integral(GSLFuncPointer f, void * p, const std::vector<double> & pts)
         evaluate the Integral of a function f with knows singular points over the over a defined interval passing a free function pointer

double Result() const
         return  the Result of the last Integral calculation

double Error() const
         return the estimate of the absolute Error of the last Integral calculation

int Status() const
         return the Error Status of the last Integral calculation

void SetRelTolerance(double relTolerance)
 setter for control Parameters  (getters are not needed so far )

         set the desired relative Error

void SetAbsTolerance(double absTolerance)
         set the desired absolute Error

void SetIntegrationRule(ROOT::Math::Integration::GKRule )
         set the integration rule (Gauss-Kronrod rule).
       The possible rules are defined in the Integration::GKRule enumeration.
       The integration rule can be modified only for ADAPTIVE type integrations

bool CheckFunction()
 internal method to check validity of GSL function pointer