ROOT logo
ROOT » TMVA » TMVA::MethodTMlpANN

class TMVA::MethodTMlpANN: public TMVA::MethodBase


This is the TMVA TMultiLayerPerceptron interface class. It provides the training and testing the ROOT internal MLP class in the TMVA framework. Available learning methods:
  • Stochastic
  • Batch
  • SteepestDescent
  • RibierePolak
  • FletcherReeves
  • BFGS
 

  See the TMultiLayerPerceptron class description
  for details on this ANN.


Function Members (Methods)

public:
virtual~MethodTMlpANN()
voidTObject::AbstractMethod(const char* method) const
voidTMVA::Configurable::AddOptionsXMLTo(void* parent) const
voidTMVA::MethodBase::AddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType)
voidTMVA::MethodBase::AddTargetsXMLTo(void* parent) const
voidTMVA::MethodBase::AddVarsXMLTo(void* parent) const
virtual voidAddWeightsXMLTo(void* parent) const
virtual voidTMVA::MethodBase::AddWeightsXMLTo(void* parent) const
virtual voidTObject::AppendPad(Option_t* option = "")
TDirectory*TMVA::MethodBase::BaseDir() const
virtual voidTObject::Browse(TBrowser* b)
voidTMVA::Configurable::CheckForUnusedOptions() const
virtual voidTMVA::MethodBase::CheckSetup()
static TClass*Class()
static TClass*TMVA::MethodBase::Class()
static TClass*TMVA::Configurable::Class()
static TClass*TObject::Class()
static TClass*TMVA::IMethod::Class()
virtual const char*TObject::ClassName() const
virtual voidTObject::Clear(Option_t* = "")
virtual TObject*TObject::Clone(const char* newname = "") const
virtual Int_tTObject::Compare(const TObject* obj) const
TMVA::ConfigurableTMVA::Configurable::Configurable(const TString& theOption = "")
virtual voidTObject::Copy(TObject& object) const
virtual const TMVA::Ranking*CreateRanking()
virtual const TMVA::Ranking*TMVA::MethodBase::CreateRanking()
virtual const TMVA::Ranking*TMVA::IMethod::CreateRanking()
TMVA::DataSet*TMVA::MethodBase::Data() const
TMVA::DataSetInfo&TMVA::MethodBase::DataInfo() const
virtual voidTMVA::MethodBase::DeclareOptions()
virtual voidTMVA::IMethod::DeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")MENU
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
Bool_tTMVA::MethodBase::DoRegression() const
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() constMENU
virtual TObject*TObject::DrawClone(Option_t* option = "") constMENU
virtual voidTObject::Dump() constMENU
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
TMVA::Types::EAnalysisTypeTMVA::MethodBase::GetAnalysisType() const
const char*TMVA::Configurable::GetConfigDescription() const
const char*TMVA::Configurable::GetConfigName() const
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
virtual Double_tTMVA::MethodBase::GetEfficiency(const TString&, TMVA::Types::ETreeType, Double_t& err)
const TMVA::Event*TMVA::MethodBase::GetEvent() const
const TMVA::Event*TMVA::MethodBase::GetEvent(const TMVA::Event* ev) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const
const vector<TMVA::Event*>&TMVA::MethodBase::GetEventCollection(TMVA::Types::ETreeType type)
virtual const char*TObject::GetIconName() const
const TString&TMVA::MethodBase::GetInputLabel(Int_t i) const
const TString&TMVA::MethodBase::GetInputTitle(Int_t i) const
const TString&TMVA::MethodBase::GetInputVar(Int_t i) const
const TString&TMVA::MethodBase::GetJobName() const
virtual Double_tTMVA::MethodBase::GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
Double_tTMVA::MethodBase::GetMean(Int_t ivar) const
const TString&TMVA::MethodBase::GetMethodName() const
TMVA::Types::EMVATMVA::MethodBase::GetMethodType() const
TStringTMVA::MethodBase::GetMethodTypeName() const
virtual Double_tGetMvaValue(Double_t* err = 0)
virtual Double_tTMVA::MethodBase::GetMvaValue(Double_t* err = 0)
virtual Double_tTMVA::IMethod::GetMvaValue(Double_t* err = 0)
virtual const char*TMVA::MethodBase::GetName() const
virtual const char*TMVA::Configurable::GetName() const
virtual const char*TMVA::IMethod::GetName() const
UInt_tTMVA::MethodBase::GetNEvents() const
UInt_tTMVA::MethodBase::GetNTargets() const
UInt_tTMVA::MethodBase::GetNvar() const
UInt_tTMVA::MethodBase::GetNVariables() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Option_t*TObject::GetOption() const
const TString&TMVA::Configurable::GetOptions() const
virtual Double_tTMVA::MethodBase::GetProba(Double_t mvaVal, Double_t ap_sig)
const TStringTMVA::MethodBase::GetProbaName() const
virtual Double_tTMVA::MethodBase::GetRarity(Double_t mvaVal, TMVA::Types::ESBType reftype = Types::kBackground) const
virtual const vector<Float_t>&TMVA::MethodBase::GetRegressionValues()
Double_tTMVA::MethodBase::GetRMS(Int_t ivar) const
virtual Double_tTMVA::MethodBase::GetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
virtual Double_tTMVA::MethodBase::GetSeparation(TH1*, TH1*) const
virtual Double_tTMVA::MethodBase::GetSeparation(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
Double_tTMVA::MethodBase::GetSignalReferenceCut() const
virtual Double_tTMVA::MethodBase::GetSignificance() const
const TMVA::Event*TMVA::MethodBase::GetTestingEvent(Long64_t ievt) const
Double_tTMVA::MethodBase::GetTestTime() const
const TString&TMVA::MethodBase::GetTestvarName() const
virtual const char*TObject::GetTitle() const
virtual Double_tTMVA::MethodBase::GetTrainingEfficiency(const TString&)
const TMVA::Event*TMVA::MethodBase::GetTrainingEvent(Long64_t ievt) const
UInt_tTMVA::MethodBase::GetTrainingROOTVersionCode() const
TStringTMVA::MethodBase::GetTrainingROOTVersionString() const
UInt_tTMVA::MethodBase::GetTrainingTMVAVersionCode() const
TStringTMVA::MethodBase::GetTrainingTMVAVersionString() const
Double_tTMVA::MethodBase::GetTrainTime() const
TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler()
const TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler() const
virtual UInt_tTObject::GetUniqueID() const
TStringTMVA::MethodBase::GetWeightFileName() const
Double_tTMVA::MethodBase::GetXmax(Int_t ivar) const
Double_tTMVA::MethodBase::GetXmin(Int_t ivar) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual Bool_tHasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual Bool_tTMVA::MethodBase::HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual ULong_tTObject::Hash() const
Bool_tTMVA::MethodBase::HasMVAPdfs() const
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
virtual voidTMVA::MethodBase::Init()
virtual voidTMVA::IMethod::Init()
virtual voidTObject::Inspect() constMENU
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual TClass*TMVA::MethodBase::IsA() const
virtual TClass*TMVA::Configurable::IsA() const
virtual TClass*TObject::IsA() const
virtual TClass*TMVA::IMethod::IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
Bool_tTObject::IsOnHeap() const
virtual Bool_tTMVA::MethodBase::IsSignalLike()
virtual Bool_tTObject::IsSortable() const
Bool_tTObject::IsZombie() const
virtual voidTObject::ls(Option_t* option = "") const
virtual voidMakeClass(const TString& classFileName = TString("")) const
virtual voidTMVA::MethodBase::MakeClass(const TString& classFileName = TString("")) const
virtual voidTMVA::IMethod::MakeClass(const TString& classFileName = TString("")) const
voidTObject::MayNotUse(const char* method) const
TDirectory*TMVA::MethodBase::MethodBaseDir() const
TMVA::MethodTMlpANNMethodTMlpANN(TMVA::DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir = NULL)
TMVA::MethodTMlpANNMethodTMlpANN(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& theData, const TString& theOption = "3000:N-1:N-2", TDirectory* theTargetDir = 0)
virtual Bool_tTMVA::MethodBase::MonitorBoost(TMVA::MethodBoost*)
virtual Bool_tTMVA::IMethod::MonitorBoost(TMVA::MethodBoost* boost)
virtual Bool_tTObject::Notify()
static voidTObject::operator delete(void* ptr)
static voidTObject::operator delete(void* ptr, void* vp)
static voidTObject::operator delete[](void* ptr)
static voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TObject&TObject::operator=(const TObject& rhs)
TMVA::IMethod&TMVA::IMethod::operator=(const TMVA::IMethod&)
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTMVA::Configurable::ParseOptions()
virtual voidTObject::Pop()
virtual voidTObject::Print(Option_t* option = "") const
virtual voidTMVA::MethodBase::PrintHelpMessage() const
virtual voidTMVA::IMethod::PrintHelpMessage() const
voidTMVA::Configurable::PrintOptions() const
virtual voidTMVA::MethodBase::ProcessOptions()
virtual voidTMVA::IMethod::ProcessOptions()
voidTMVA::MethodBase::ProcessSetup()
virtual Int_tTObject::Read(const char* name)
voidTMVA::Configurable::ReadOptionsFromStream(istream& istr)
voidTMVA::Configurable::ReadOptionsFromXML(void* node)
voidTMVA::MethodBase::ReadStateFromFile()
voidTMVA::MethodBase::ReadStateFromStream(istream& tf)
voidTMVA::MethodBase::ReadStateFromStream(TFile& rf)
voidTMVA::MethodBase::ReadStateFromXML(void* parent)
voidTMVA::MethodBase::ReadTargetsFromXML(void* tarnode)
voidTMVA::MethodBase::ReadVariablesFromXML(void* varnode)
voidTMVA::MethodBase::ReadVarsFromStream(istream& istr)
virtual voidReadWeightsFromStream(istream& istr)
virtual voidTMVA::MethodBase::ReadWeightsFromStream(istream&)
virtual voidTMVA::MethodBase::ReadWeightsFromStream(TFile&)
virtual voidTMVA::IMethod::ReadWeightsFromStream(istream&)
virtual voidReadWeightsFromXML(void* wghtnode)
virtual voidTMVA::MethodBase::ReadWeightsFromXML(void* wghtnode)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU
virtual voidTObject::SavePrimitive(basic_ostream<char,char_traits<char> >& out, Option_t* option = "")
virtual voidTMVA::MethodBase::SetAnalysisType(TMVA::Types::EAnalysisType type)
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
voidTMVA::Configurable::SetConfigDescription(const char* d)
voidTMVA::Configurable::SetConfigName(const char* n)
virtual voidTObject::SetDrawOption(Option_t* option = "")MENU
static voidTObject::SetDtorOnly(void* obj)
voidSetHiddenLayer(TString hiddenlayer = "")
voidTMVA::MethodBase::SetMethodDir(TDirectory* methodDir)
voidTMVA::Configurable::SetMsgType(TMVA::EMsgType t)
static voidTObject::SetObjectStat(Bool_t stat)
voidTMVA::Configurable::SetOptions(const TString& s)
voidTMVA::MethodBase::SetSignalReferenceCut(Double_t cut)
voidTMVA::MethodBase::SetTestTime(Double_t testTime)
voidTMVA::MethodBase::SetTestvarName(const TString& v = "")
voidTMVA::MethodBase::SetTestvarPrefix(TString prefix)
voidTMVA::MethodBase::SetTrainTime(Double_t trainTime)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidTMVA::MethodBase::SetupMethod()
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidTMVA::MethodBase::ShowMembers(TMemberInspector& insp, char* parent)
virtual voidTMVA::Configurable::ShowMembers(TMemberInspector& insp, char* parent)
virtual voidTMVA::IMethod::ShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
virtual voidTMVA::MethodBase::Streamer(TBuffer& b)
virtual voidTMVA::IMethod::Streamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
voidTMVA::MethodBase::StreamerNVirtual(TBuffer& b)
voidTMVA::Configurable::StreamerNVirtual(TBuffer& b)
voidTObject::StreamerNVirtual(TBuffer& b)
voidTMVA::IMethod::StreamerNVirtual(TBuffer& b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTMVA::MethodBase::TestClassification()
virtual voidTMVA::MethodBase::TestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type)
virtual voidTrain()
virtual voidTMVA::MethodBase::Train()
virtual voidTMVA::IMethod::Train()
voidTMVA::MethodBase::TrainMethod()
virtual voidTObject::UseCurrentStyle()
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const
virtual voidTMVA::MethodBase::WriteEvaluationHistosToFile()
virtual voidTMVA::MethodBase::WriteMonitoringHistosToFile() const
virtual voidTMVA::IMethod::WriteMonitoringHistosToFile() const
voidTMVA::Configurable::WriteOptionsToStream(ostream& o, const TString& prefix) const
voidTMVA::MethodBase::WriteStateToFile() const
voidTMVA::MethodBase::WriteStateToStream(TFile& rf) const
voidTMVA::MethodBase::WriteStateToStream(ostream& tf, Bool_t isClass = kFALSE) const
voidTMVA::MethodBase::WriteStateToXML(void* parent) const
voidTMVA::MethodBase::WriteVarsToStream(ostream& o, const TString& prefix = "") const
virtual voidWriteWeightsToStream(ostream& o) const
virtual voidTMVA::MethodBase::WriteWeightsToStream(ostream&) const
virtual voidTMVA::MethodBase::WriteWeightsToStream(TFile&) const
virtual voidTMVA::IMethod::WriteWeightsToStream(ostream&) const
protected:
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidTMVA::Configurable::EnableLooseOptions(Bool_t b = kTRUE)
virtual voidGetHelpMessage() const
virtual voidTMVA::IMethod::GetHelpMessage() const
const TString&TMVA::MethodBase::GetInternalVarName(Int_t ivar) const
const TString&TMVA::MethodBase::GetOriginalVarName(Int_t ivar) const
const TString&TMVA::Configurable::GetReferenceFile() const
static TMVA::MethodBase*TMVA::MethodBase::GetThisBase()
Float_tTMVA::MethodBase::GetTWeight(const TMVA::Event* ev) const
const TString&TMVA::MethodBase::GetWeightFileDir() const
Bool_tTMVA::MethodBase::HasTrainingTree() const
Bool_tTMVA::MethodBase::Help() const
Bool_tTMVA::MethodBase::IgnoreEventsWithNegWeightsInTraining() const
Bool_tTMVA::MethodBase::IsConstructedFromWeightFile() const
Bool_tTMVA::MethodBase::IsNormalised() const
TMVA::MsgLogger&TMVA::Configurable::Log() const
Bool_tTMVA::Configurable::LooseOptionCheckingEnabled() const
virtual voidMakeClassSpecific(ostream&, const TString&) const
virtual voidTMVA::MethodBase::MakeClassSpecific(ostream&, const TString& = "") const
virtual voidTMVA::IMethod::MakeClassSpecific(ostream&, const TString&) const
virtual voidTMVA::MethodBase::MakeClassSpecificHeader(ostream&, const TString& = "") const
voidTObject::MakeZombie()
voidTMVA::Configurable::ResetSetFlag()
voidTMVA::MethodBase::SetNormalised(Bool_t norm)
voidTMVA::MethodBase::SetWeightFileDir(TString fileDir)
voidTMVA::MethodBase::SetWeightFileName(TString)
voidTMVA::MethodBase::Statistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&)
Bool_tTMVA::MethodBase::TxtWeightsOnly() const
Bool_tTMVA::MethodBase::Verbose() const
voidTMVA::Configurable::WriteOptionsReferenceToFile()
private:
voidCreateMLPOptions(TString)
virtual voidDeclareOptions()
virtual voidInit()
virtual voidProcessOptions()

Data Members

private:
enum TMVA::MethodBase::EWeightFileType { kROOT
kTEXT
};
enum TMVA::MethodBase::ECutOrientation { kNegative
kPositive
};
enum TObject::EStatusBits { kCanDelete
kMustCleanup
kObjInCanvas
kIsReferenced
kHasUUID
kCannotPick
kNoContextMenu
kInvalidObject
};
enum TObject::[unnamed] { kIsOnHeap
kNotDeleted
kZombie
kBitMask
kSingleKey
kOverwrite
kWriteDelete
};
protected:
TMVA::Types::EAnalysisTypeTMVA::MethodBase::fAnalysisTypemethod-mode : true --> regression, false --> classification
UInt_tTMVA::MethodBase::fBackgroundClassindex of the Background-class
vector<TString>*TMVA::MethodBase::fInputVarsvector of input variables used in MVA
Int_tTMVA::MethodBase::fNbinsnumber of bins in representative histograms
Int_tTMVA::MethodBase::fNbinsHnumber of bins in evaluation histograms
TMVA::Ranking*TMVA::MethodBase::fRankingpointer to ranking object (created by derived classifiers)
vector<Float_t>*TMVA::MethodBase::fRegressionReturnValholds the return-value for the regression
UInt_tTMVA::MethodBase::fSignalClassindex of the Signal-class
Bool_tTMVA::MethodBase::fTxtWeightsOnlyif TRUE, write weights only to text files
private:
TStringfHiddenLayerstring containig the hidden layer structure
TStringfLayerSpecLayer specification option
TStringfLearningMethodthe learning method (given via option string)
TTree*fLocalTrainingTreelocal copy of training tree
TMultiLayerPerceptron*fMLPthe TMLP
TStringfMLPBuildOptionsoption string to build the mlp
Int_tfNcyclesnumber of training cylcles
Double_tfValidationFractionfraction of events in training tree used for cross validation

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

MethodTMlpANN(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& theData, const TString& theOption = "3000:N-1:N-2", TDirectory* theTargetDir = 0)
 standard constructor
MethodTMlpANN(TMVA::DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir = NULL)
 constructor from weight file
Bool_t HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 TMlpANN can handle classification with 2 classes
void Init( void )
 default initialisations
~MethodTMlpANN( void )
 destructor
void CreateMLPOptions(TString )
 translates options from option string into TMlpANN language
void DeclareOptions()
 define the options (their key words) that can be set in the option string
 know options:
 NCycles       <integer>    Number of training cycles (too many cycles could overtrain the network)
 HiddenLayers  <string>     Layout of the hidden layers (nodes per layer)
   * specifiactions for each hidden layer are separated by commata
   * for each layer the number of nodes can be either absolut (simply a number)
        or relative to the number of input nodes to the neural net (N)
   * there is always a single node in the output layer
   example: a net with 6 input nodes and "Hiddenlayers=N-1,N-2" has 6,5,4,1 nodes in the
   layers 1,2,3,4, repectively
void ProcessOptions()
 builds the neural network as specified by the user
Double_t GetMvaValue(Double_t* err = 0)
 calculate the value of the neural net for the current event
void Train( void )
 performs TMlpANN training
 available learning methods:

       TMultiLayerPerceptron::kStochastic
       TMultiLayerPerceptron::kBatch
       TMultiLayerPerceptron::kSteepestDescent
       TMultiLayerPerceptron::kRibierePolak
       TMultiLayerPerceptron::kFletcherReeves
       TMultiLayerPerceptron::kBFGS

 TMultiLayerPerceptron wants test and training tree at once
 so merge the training and testing trees from the MVA factory first:
void WriteWeightsToStream(ostream& o) const
 write weights to stream
void AddWeightsXMLTo(void* parent) const
 write weights to xml file
void ReadWeightsFromXML(void* wghtnode)
 rebuild temporary textfile from xml weightfile and load this
 file into MLP
void ReadWeightsFromStream(istream& istr)
 read weights from stream
 since the MLP can not read from the stream, we
 1st: write the weights to temporary file
void MakeClass(const TString& classFileName = TString("")) const
 create reader class for classifier -> overwrites base class function
 create specific class for TMultiLayerPerceptron
void MakeClassSpecific(ostream& , const TString& ) const
 write specific classifier response
 nothing to do here - all taken care of by TMultiLayerPerceptron
void GetHelpMessage() const
 get help message text

 typical length of text line:
         "|--------------------------------------------------------------|"
void SetHiddenLayer(TString hiddenlayer = "")
{ fHiddenLayer=hiddenlayer; }
const Ranking* CreateRanking()
 ranking of input variables
{ return 0; }