// @(#)root/tmva $Id: MethodCFMlpANN.h 31458 2009-11-30 13:58:20Z stelzer $ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : MethodCFMlpANN * * Web : http://tmva.sourceforge.net * * * * Description: * * Interface for Clermond-Ferrand artificial neural network. * * The ANN code has been translated from FORTRAN77 (f2c); * * see files: MethodCFMlpANN_f2c_mlpl3.cpp * * MethodCFMlpANN_f2c_datacc.cpp * * * * -------------------------------------------------------------------- * * Reference for the original FORTRAN version: * * Authors : J. Proriol and contributions from ALEPH-Clermont-Fd * * Team members. Contact : gaypas@afal11.cern.ch * * * * Copyright: Laboratoire Physique Corpusculaire * * Universite de Blaise Pascal, IN2P3/CNRS * * -------------------------------------------------------------------- * * * * Usage: options are given through Factory: * * factory->BookMethod( "MethodCFMlpANN", OptionsString ); * * * * where: * * TString OptionsString = "n_training_cycles:n_hidden_layers" * * * * default is: n_training_cycles = 5000, n_layers = 4 * * note that the number of hidden layers in the NN is * * * * n_hidden_layers = n_layers - 2 * * * * since there is one input and one output layer. The number of * * nodes (neurons) is predefined to be * * * * n_nodes[i] = nvars + 1 - i (where i=1..n_layers) * * * * with nvars being the number of variables used in the NN. * * Hence, the default case is: n_neurons(layer 1 (input)) : nvars * * n_neurons(layer 2 (hidden)): nvars-1 * * n_neurons(layer 3 (hidden)): nvars-1 * * n_neurons(layer 4 (out)) : 2 * * * * This artificial neural network usually needs a relatively large * * number of cycles to converge (8000 and more). Overtraining can * * be efficienctly tested by comparing the signal and background * * output of the NN for the events that were used for training and * * an independent data sample (with equal properties). If the separation * * performance is significantly better for the training sample, the * * NN interprets statistical effects, and is hence overtrained. In * * this case, the number of cycles should be reduced, or the size * * of the training sample increased. * * * * Authors (alphabetical): * * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland * * Xavier Prudent <prudent@lapp.in2p3.fr> - LAPP, France * * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany * * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada * * * * Copyright (c) 2005: * * CERN, Switzerland * * U. of Victoria, Canada * * MPI-K Heidelberg, Germany * * LAPP, Annecy, France * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * * * **********************************************************************************/ #ifndef ROOT_TMVA_MethodCFMlpANN #define ROOT_TMVA_MethodCFMlpANN ////////////////////////////////////////////////////////////////////////// // // // MethodCFMlpANN // // // // Interface for Clermond-Ferrand artificial neural network // // // ////////////////////////////////////////////////////////////////////////// #include <iosfwd> #ifndef ROOT_TMVA_MethodBase #include "TMVA/MethodBase.h" #endif #ifndef ROOT_TMVA_MethodCFMlpANN_Utils #include "TMVA/MethodCFMlpANN_Utils.h" #endif #ifndef ROOT_TMVA_TMatrixFfwd #ifndef ROOT_TMatrixFfwd #include "TMatrixFfwd.h" #endif #endif namespace TMVA { class MethodCFMlpANN : public MethodBase, MethodCFMlpANN_Utils { public: MethodCFMlpANN( const TString& jobName, const TString& methodTitle, DataSetInfo& theData, const TString& theOption = "3000:N-1:N-2", TDirectory* theTargetDir = 0 ); MethodCFMlpANN( DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir = NULL ); virtual ~MethodCFMlpANN( void ); virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t /*numberTargets*/ ); // training method void Train( void ); using MethodBase::ReadWeightsFromStream; // write weights to file void AddWeightsXMLTo( void* parent ) const; // read weights from file void ReadWeightsFromStream( istream& istr ); void ReadWeightsFromXML( void* wghtnode ); // calculate the MVA value Double_t GetMvaValue( Double_t* err = 0 ); // data accessors for external functions Double_t GetData ( Int_t isel, Int_t ivar ) const { return (*fData)(isel, ivar); } Int_t GetClass( Int_t ivar ) const { return (*fClass)[ivar]; } // static pointer to this object (required for external functions static MethodCFMlpANN* This( void ) { return fgThis; } // ranking of input variables const Ranking* CreateRanking() { return 0; } protected: // make ROOT-independent C++ class for classifier response (classifier-specific implementation) void MakeClassSpecific( std::ostream&, const TString& ) const; // header and auxiliary classes void MakeClassSpecificHeader( std::ostream&, const TString& = "" ) const; // get help message text void GetHelpMessage() const; Int_t DataInterface( Double_t*, Double_t*, Int_t*, Int_t*, Int_t*, Int_t*, Double_t*, Int_t*, Int_t* ); private: void PrintWeights( std::ostream & o ) const; // the option handling methods void DeclareOptions(); void ProcessOptions(); static MethodCFMlpANN* fgThis; // this carrier // LUTs TMatrixF *fData; // the (data,var) string std::vector<Int_t> *fClass; // the event class (1=signal, 2=background) Int_t fNlayers; // number of layers (including input and output layers) Int_t fNcycles; // number of training cycles Int_t* fNodes; // number of nodes per layer // additional member variables for the independent NN::Evaluation phase Double_t** fYNN; // weights TString fLayerSpec; // the hidden layer specification string // auxiliary member functions Double_t EvalANN( std::vector<Double_t>&, Bool_t& isOK ); void NN_ava ( Double_t* ); Double_t NN_fonc( Int_t, Double_t ) const; // default initialisation void Init( void ); ClassDef(MethodCFMlpANN,0) // Interface for Clermond-Ferrand artificial neural network }; } // namespace TMVA #endif