// @(#)root/tmva $Id: MethodPDEFoam.h 31458 2009-11-30 13:58:20Z stelzer $ // Author: Tancredi Carli, Dominik Dannheim, Alexander Voigt /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate Data analysis * * Package: TMVA * * Class : MethodPDEFoam * * Web : http://tmva.sourceforge.net * * * * Description: * * The PDEFoam method is an extension of the PDERS method, which divides * * the multi-dimensional phase space in a finite number of hyper-rectangles * * (cells) of constant event density. This "foam" of cells is filled with * * averaged probability-density information sampled from a training event * * sample. * * * Authors (alphabetical): * * Tancredi Carli - CERN, Switzerland * * Dominik Dannheim - CERN, Switzerland * * Peter Speckmayer <peter.speckmayer@cern.ch> - CERN, Switzerland * * Alexander Voigt - CERN, Switzerland * * * * Original author of the TFoam implementation: * * S. Jadach - Institute of Nuclear Physics, Cracow, Poland * * * * Copyright (c) 2008: * * CERN, Switzerland * * MPI-K Heidelberg, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_MethodPDEFoam #define ROOT_TMVA_MethodPDEFoam ////////////////////////////////////////////////////////////////////////////// // // // MethodPDEFoam // // // // The PDEFoam method is an // // extension of the PDERS method, which divides the multi-dimensional // // phase space in a finite number of hyper-rectangles (cells) of constant // // event density. // // This "foam" of cells is filled with averaged probability-density // // information sampled from a training event sample. // // // // For a given number of cells, the binning algorithm adjusts the size // // and position of the cells inside the multidimensional phase space // // based on a binary-split algorithm, minimizing the variance of the // // event density in the cell. // // The binned event density information of the final foam is stored in // // binary trees, allowing for a fast and memory-efficient classification // // of events. // // // // The implementation of PDEFoam is based on the Monte-Carlo integration // // package TFoam included in the analysis package ROOT. // // // ////////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TRandom3 #include "TRandom3.h" #endif #ifndef ROOT_TMVA_MethodBase #include "TMVA/MethodBase.h" #endif #ifndef ROOT_TMVA_PDEFoam #include "TMVA/PDEFoam.h" #endif #define FOAM_NUMBER 2 namespace TMVA { class MethodPDEFoam : public MethodBase { public: MethodPDEFoam( const TString& jobName, const TString& methodTitle, DataSetInfo& dsi, const TString& theOption = "PDEFoam", TDirectory* theTargetDir = 0 ); MethodPDEFoam( DataSetInfo& dsi, const TString& theWeightFile, TDirectory* theTargetDir = NULL ); virtual ~MethodPDEFoam( void ); virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets ); // training methods void Train( void ); void TrainMonoTargetRegression( void ); // Regression output: one value void TrainMultiTargetRegression( void ); // Regression output: any number of values void TrainSeparatedClassification( void ); // Classification: one foam for Sig, one for Bg void TrainUnifiedClassification( void ); // Classification: one foam for Signal and Bg using MethodBase::ReadWeightsFromStream; // write weights to stream void AddWeightsXMLTo( void* parent ) const; // read weights from stream void ReadWeightsFromStream( std::istream & i ); void ReadWeightsFromXML ( void* wghtnode ); // write/read pure foams to/from file void WriteFoamsToFile() const; void ReadFoamsFromFile(); // calculate the MVA value Double_t GetMvaValue( Double_t* err = 0 ); // regression procedure virtual const std::vector<Float_t>& GetRegressionValues(); // ranking of input variables const Ranking* CreateRanking() { return 0; } // possible kernels (option) EKernel GetKernel( void ) { return fKernel; } UInt_t KernelToUInt(EKernel ker) const { if (ker == kNone) return 0; else if (ker == kGaus) return 1; else if (ker == kLinN) return 2; else { Log() << kFATAL << "Error: unknown kernel!" << Endl; return 0; } } EKernel UIntToKernel(UInt_t iker){ if (iker == 0) return kNone; else if (iker == 1) return kGaus; else if (iker == 2) return kLinN; else { Log() << kFATAL << "Error: unknown kernel number: " << iker << Endl; return kNone; } } UInt_t TargetSelectionToUInt(ETargetSelection ts) const { if (ts == kMean) return 0; else if (ts == kMpv) return 1; else { std::cout << "Error: unknown method TargetSelection!" << std::endl; return 0; } } ETargetSelection UIntToTargetSelection(UInt_t its){ if (its == 0) return kMean; else if (its == 1) return kMpv; else { std::cout << "Error: unknown method TargetSelection: " << its << std::endl; return kMean; } } protected: // make ROOT-independent C++ class for classifier response (classifier-specific implementation) void MakeClassSpecific( std::ostream&, const TString& ) const; // get help message text void GetHelpMessage() const; // calculate Xmin and Xmax for Foam void CalcXminXmax(); // Set Xmin, Xmax in foam with index 'foam_index' void SetXminXmax(TMVA::PDEFoam*); // Set foam options void InitFoam(TMVA::PDEFoam*, EFoamType); // fill variable names into foam void FillVariableNamesToFoam() const; private: // the option handling methods void DeclareOptions(); void ProcessOptions(); // nice output void PrintCoefficients( void ); // options to be used Bool_t fSigBgSeparated; // Separate Sig and Bg, or not Double_t fFrac; // Fraction used for calc of Xmin, Xmax Double_t fDiscrErrCut; // cut on discrimant error Int_t fVolFrac; // inverse volume fraction (used for density calculation during buildup) Float_t fVolFracInv; // volume fraction (used for density calculation during buildup) Int_t fnCells; // Number of Cells (1000) Int_t fnActiveCells; // Number of active cells Int_t fnSampl; // Number of MC events per cell in build-up (1000) Int_t fnBin; // Number of bins in build-up (100) Int_t fEvPerBin; // Maximum events (equiv.) per bin in buid-up (1000) Float_t fNSigBgRatio; // ratio of number of signal events / bg events (training) Bool_t fCompress; // compress foam output file Bool_t fMultiTargetRegression; // do regression on multible targets UInt_t fNmin; // minimal number of events in cell necessary to split cell" Bool_t fCutNmin; // Grabbing cell with maximal RMS to split next (TFoam default) Double_t fRMSmin; // minimal number of events in cell necessary to split cell" Bool_t fCutRMSmin; // Grabbing cell with maximal RMS to split next (TFoam default) TString fKernelStr; // Kernel for GetMvaValue() (option string) EKernel fKernel; // Kernel for GetMvaValue() TString fTargetSelectionStr; // method of selecting the target (only mulit target regr.) ETargetSelection fTargetSelection; // method of selecting the target (only mulit target regr.) std::vector<Double_t> Xmin, Xmax; // range for histograms and foams // foams and densities PDEFoam* foam[FOAM_NUMBER]; // foam[0]=signal, if Sig and BG are Seperated; else foam[0]=signal/bg // foam[1]=background, if Sig and BG are Seperated; else it is not used // default initialisation called by all constructors void Init( void ); ClassDef(MethodPDEFoam,0) // Analysis of PDEFoam discriminant (PDEFoam or Mahalanobis approach) }; } // namespace TMVA #endif // MethodPDEFoam_H