Class describing a Vavilov distribution. The probability density function of the Vavilov distribution as function of Landau's parameter is given by: \f[ p(\lambda_L; \kappa, \beta^2) = \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda_L s} ds\f] where \f$\phi(s) = e^{C} e^{\psi(s)}\f$ with \f$ C = \kappa (1+\beta^2 \gamma )\f$ and \f$\psi(s)= s \ln \kappa + (s+\beta^2 \kappa) \cdot \left ( \int \limits_{0}^{1} \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,d t- \gamma \right ) - \kappa \, e^{\frac{-s}{\kappa}}\f$. \f$ \gamma = 0.5772156649\dots\f$ is Euler's constant. For the class VavilovFast, Pdf returns the Vavilov distribution as function of Landau's parameter \f$\lambda_L = \lambda_V/\kappa - \ln \kappa\f$, which is the convention used in the CERNLIB routines, and in the tables by S.M. Seltzer and M.J. Berger: Energy loss stragglin of protons and mesons: Tabulation of the Vavilov distribution, pp 187-203 in: National Research Council (U.S.), Committee on Nuclear Science: Studies in penetration of charged particles in matter, Nat. Akad. Sci. Publication 1133, Nucl. Sci. Series Report No. 39, Washington (Nat. Akad. Sci.) 1964, 388 pp. Available from <A HREF="http://books.google.de/books?id=kmMrAAAAYAAJ&lpg=PP9&pg=PA187#v=onepage&q&f=false">Google books</A> Therefore, for small values of \f$\kappa < 0.01\f$, pdf approaches the Landau distribution. For values \f$\kappa > 10\f$, the Gauss approximation should be used with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::mean(kappa, beta2) and sqrt(Vavilov::variance(kappa, beta2). For values \f$\kappa > 10\f$, the Gauss approximation should be used with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::mean(kappa, beta2) and sqrt(Vavilov::variance(kappa, beta2). The original Vavilov pdf is obtained by v.Pdf(lambdaV/kappa-log(kappa))/kappa. For detailed description see A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, <A HREF="http://dx.doi.org/10.1016/0168-583X(90)90749-K">Nucl. Instr. and Meth. B47 (1990) 215-224</A>, which has been implemented in <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g115/top.html"> CERNLIB (G115)</A>. The class stores coefficients needed to calculate \f$p(\lambda; \kappa, \beta^2)\f$ for fixed values of \f$\kappa\f$ and \f$\beta^2\f$. Changing these values is computationally expensive. The parameter \f$\kappa\f$ must be in the range \f$0.01 \le \kappa \le 12\f$. The parameter \f$\beta^2\f$ must be in the range \f$0 \le \beta^2 \le 1\f$. Average times on a Pentium Core2 Duo P8400 2.26GHz: - 9.9us per call to SetKappaBeta2 or constructor - 0.095us per call to Pdf, Cdf - 3.7us per first call to Quantile after SetKappaBeta2 or constructor - 0.137us per subsequent call to Quantile Benno List, June 2010 @ingroup StatFunc
virtual | ~VavilovFast() |
virtual double | Cdf(double x) const |
virtual double | Cdf(double x, double kappa, double beta2) |
virtual double | Cdf_c(double x) const |
virtual double | Cdf_c(double x, double kappa, double beta2) |
virtual double | GetBeta2() const |
static ROOT::Math::VavilovFast* | GetInstance() |
static ROOT::Math::VavilovFast* | GetInstance(double kappa, double beta2) |
virtual double | GetKappa() const |
virtual double | GetLambdaMax() const |
virtual double | GetLambdaMin() const |
virtual double | ROOT::Math::Vavilov::Kurtosis() const |
static double | ROOT::Math::Vavilov::Kurtosis(double kappa, double beta2) |
virtual double | ROOT::Math::Vavilov::Mean() const |
static double | ROOT::Math::Vavilov::Mean(double kappa, double beta2) |
virtual double | ROOT::Math::Vavilov::Mode() const |
virtual double | ROOT::Math::Vavilov::Mode(double kappa, double beta2) |
ROOT::Math::VavilovFast& | operator=(const ROOT::Math::VavilovFast&) |
virtual double | Pdf(double x) const |
virtual double | Pdf(double x, double kappa, double beta2) |
virtual double | Quantile(double z) const |
virtual double | Quantile(double z, double kappa, double beta2) |
virtual double | Quantile_c(double z) const |
virtual double | Quantile_c(double z, double kappa, double beta2) |
virtual void | SetKappaBeta2(double kappa, double beta2) |
virtual double | ROOT::Math::Vavilov::Skewness() const |
static double | ROOT::Math::Vavilov::Skewness(double kappa, double beta2) |
virtual double | ROOT::Math::Vavilov::Variance() const |
static double | ROOT::Math::Vavilov::Variance(double kappa, double beta2) |
ROOT::Math::VavilovFast | VavilovFast(const ROOT::Math::VavilovFast&) |
ROOT::Math::VavilovFast | VavilovFast(double kappa = 1, double beta2 = 1) |
double | fAC[14] | |
double | fBeta2 | |
double | fHC[9] | |
int | fItype | |
double | fKappa | |
int | fNpt | |
double | fWCM[201] | |
static ROOT::Math::VavilovFast* | fgInstance |
Initialize an object to calculate the Vavilov distribution @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Evaluate the Vavilov probability density function @param x The Landau parameter \f$x = \lambda_L\f$
Evaluate the Vavilov probability density function, and set kappa and beta2, if necessary @param x The Landau parameter \f$x = \lambda_L\f$ @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Evaluate the Vavilov cummulative probability density function @param x The Landau parameter \f$x = \lambda_L\f$
Evaluate the Vavilov cummulative probability density function, and set kappa and beta2, if necessary @param x The Landau parameter \f$x = \lambda_L\f$ @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Evaluate the Vavilov complementary cummulative probability density function @param x The Landau parameter \f$x = \lambda_L\f$
Evaluate the Vavilov complementary cummulative probability density function, and set kappa and beta2, if necessary @param x The Landau parameter \f$x = \lambda_L\f$ @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Evaluate the inverse of the Vavilov cummulative probability density function @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
Evaluate the inverse of the Vavilov cummulative probability density function, and set kappa and beta2, if necessary @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$ @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Evaluate the inverse of the complementary Vavilov cummulative probability density function @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
Evaluate the inverse of the complementary Vavilov cummulative probability density function, and set kappa and beta2, if necessary @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$ @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Change \f$\kappa\f$ and \f$\beta^2\f$ and recalculate coefficients if necessary @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
Return the minimum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$ is nonzero in the current approximation
Return the maximum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$ is nonzero in the current approximation
Returns a static instance of class VavilovFast, and sets the values of kappa and beta2 @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$