ROOT » MATH » MATHCORE » ROOT::Math::DistSampler

class ROOT::Math::DistSampler


   Interface class for generic sampling of a distribution,
   i.e. generating random numbers according to arbitrary distributions

   @ingroup Random

Function Members (Methods)

 
    This is an abstract class, constructors will not be documented.
    Look at the header to check for available constructors.

public:
virtual~DistSampler()
ROOT::Math::DistSamplerDistSampler()
ROOT::Math::DistSamplerDistSampler(const ROOT::Math::DistSampler&)
virtual boolGenerate(unsigned int nevt, ROOT::Fit::UnBinData& data)
virtual boolGenerate(unsigned int nevt, const int* nbins, ROOT::Fit::BinData& data, bool extend = true)
boolGenerate(unsigned int nevt, int nbins, double xmin, double xmax, ROOT::Fit::BinData& data, bool extend = true)
virtual TRandom*GetRandom()
virtual boolInit(const char* = "")
virtual boolInit(const ROOT::Math::DistSamplerOptions& opt)
unsigned intNDim() const
ROOT::Math::DistSampler&operator=(const ROOT::Math::DistSampler&)
const ROOT::Math::IMultiGenFunction&ParentPdf() const
const double*Sample()
virtual boolSample(double* x)
virtual doubleSample1D()
virtual boolSampleBin(double prob, double& value, double* error = 0)
virtual boolSampleBins(unsigned int n, const double* prob, double* values, double* errors = 0)
virtual voidSetArea(double)
virtual voidSetFunction(const ROOT::Math::IGenFunction& func)
virtual voidSetFunction(const ROOT::Math::IMultiGenFunction& func)
voidSetFunction<const ROOT::Math::IBaseFunctionOneDim>(ROOT::Math::const IBaseFunctionOneDim& func, unsigned int dim)
virtual voidSetMode(double)
virtual voidSetRandom(TRandom*)
voidSetRange(const ROOT::Fit::DataRange& range)
voidSetRange(const double* xmin, const double* xmax)
voidSetRange(double xmin, double xmax, int icoord = 0)
virtual voidSetSeed(unsigned int)
protected:
virtual voidDoSetFunction(const ROOT::Math::IMultiGenFunction& func, bool copy)
boolIsInitialized()
const ROOT::Fit::DataRange&PdfRange() const

Data Members

private:
vector<double>fDatainternal array used to cached the sample data
const ROOT::Math::IMultiGenFunction*fFuncinternal function (ND)
boolfOwnFuncflag to indicate if the function is owned
ROOT::Fit::DataRange*fRangedata range

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

DistSampler()
 default constructor
{}
virtual ~DistSampler()
 virtual destructor
void SetFunction(Function & func, unsigned int dim)
 set the parent function distribution to use for sampling (generic case)
DoSetFunction(const ROOT::Math::IMultiGenFunction& func, bool copy)
 need to clone to avoid temporary
void SetFunction(const ROOT::Math::IGenFunction& func)
 set the parent function distribution to use for random sampling (one dim case)
unsigned int NDim() const
 return the dimension of the parent distribution (and the data)
{ return fData.size(); }
bool Init(const char* = "")
      initialize the generators with the given algorithm
      Implemented by derived classes who needs it
      (like UnuranSampler)
      If nothing is specified use default algorithm
      from DistSamplerOptions::SetDefaultAlgorithm

{ return true;}
bool Init(const ROOT::Math::DistSamplerOptions& opt)
      initialize the generators with the given option
      which my include the algorithm but also more if
      the method is re-impelmented by derived class
      The default implementation calls the above method
      passing just the algorithm name

void SetRandom(TRandom* )
       Set the random engine to be used
       To be implemented by the derived classes who provides
       random sampling

{}
void SetSeed(unsigned int )
       Set the random seed for the TRandom instances used by the sampler
       classes
       To be implemented by the derived classes who provides random sampling

{}
TRandom * GetRandom()
      Get the random engine used by the sampler
      To be implemented by the derived classes who needs it
      Returns zero by default

{ return 0; }
void SetRange(double xmin, double xmax, int icoord = 0)
 set range in a given dimension
void SetRange(const double* xmin, const double* xmax)
 set range for all dimensions
void SetRange(const ROOT::Fit::DataRange& range)
 set range using DataRange class
void SetMode(double )
 set the mode of the distribution (could be useful to some methods)
 implemented by derived classes if needed
{}
void SetArea(double )
 set the normalization area of distribution
 implemented by derived classes if needed
{}
const ROOT::Math::IMultiGenFunction & ParentPdf() const
 get the parent distribution function (must be called after setting the function)
double Sample1D()
      sample one event in one dimension
      better implementation could be provided by the derived classes

Sample(double* x)
const double * Sample()
      sample one event and rerturning array x with coordinates

bool SampleBin(double prob, double& value, double* error = 0)
      sample one bin given an estimated of the pdf in the bin
      (this can be function value at the center or its integral in the bin
      divided by the bin width)
      By default do not do random sample, just return the function values
      Typically Poisson statistics will be used

bool SampleBins(unsigned int n, const double* prob, double* values, double* errors = 0)
      sample a set of bins given a vector of probabilities
      Typically multinomial statistics will be used and the sum of the probabilities
      will be equal to the total number of events to be generated
      For sampling the bins indipendently, SampleBin should be used

bool Generate(unsigned int nevt, ROOT::Fit::UnBinData& data)
      generate a un-binned data sets (fill the given data set)
      if dataset has already data append to it

bool Generate(unsigned int nevt, const int* nbins, ROOT::Fit::BinData& data, bool extend = true)
      generate a bin data set .
      A range must have been set before (otherwise inf is returned)
      and the bins are equidinstant in the previously defined range
      bin center values must be present in given data set
      If the sampler is implemented by a random one, the entries
      will be binned according to the Poisson distribution
      It is assumed the distribution is normalized, otherwise the nevt must be scaled
      accordingly. The expected value/bin nexp  = f(x_i) * binArea/ nevt
      Extend control if use a fixed (i.e. multinomial statistics) or floating total number of events

bool Generate(unsigned int nevt, int nbins, double xmin, double xmax, ROOT::Fit::BinData& data, bool extend = true)
      same as before but passing the range in case of 1 dim data

bool IsInitialized()
 check if generator have been initialized correctly and one can start generating
const ROOT::Fit::DataRange & PdfRange() const
 return the data range of the Pdf . Must be called after setting the function