Implementation of the GiniIndexWithLaplace as separation criterion
| virtual | ~GiniIndexWithLaplace() |
| static TClass* | Class() |
| const TString& | TMVA::SeparationBase::GetName() |
| virtual Double_t | TMVA::SeparationBase::GetSeparationGain(const Double_t& nSelS, const Double_t& nSelB, const Double_t& nTotS, const Double_t& nTotB) |
| virtual Double_t | GetSeparationIndex(const Double_t& s, const Double_t& b) |
| TMVA::GiniIndexWithLaplace | GiniIndexWithLaplace() |
| TMVA::GiniIndexWithLaplace | GiniIndexWithLaplace(const TMVA::GiniIndexWithLaplace& g) |
| virtual TClass* | IsA() const |
| TMVA::GiniIndexWithLaplace& | operator=(const TMVA::GiniIndexWithLaplace&) |
| TMVA::SeparationBase | TMVA::SeparationBase::SeparationBase() |
| TMVA::SeparationBase | TMVA::SeparationBase::SeparationBase(const TMVA::SeparationBase& s) |
| virtual void | ShowMembers(TMemberInspector& insp) const |
| virtual void | Streamer(TBuffer&) |
| void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
| TString | TMVA::SeparationBase::fName | name of the concrete Separation Index impementation |
| Double_t | TMVA::SeparationBase::fPrecisionCut |

Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2
Where: M is a smaple of whatever N elements (events)
that belong to K different classes
c(k) is the number of elements that belong to class k
Laplace's correction to the prob.density c/N --> (c+1)/(N+2)
for just Signal and Background classes this then boils down to:
Gini(Sample) = 2(s*b+s+b+1)/(s+b+2)^2