Implementation of Clermond-Ferrand artificial neural network
Reference for the original FORTRAN version "mlpl3.F":
Authors : J. Proriol and contributions from ALEPH-Clermont-Ferrand
Team members
Copyright: Laboratoire Physique Corpusculaire
Universite de Blaise Pascal, IN2P3/CNRS
virtual | ~MethodCFMlpANN_Utils() |
static TClass* | Class() |
virtual TClass* | IsA() const |
TMVA::MethodCFMlpANN_Utils | MethodCFMlpANN_Utils() |
TMVA::MethodCFMlpANN_Utils | MethodCFMlpANN_Utils(const TMVA::MethodCFMlpANN_Utils&) |
TMVA::MethodCFMlpANN_Utils& | operator=(const TMVA::MethodCFMlpANN_Utils&) |
virtual void | ShowMembers(TMemberInspector& insp) const |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
void | Arret(const char* mot) |
void | CollectVar(Int_t* nvar, Int_t* class__, Double_t* xpg) |
void | Cout(Int_t*, Double_t* xxx) |
void | Cout2(Int_t*, Double_t* yyy) |
virtual Int_t | DataInterface(Double_t*, Double_t*, Int_t*, Int_t*, Int_t*, Int_t*, Double_t*, Int_t*, Int_t*) |
void | En_arriere(Int_t* ievent) |
void | En_avant(Int_t* ievent) |
void | En_avant2(Int_t* ievent) |
void | Entree_new(Int_t*, char*, Int_t* ntrain, Int_t* ntest, Int_t* numlayer, Int_t* nodes, Int_t* numcycle, Int_t) |
Double_t | Fdecroi(Int_t* i__) |
void | Foncf(Int_t* i__, Double_t* u, Double_t* f) |
void | GraphNN(Int_t* ilearn, Double_t*, Double_t*, char*, Int_t) |
void | Inl() |
void | Innit(char* det, Double_t* tout2, Double_t* tin2, Int_t) |
void | Lecev2(Int_t* ktest, Double_t* tout2, Double_t* tin2) |
void | Leclearn(Int_t* ktest, Double_t* tout2, Double_t* tin2) |
void | Out(Int_t* iii, Int_t* maxcycle) |
Double_t | Sen3a() |
void | SetLogger(TMVA::MsgLogger* l) |
void | TestNN() |
void | Train_nn(Double_t* tin2, Double_t* tout2, Int_t* ntrain, Int_t* ntest, Int_t* nvar2, Int_t* nlayer, Int_t* nodes, Int_t* ncycle) |
Double_t | W_ref(const Double_t[] wNN, Int_t a_1, Int_t a_2, Int_t a_3) const |
Double_t& | W_ref(Double_t[] wNN, Int_t a_1, Int_t a_2, Int_t a_3) |
void | Wini() |
Double_t | Ww_ref(const Double_t[] wwNN, Int_t a_1, Int_t a_2) const |
Double_t& | Ww_ref(Double_t[] wwNN, Int_t a_1, Int_t a_2) |
TMVA::MethodCFMlpANN_Utils::<anonymous> | fCost_1 | |
TMVA::MethodCFMlpANN_Utils::<anonymous> | fDel_1 | |
TMVA::MethodCFMlpANN_Utils::<anonymous> | fNeur_1 | |
TMVA::MethodCFMlpANN_Utils::<anonymous> | fParam_1 | |
TMVA::MethodCFMlpANN_Utils::VARn2 | fVarn2_1 | |
TMVA::MethodCFMlpANN_Utils::VARn2 | fVarn3_1 | |
TMVA::MethodCFMlpANN_Utils::<anonymous> | fVarn_1 | |
static Int_t | fg_0 | constant |
static Int_t | fg_100 | constant |
static Int_t | fg_999 | constant |
static const char* | fg_MethodName | method name for print |
static Int_t | fg_max_nNodes_ | maximum number of nodes per variable |
static Int_t | fg_max_nVar_ | static maximum number of input variables |
training interface - called from MethodCFMlpANN class object
first initialisation of ANN
// [smart comments to be added] Int_t i__1;