TMatrixDSymEigen Eigenvalues and eigenvectors of a real symmetric matrix. If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. That is, the diagonal values of D are the eigenvalues, and V*V' = I, where I is the identity matrix. The columns of V represent the eigenvectors in the sense that A*V = V*D.
virtual | ~TMatrixDSymEigen() |
static TClass* | Class() |
const TVectorD& | GetEigenValues() const |
const TMatrixD& | GetEigenVectors() const |
virtual TClass* | IsA() const |
TMatrixDSymEigen& | operator=(const TMatrixDSymEigen& source) |
virtual void | ShowMembers(TMemberInspector& insp) const |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
TMatrixDSymEigen() | |
TMatrixDSymEigen(const TMatrixDSym& a) | |
TMatrixDSymEigen(const TMatrixDSymEigen& another) |
static void | MakeEigenVectors(TMatrixD& v, TVectorD& d, TVectorD& e) |
static void | MakeTridiagonal(TMatrixD& v, TVectorD& d, TVectorD& e) |
static TMatrixDSymEigen::(anonymous) | kWorkMax |
This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
Symmetric tridiagonal QL algorithm. This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
If matrix A has shape (rowLwb,rowUpb,rowLwb,rowUpb), then each eigen-vector must have an index running between (rowLwb,rowUpb) . For convenience, the column index of the eigen-vector matrix also runs from rowLwb to rowUpb so that the returned matrix has also index/shape (rowLwb,rowUpb,rowLwb,rowUpb) . The same is true for the eigen-value vector .
{ return fEigenVectors; }