ROOT » MATH » GENVECTOR » ROOT::Math::BoostZ

class ROOT::Math::BoostZ


      Class representing a Lorentz Boost along the Z axis, by beta.
      For efficiency, gamma is held as well.

      @ingroup GenVector

Function Members (Methods)

Data Members

public:
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLTT
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLTX
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLTY
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLTZ
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLXT
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLXX
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLXY
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLXZ
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLYT
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLYX
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLYY
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLYZ
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLZT
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLZX
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLZY
static ROOT::Math::BoostZ::ELorentzRotationMatrixIndexkLZZ
static ROOT::Math::BoostZ::EBoostMatrixIndexkTT
static ROOT::Math::BoostZ::EBoostMatrixIndexkXT
static ROOT::Math::BoostZ::EBoostMatrixIndexkXX
static ROOT::Math::BoostZ::EBoostMatrixIndexkXY
static ROOT::Math::BoostZ::EBoostMatrixIndexkXZ
static ROOT::Math::BoostZ::EBoostMatrixIndexkYT
static ROOT::Math::BoostZ::EBoostMatrixIndexkYY
static ROOT::Math::BoostZ::EBoostMatrixIndexkYZ
static ROOT::Math::BoostZ::EBoostMatrixIndexkZT
static ROOT::Math::BoostZ::EBoostMatrixIndexkZZ
private:
ROOT::Math::BoostZ::ScalarfBetaboost beta z
ROOT::Math::BoostZ::ScalarfGammaboost gamma

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

BoostZ()
 ========== Constructors and Assignment =====================

      Default constructor (identity transformation)

explicit BoostZ(Scalar beta_z)
      Construct given a Scalar beta_z

{ SetComponents(beta_z); }
void Rectify()
 The compiler-generated copy ctor, copy assignment, and dtor are OK.

      Re-adjust components to eliminate small deviations from a perfect
      orthosyplectic matrix.

SetComponents(ROOT::Math::BoostZ::Scalar beta_z)
 ======== Components ==============

      Set components from a Scalar beta_z

GetComponents(ROOT::Math::BoostZ::Scalar& beta_z) const
      Get components into a Scalar beta_z

Scalar Beta() const
       Retrieve the beta of the Boost

{ return fBeta; }
Scalar Gamma() const
       Retrieve the gamma of the Boost

{ return fGamma; }
void SetBeta(ROOT::Math::BoostZ::Scalar beta)
       Set the given beta of the Boost

{ SetComponents(beta); }
XYZVector BetaVector() const
GetLorentzRotation(Scalar[] r) const
      Get elements of internal 4x4 symmetric representation, into a data
      array suitable for direct use as the components of a LorentzRotation
      Note -- 16 Scalars will be written into the array; if the array is not
      that large, then this will lead to undefined behavior.

operator()(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const
 =========== operations ==============

      Lorentz transformation operation on a Minkowski ('Cartesian')
      LorentzVector

void Invert()
      Invert a BoostZ in place

BoostZ Inverse() const
      Return inverse of  a BoostZ

return ! operator==(rhs)