Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ClassificationPyTorch.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_pytorch
4## \notebook -nodraw
5## This tutorial shows how to do classification in TMVA with neural networks
6## trained with PyTorch.
7##
8## \macro_code
9##
10## \date 2020
11## \author Anirudh Dagar <anirudhdagar6@gmail.com> - IIT, Roorkee
12
13
14# PyTorch has to be imported before ROOT to avoid crashes because of clashing
15# std::regexp symbols that are exported by cppyy.
16# See also: https://github.com/wlav/cppyy/issues/227
17import torch
18from torch import nn
19
20from ROOT import TMVA, TFile, TTree, TCut
21from subprocess import call
22from os.path import isfile
23
24
25# Setup TMVA
28
29# create factory without output file since it is not needed
30factory = TMVA.Factory('TMVAClassification',
31 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
32
33
34# Load data
35if not isfile('tmva_class_example.root'):
36 call(['curl', '-L', '-O', 'http://root.cern.ch/files/tmva_class_example.root'])
37
38data = TFile.Open('tmva_class_example.root')
39signal = data.Get('TreeS')
40background = data.Get('TreeB')
41
42dataloader = TMVA.DataLoader('dataset')
43for branch in signal.GetListOfBranches():
45
46dataloader.AddSignalTree(signal, 1.0)
47dataloader.AddBackgroundTree(background, 1.0)
49 'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
50
51
52# Generate model
53
54# Define model
55model = nn.Sequential()
56model.add_module('linear_1', nn.Linear(in_features=4, out_features=64))
58model.add_module('linear_2', nn.Linear(in_features=64, out_features=2))
59model.add_module('softmax', nn.Softmax(dim=1))
60
61
62# Construct loss function and Optimizer.
63loss = torch.nn.MSELoss()
64optimizer = torch.optim.SGD
65
66
67# Define train function
68def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
69 trainer = optimizer(model.parameters(), lr=0.01)
70 schedule, schedulerSteps = scheduler
71 best_val = None
72
73 for epoch in range(num_epochs):
74 # Training Loop
75 # Set to train mode
77 running_train_loss = 0.0
78 running_val_loss = 0.0
79 for i, (X, y) in enumerate(train_loader):
81 output = model(X)
82 train_loss = criterion(output, y)
85
86 # print train statistics
87 running_train_loss += train_loss.item()
88 if i % 32 == 31: # print every 32 mini-batches
89 print("[{}, {}] train loss: {:.3f}".format(epoch+1, i+1, running_train_loss / 32))
90 running_train_loss = 0.0
91
92 if schedule:
93 schedule(optimizer, epoch, schedulerSteps)
94
95 # Validation Loop
96 # Set to eval mode
98 with torch.no_grad():
99 for i, (X, y) in enumerate(val_loader):
100 output = model(X)
101 val_loss = criterion(output, y)
102 running_val_loss += val_loss.item()
103
104 curr_val = running_val_loss / len(val_loader)
105 if save_best:
106 if best_val==None:
107 best_val = curr_val
108 best_val = save_best(model, curr_val, best_val)
109
110 # print val statistics per epoch
111 print("[{}] val loss: {:.3f}".format(epoch+1, curr_val))
112 running_val_loss = 0.0
113
114 print("Finished Training on {} Epochs!".format(epoch+1))
115
116 return model
117
118
119# Define predict function
120def predict(model, test_X, batch_size=32):
121 # Set to eval mode
122 model.eval()
123
124 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
125 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
126
127 predictions = []
128 with torch.no_grad():
129 for i, data in enumerate(test_loader):
130 X = data[0]
131 outputs = model(X)
132 predictions.append(outputs)
133 preds = torch.cat(predictions)
134
135 return preds.numpy()
136
137
138load_model_custom_objects = {"optimizer": optimizer, "criterion": loss, "train_func": train, "predict_func": predict}
139
140
141# Store model to file
142# Convert the model to torchscript before saving
143m = torch.jit.script(model)
144torch.jit.save(m, "modelClassification.pt")
145print(m)
146
147
148# Book methods
149factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
150 '!H:!V:Fisher:VarTransform=D,G')
151factory.BookMethod(dataloader, TMVA.Types.kPyTorch, 'PyTorch',
152 'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
153
154
155# Run training, test and evaluation
159
160
161# Plot ROC Curves
162roc = factory.GetROCCurve(dataloader)
163roc.SaveAs('ROC_ClassificationPyTorch.png')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
Definition TCut.h:25
This is the main MVA steering class.
Definition Factory.h:80