20from ROOT
import TMVA, TFile, TTree, TCut
21from subprocess
import call
31 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
35if not isfile(
'tmva_class_example.root'):
36 call([
'curl',
'-L',
'-O',
'http://root.cern.ch/files/tmva_class_example.root'])
49 'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
68def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
70 schedule, schedulerSteps = scheduler
73 for epoch
in range(num_epochs):
77 running_train_loss = 0.0
78 running_val_loss = 0.0
82 train_loss = criterion(output, y)
89 print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
90 running_train_loss = 0.0
93 schedule(optimizer, epoch, schedulerSteps)
101 val_loss = criterion(output, y)
104 curr_val = running_val_loss /
len(val_loader)
108 best_val =
save_best(model, curr_val, best_val)
111 print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
112 running_val_loss = 0.0
114 print(
"Finished Training on {} Epochs!".
format(epoch+1))
120def predict(model, test_X, batch_size=32):
138load_model_custom_objects = {
"optimizer": optimizer,
"criterion": loss,
"train_func": train,
"predict_func": predict}
150 '!H:!V:Fisher:VarTransform=D,G')
152 'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
This is the main MVA steering class.