Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
FumiliFCNAdapter.h
Go to the documentation of this file.
1// @(#)root/minuit2:$Id$
2// Author: L. Moneta 10/2006
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 ROOT Foundation, CERN/PH-SFT *
7 * *
8 **********************************************************************/
9
10#ifndef ROOT_Minuit2_FumiliFCNAdapter
11#define ROOT_Minuit2_FumiliFCNAdapter
12
14
16
17#include "Minuit2/MnPrint.h"
18
19// #ifndef ROOT_Math_Util
20// #include "Math/Util.h"
21// #endif
22
23#include <cmath>
24#include <cassert>
25#include <vector>
26
27namespace ROOT {
28
29namespace Minuit2 {
30
31/**
32
33
34template wrapped class for adapting to FumiliFCNBase signature
35
36@author Lorenzo Moneta
37
38@ingroup Minuit
39
40*/
41
42template <class Function>
44
45public:
46 // typedef ROOT::Math::FitMethodFunction Function;
47 typedef typename Function::Type_t Type_t;
48
49 FumiliFCNAdapter(const Function &f, unsigned int ndim, double up = 1.) : FumiliFCNBase(ndim), fFunc(f), fUp(up) {}
50
51 ~FumiliFCNAdapter() override {}
52
53 double operator()(std::span<const double> v) const override { return fFunc.operator()(&v[0]); }
54 double operator()(const double *v) const { return fFunc.operator()(v); }
55 double Up() const override { return fUp; }
56
57 void SetErrorDef(double up) override { fUp = up; }
58
59 // virtual std::vector<double> Gradient(std::span<const double> ) const;
60
61 // forward interface
62 // virtual double operator()(int npar, double* params,int iflag = 4) const;
63
64 /**
65 evaluate gradient hessian and function value needed by fumili
66 */
67 void EvaluateAll(std::span<const double> v) override;
68
69private:
70 // data member
71
73 double fUp;
74};
75
76template <class Function>
77void FumiliFCNAdapter<Function>::EvaluateAll(std::span<const double> v)
78{
79 MnPrint print("FumiliFCNAdapter");
80
81 // typedef FumiliFCNAdapter::Function Function;
82
83 // evaluate all elements
84 unsigned int npar = Dimension();
85 if (npar != v.size())
86 print.Error("npar", npar, "v.size()", v.size());
87 assert(npar == v.size());
88 // must distinguish case of likelihood or LS
89
90 std::vector<double> &grad = Gradient();
91 std::vector<double> &hess = Hessian();
92 // reset
93 assert(grad.size() == npar);
94 grad.assign(npar, 0.0);
95 hess.assign(hess.size(), 0.0);
96
97 unsigned int ndata = fFunc.NPoints();
98
99 std::vector<double> gf(npar);
100 std::vector<double> h(hess.size());
101
102 // loop on the data points
103
104 // if FCN is of type least-square
105 if (fFunc.Type() == Function::kLeastSquare) {
106 print.Debug("Chi2 FCN: Evaluate gradient and Hessian");
107
108 for (unsigned int i = 0; i < ndata; ++i) {
109 // calculate data element and gradient (no need to compute Hessian)
110 double fval = fFunc.DataElement(&v.front(), i, &gf[0]);
111
112 for (unsigned int j = 0; j < npar; ++j) {
113 grad[j] += 2. * fval * gf[j];
114 for (unsigned int k = j; k < npar; ++k) {
115 int idx = j + k * (k + 1) / 2;
116 hess[idx] += 2.0 * gf[j] * gf[k];
117 }
118 }
119 }
120 } else if (fFunc.Type() == Function::kLogLikelihood) {
121 print.Debug("LogLikelihood FCN: Evaluate gradient and Hessian");
122 for (unsigned int i = 0; i < ndata; ++i) {
123
124 // calculate data element and gradient: returns derivative of log(pdf)
125 fFunc.DataElement(&v.front(), i, &gf[0]);
126
127 for (unsigned int j = 0; j < npar; ++j) {
128 double gfj = gf[j];
129 grad[j] -= gfj; // need a minus sign since is a NLL
130 for (unsigned int k = j; k < npar; ++k) {
131 int idx = j + k * (k + 1) / 2;
132 hess[idx] += gfj * gf[k];
133 }
134 }
135 }
136 } else if (fFunc.Type() == Function::kPoissonLikelihood) {
137 print.Debug("Poisson Likelihood FCN: Evaluate gradient and Hessian");
138 // for Poisson need Hessian computed in DataElement since one needs the bin expected value ad bin observed value
139 for (unsigned int i = 0; i < ndata; ++i) {
140 // calculate data element and gradient
141 fFunc.DataElement(&v.front(), i, gf.data(), h.data());
142 for (size_t j = 0; j < npar; ++j) {
143 grad[j] += gf[j];
144 for (unsigned int k = j; k < npar; ++k) {
145 int idx = j + k * (k + 1) / 2;
146 hess[idx] += h[idx];
147 }
148 }
149 }
150 } else {
151 print.Error("Type of fit method is not supported, it must be chi2 or log-likelihood or Poisson Likelihood");
152 }
153}
154
155} // end namespace Minuit2
156
157} // end namespace ROOT
158
159#endif // ROOT_Minuit2_FCNAdapter
#define f(i)
Definition RSha256.hxx:104
#define h(i)
Definition RSha256.hxx:106
Double_t(* Function)(Double_t)
Definition Functor.C:4
template wrapped class for adapting to FumiliFCNBase signature
double Up() const override
Error definition of the function.
double operator()(const double *v) const
void SetErrorDef(double up) override
add interface to set dynamically a new error definition Re-implement this function if needed.
double operator()(std::span< const double > v) const override
The meaning of the vector of parameters is of course defined by the user, who uses the values of thos...
FumiliFCNAdapter(const Function &f, unsigned int ndim, double up=1.)
void EvaluateAll(std::span< const double > v) override
evaluate gradient hessian and function value needed by fumili
Extension of the FCNBase for the Fumili method.
void Debug(const Ts &... args)
Definition MnPrint.h:147
void Error(const Ts &... args)
Definition MnPrint.h:129
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...