38#ifndef ROOT_TMVA_MethodLikelihood
39#define ROOT_TMVA_MethodLikelihood
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
1-D histogram with a double per channel (see TH1 documentation)
Class that contains all the data information.
Virtual base Class for all MVA method.
Likelihood analysis ("non-parametric approach")
Int_t fDropVariable
for ranking test
const Ranking * CreateRanking()
computes ranking of input variables
void Train()
create reference distributions (PDFs) from signal and background events: fill histograms and smooth t...
TString fKDEtypeString
Kernel type to use for KDE (string)
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes.
virtual void WriteOptionsToStream(std::ostream &o, const TString &prefix) const
write options to stream
Int_t * fNsmoothVarB
number of smooth passes
void WriteMonitoringHistosToFile() const
write histograms and PDFs to file for monitoring purposes
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
Int_t * fAverageEvtPerBinVarS
average events per bin; used to calculate fNbins
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
std::vector< TH1 * > * fHistSig
signal PDFs (histograms)
virtual ~MethodLikelihood()
destructor
void Init()
default initialisation called by all constructors
std::vector< TH1 * > * fHistBgd
background PDFs (histograms)
void ReadWeightsFromStream(std::istream &istr)
read weight info from file nothing to do for this method
std::vector< PDF * > * fPDFSig
list of PDFs (signal)
Double_t fEpsilon
minimum number of likelihood (to avoid zero)
TString * fInterpolateString
which interpolation method used for reference histograms (individual for each variable)
void GetHelpMessage() const
get help message text
void ReadWeightsFromXML(void *wghtnode)
read weights from XML
std::vector< TH1 * > * fHistSig_smooth
signal PDFs (smoothed histograms)
Bool_t fTransformLikelihoodOutput
likelihood output is sigmoid-transformed
void MakeClassSpecificHeader(std::ostream &, const TString &="") const
write specific header of the classifier (mostly include files)
TString fKDEiterString
Number of iterations (string)
Double_t TransformLikelihoodOutput(Double_t ps, Double_t pb) const
returns transformed or non-transformed output
std::vector< TH1 * > * fHistBgd_smooth
background PDFs (smoothed histograms)
TString fBorderMethodString
the method to take care about "border" effects (string)
std::vector< PDF * > * fPDFBgd
list of PDFs (background)
void ProcessOptions()
process user options reference cut value to distinguish signal-like from background-like events
void WriteWeightsToStream(TFile &rf) const
write reference PDFs to ROOT file
Int_t * fNsmoothVarS
number of smooth passes
Int_t fNsmooth
number of smooth passes
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
returns the likelihood estimator for signal fill a new Likelihood branch into the testTree
void AddWeightsXMLTo(void *parent) const
write weights to XML
Float_t fKDEfineFactor
fine tuning factor for Adaptive KDE
Int_t * fAverageEvtPerBinVarB
average events per bin; used to calculate fNbins
void DeclareOptions()
define the options (their key words) that can be set in the option string
Int_t fAverageEvtPerBin
average events per bin; used to calculate fNbins
PDF * fDefaultPDFLik
pdf that contains default definitions
PDF wrapper for histograms; uses user-defined spline interpolation.
Ranking for variables in method (implementation)
create variable transformations