20from ROOT
import TMVA, TFile, TTree, TCut, gROOT
21from os.path
import isfile
30 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=multiclass')
34if not isfile(
'tmva_example_multiple_background.root'):
35 createDataMacro = str(gROOT.GetTutorialDir()) +
'/machine_learning/createData.C'
36 print(createDataMacro)
37 gROOT.ProcessLine(
'.L {}'.
format(createDataMacro))
38 gROOT.ProcessLine(
'create_MultipleBackground(4000)')
40data =
TFile.Open(
'tmva_example_multiple_background.root')
41signal = data.Get(
'TreeS')
42background0 = data.Get(
'TreeB0')
43background1 = data.Get(
'TreeB1')
44background2 = data.Get(
'TreeB2')
47for branch
in signal.GetListOfBranches():
48 dataloader.AddVariable(branch.GetName())
50dataloader.AddTree(signal,
'Signal')
51dataloader.AddTree(background0,
'Background_0')
52dataloader.AddTree(background1,
'Background_1')
53dataloader.AddTree(background2,
'Background_2')
54dataloader.PrepareTrainingAndTestTree(
TCut(
''),
55 'SplitMode=Random:NormMode=NumEvents:!V')
60model = nn.Sequential()
61model.add_module(
'linear_1', nn.Linear(in_features=4, out_features=32))
62model.add_module(
'relu', nn.ReLU())
63model.add_module(
'linear_2', nn.Linear(in_features=32, out_features=4))
64model.add_module(
'softmax', nn.Softmax(dim=1))
68loss = nn.CrossEntropyLoss()
69optimizer = torch.optim.SGD
73def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
74 trainer = optimizer(model.parameters(), lr=0.01)
75 schedule, schedulerSteps = scheduler
78 for epoch
in range(num_epochs):
82 running_train_loss = 0.0
83 running_val_loss = 0.0
84 for i, (X, y)
in enumerate(train_loader):
87 target = torch.max(y, 1)[1]
88 train_loss = criterion(output, target)
93 running_train_loss += train_loss.item()
95 print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
96 running_train_loss = 0.0
99 schedule(optimizer, epoch, schedulerSteps)
104 with torch.no_grad():
105 for i, (X, y)
in enumerate(val_loader):
107 target = torch.max(y, 1)[1]
108 val_loss = criterion(output, target)
109 running_val_loss += val_loss.item()
111 curr_val = running_val_loss /
len(val_loader)
115 best_val = save_best(model, curr_val, best_val)
118 print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
119 running_val_loss = 0.0
121 print(
"Finished Training on {} Epochs!".
format(epoch+1))
127def predict(model, test_X, batch_size=32):
131 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
132 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=
False)
135 with torch.no_grad():
136 for i, data
in enumerate(test_loader):
139 predictions.append(outputs)
140 preds = torch.cat(predictions)
145load_model_custom_objects = {
"optimizer": optimizer,
"criterion": loss,
"train_func": train,
"predict_func": predict}
150m = torch.jit.script(model)
151torch.jit.save(m,
"modelMultiClass.pt")
156factory.BookMethod(dataloader, TMVA.Types.kFisher,
'Fisher',
157 '!H:!V:Fisher:VarTransform=D,G')
158factory.BookMethod(dataloader, TMVA.Types.kPyTorch,
"PyTorch",
159 'H:!V:VarTransform=D,G:FilenameModel=modelMultiClass.pt:FilenameTrainedModel=trainedModelMultiClass.pt:NumEpochs=20:BatchSize=32')
163factory.TrainAllMethods()
164factory.TestAllMethods()
165factory.EvaluateAllMethods()
168roc = factory.GetROCCurve(dataloader)
169roc.SaveAs(
'ROC_MulticlassPyTorch.png')
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
static void PyInitialize()
Initialize Python interpreter.