1#ifndef TMVA_SOFIE_ROPERATOR_LAYERNORMALIZATION
2#define TMVA_SOFIE_ROPERATOR_LAYERNORMALIZATION
11namespace Experimental {
82 throw std::runtime_error(
"TMVA::SOFIE - Tensor " +
fNX +
" not found.");
145 std::stringstream out;
147 out <<
SP <<
"// Broadcasting the bias of LayerNormalization op\n";
149 out <<
SP <<
SP <<
"float* data = TMVA::Experimental::SOFIE::UTILITY::UnidirectionalBroadcast<float>(tensor_";
152 out <<
SP <<
"delete[] data;\n";
162 throw std::runtime_error(
"TMVA::SOFIE LayerNormalization operator " +
opName +
163 " called to generate without being initialized first.");
166 throw std::runtime_error(
"TMVA::SOFIE LayerNormalization operator not "
167 "implemented for input tensor of size > 5.");
170 std::stringstream out;
172 out <<
"//---- Layer Normalization operator " <<
opName <<
"\n";
177 for (
size_t i = 0; i <
fSize; i++) {
182 std::string
InputIndex =
"axis_0 * " + strides[0].GetVal();
183 for (
size_t i = 1; i <
fSize; i++) {
184 InputIndex +=
" + axis_" + std::to_string(i) +
" * " + strides[i].GetVal();
189 for (
size_t i = 1; i <
fAxis; i++) {
201 out <<
SP <<
"for (size_t i = 0; i < " <<
fLength <<
"; i++) {\n";
202 out <<
SP <<
SP <<
"tensor_" <<
fNCastedX <<
"[i] = " <<
"static_cast<float>(tensor_" <<
fNX;
207 out <<
SP <<
"// Compute the mean\n";
209 for (
size_t i = 0; i <
fAxis; i++) {
210 std::string
iIdx =
"axis_" + std::to_string(i);
212 <<
"; " <<
iIdx <<
"++) {\n";
214 out <<
SP <<
SP <<
fType <<
" sum = 0.;\n";
217 std::string
jIdx =
"axis_" + std::to_string(
j);
219 <<
"; " <<
jIdx <<
"++) {\n";
223 out <<
SP <<
SP <<
"}\n";
231 out <<
SP <<
"// Compute the inverse Standard Deviation\n";
233 for (
size_t i = 0; i <
fAxis; i++) {
234 std::string
iIdx =
"axis_" + std::to_string(i);
236 <<
"; " <<
iIdx <<
"++){\n";
239 out <<
SP <<
SP <<
fType <<
" sum = 0.;\n";
242 std::string
jIdx =
"axis_" + std::to_string(
j);
244 <<
"; " <<
jIdx <<
"++){\n";
246 out <<
SP <<
SP <<
SP <<
"float tmp = tensor_" <<
fNX <<
"[" <<
InputIndex <<
"] - tensor_"
248 out <<
SP <<
SP <<
SP <<
"sum += tmp*tmp;\n";
250 out <<
SP <<
SP <<
"}\n";
254 for (
size_t i = 0; i <
fAxis; i++) {
259 out <<
"// NormalizedX = InvStdDev * (CastedX - Mean)\n";
260 for (
size_t i = 0; i <
fAxis; i++) {
261 std::string
iIdx =
"axis_" + std::to_string(i);
263 <<
"; " <<
iIdx <<
"++){\n";
266 std::string
jIdx =
"axis_" + std::to_string(
j);
268 <<
"; " <<
jIdx <<
"++){\n";
274 out <<
SP <<
SP <<
"}\n";
279 out <<
"// Y = Scale o NormalizedX";
280 for (
size_t i = 0; i <
fAxis; i++) {
281 std::string
iIdx =
"axis_" + std::to_string(i);
283 <<
"; " <<
iIdx <<
"++){\n";
286 std::string
jIdx =
"axis_" + std::to_string(
j);
288 <<
"; " <<
jIdx <<
"++){\n";
294 out <<
SP <<
SP <<
"}\n";
300 out <<
SP <<
"// Y = Scale o InvStdDev (X - Mean)\n";
301 for (
size_t i = 0; i <
fAxis; i++) {
302 std::string
iIdx =
"axis_" + std::to_string(i);
304 <<
"; " <<
iIdx <<
"++){\n";
307 std::string
jIdx =
"axis_" + std::to_string(
j);
309 <<
"; " <<
jIdx <<
"++){\n";
316 out <<
SP <<
SP <<
"}\n";
325 out <<
SP <<
"// Add the bias to Y\n";
327 out <<
SP <<
"float " <<
opName <<
"_alpha = 1.;\n";
328 out <<
SP <<
"int " <<
opName <<
"_inc = 1;\n";
329 out <<
SP <<
"BLAS::saxpy_(&" <<
opName <<
"_n, &" <<
opName <<
"_alpha, " <<
bias <<
", &";
330 out <<
opName <<
"_inc, " <<
"tensor_" <<
fNY <<
", &" <<
opName <<
"_inc);\n";
336 std::vector<std::string>
GetBlasRoutines()
override {
return { std::string(
"Axpy") }; }
338 std::vector<std::string>
GetStdLibs()
override {
return { std::string(
"cmath") }; }
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
void AddNeededStdLib(std::string libname)
bool IsDynamicTensor(const std::string &name) const
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
const ETensorType & GetTensorType(std::string name) const
const std::vector< size_t > & GetTensorShape(std::string name) const
std::vector< Dim > GetDynamicTensorShape(std::string name) const
std::vector< std::string > GetBlasRoutines() override
std::vector< Dim > fShapeX
ROperator_LayerNormalization()
std::vector< Dim > fShapeInvStdDev
ROperator_LayerNormalization(int axis, float epsilon, size_t stashType, const std::string &nameX, const std::string &nameScale, const std::string &nameB, const std::string &nameY, const std::string &nameMean, const std::string &nameInvStdDev)
std::string fNormalizedLength
std::string Generate(std::string opName) override
std::vector< std::string > GetStdLibs() override
std::string GenerateInitCode() override
std::vector< Dim > fNormalizedShape
std::vector< Dim > fShapeScale
void Initialize(RModel &model) override
std::vector< Dim > fShapeY
std::vector< size_t > fShapeB
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
std::string fNBroadcastedB
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::vector< Dim > fShapeMean
std::string fNNormalizedX
std::vector< Dim > fAxesShape
std::vector< std::string_view > fInputTensorNames
const std::string SP
space used to correctly indent the generated C++ code
std::vector< std::string_view > fOutputTensorNames
std::vector< size_t > ComputeStrideFromShape(const std::vector< size_t > &shape)
compute stride of a tensor given its shape (assume layout is row-major)
std::string ConvertDynamicShapeToLength(std::vector< Dim > shape)
std::string ConvertShapeToString(std::vector< size_t > shape)
std::string ConvertTypeToString(ETensorType type)
std::string ConvertDynamicShapeToString(std::vector< Dim > shape)
ETensorType ConvertStringToType(std::string type)
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
create variable transformations