Loading...

Searching...

No Matches

SpecFuncMathMore.h File Reference

This graph shows which files directly or indirectly include this file:

**This browser is not able to show SVG: try Firefox, Chrome, Safari, or Opera instead.**

## Namespaces | |

namespace | ROOT |

tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tbb::task_arena without forward declaring tbb::interface7 | |

namespace | ROOT::Math |

namespace | ROOT::Math::internal |

## Functions | |

double | ROOT::Math::internal::legendre (unsigned l, unsigned m, double x) |

Special Functions from MathMore | |

double | ROOT::Math::airy_Ai (double x) |

Calculates the Airy function Ai. | |

double | ROOT::Math::airy_Ai_deriv (double x) |

Calculates the derivative of the Airy function Ai. | |

double | ROOT::Math::airy_Bi (double x) |

Calculates the Airy function Bi. | |

double | ROOT::Math::airy_Bi_deriv (double x) |

Calculates the derivative of the Airy function Bi. | |

double | ROOT::Math::airy_zero_Ai (unsigned int s) |

Calculates the zeroes of the Airy function Ai. | |

double | ROOT::Math::airy_zero_Ai_deriv (unsigned int s) |

Calculates the zeroes of the derivative of the Airy function Ai. | |

double | ROOT::Math::airy_zero_Bi (unsigned int s) |

Calculates the zeroes of the Airy function Bi. | |

double | ROOT::Math::airy_zero_Bi_deriv (unsigned int s) |

Calculates the zeroes of the derivative of the Airy function Bi. | |

double | ROOT::Math::assoc_laguerre (unsigned n, double m, double x) |

Computes the generalized Laguerre polynomials for \( n \geq 0, m > -1 \). | |

double | ROOT::Math::assoc_legendre (unsigned l, unsigned m, double x) |

Computes the associated Legendre polynomials. | |

double | ROOT::Math::comp_ellint_1 (double k) |

Calculates the complete elliptic integral of the first kind. | |

double | ROOT::Math::comp_ellint_2 (double k) |

Calculates the complete elliptic integral of the second kind. | |

double | ROOT::Math::comp_ellint_3 (double n, double k) |

Calculates the complete elliptic integral of the third kind. | |

double | ROOT::Math::conf_hyperg (double a, double b, double z) |

Calculates the confluent hypergeometric functions of the first kind. | |

double | ROOT::Math::conf_hypergU (double a, double b, double z) |

Calculates the confluent hypergeometric functions of the second kind, known also as Kummer function of the second kind, it is related to the confluent hypergeometric functions of the first kind. | |

double | ROOT::Math::cyl_bessel_i (double nu, double x) |

Calculates the modified Bessel function of the first kind (also called regular modified (cylindrical) Bessel function). | |

double | ROOT::Math::cyl_bessel_j (double nu, double x) |

Calculates the (cylindrical) Bessel functions of the first kind (also called regular (cylindrical) Bessel functions). | |

double | ROOT::Math::cyl_bessel_k (double nu, double x) |

Calculates the modified Bessel functions of the second kind (also called irregular modified (cylindrical) Bessel functions). | |

double | ROOT::Math::cyl_neumann (double nu, double x) |

Calculates the (cylindrical) Bessel functions of the second kind (also called irregular (cylindrical) Bessel functions or (cylindrical) Neumann functions). | |

double | ROOT::Math::ellint_1 (double k, double phi) |

Calculates the incomplete elliptic integral of the first kind. | |

double | ROOT::Math::ellint_2 (double k, double phi) |

Calculates the complete elliptic integral of the second kind. | |

double | ROOT::Math::ellint_3 (double n, double k, double phi) |

Calculates the complete elliptic integral of the third kind. | |

double | ROOT::Math::expint (double x) |

Calculates the exponential integral. | |

double | ROOT::Math::expint_n (int n, double x) |

double | ROOT::Math::hyperg (double a, double b, double c, double x) |

Calculates Gauss' hypergeometric function. | |

double | ROOT::Math::laguerre (unsigned n, double x) |

Calculates the Laguerre polynomials. | |

double | ROOT::Math::lambert_W0 (double x) |

Calculates the Lambert W function on branch 0. | |

double | ROOT::Math::lambert_Wm1 (double x) |

Calculates the Lambert W function on branch -1. | |

double | ROOT::Math::legendre (unsigned l, double x) |

Calculates the Legendre polynomials. | |

double | ROOT::Math::riemann_zeta (double x) |

Calculates the Riemann zeta function. | |

double | ROOT::Math::sph_bessel (unsigned n, double x) |

Calculates the spherical Bessel functions of the first kind (also called regular spherical Bessel functions). | |

double | ROOT::Math::sph_legendre (unsigned l, unsigned m, double theta) |

Computes the spherical (normalized) associated Legendre polynomials, or spherical harmonic without azimuthal dependence ( \(e^(im\phi)\)). | |

double | ROOT::Math::sph_neumann (unsigned n, double x) |

Calculates the spherical Bessel functions of the second kind (also called irregular spherical Bessel functions or spherical Neumann functions). | |

double | ROOT::Math::wigner_3j (int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc) |

Calculates the Wigner 3j coupling coefficients. | |

double | ROOT::Math::wigner_6j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf) |

Calculates the Wigner 6j coupling coefficients. | |

double | ROOT::Math::wigner_9j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji) |

Calculates the Wigner 9j coupling coefficients. | |