Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.22 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0138 sec
: Elapsed time for evaluation of 1600 events: 0.0139 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 50.219
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.874305 0.836159 0.131505 0.0146977 10273.4 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.679941 0.734216 0.129258 0.0141247 10422.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.599008 0.706676 0.099893 0.00987066 13330 0
: 4 | 0.533303 0.738067 0.099588 0.00951044 13321.9 1
: 5 | 0.478814 0.763526 0.0998857 0.00958008 13288.2 2
: 6 | 0.414365 0.728923 0.0996066 0.00956801 13327.6 3
: 7 | 0.365676 0.757962 0.103981 0.0102155 12798 4
: 8 | 0.320722 0.734635 0.104774 0.0102042 12689.1 5
: 9 | 0.27971 0.749845 0.103128 0.00971437 12846 6
:
: Elapsed time for training with 1600 events: 0.992 sec
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.052 sec
: Elapsed time for evaluation of 1600 events: 0.054 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 17.1321
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.59355 0.736547 0.77922 0.0644166 1678.78 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.725388 0.700855 0.751981 0.0678205 1753.97 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.699525 0.694578 0.752007 0.0705748 1761 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.680481 0.689488 0.738732 0.0664211 1784.89 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.673559 0.683866 0.774262 0.0708857 1706.06 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.67114 0.67187 0.795846 0.0667638 1645.9 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.652889 0.66612 0.870659 0.0947898 1546.65 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.639155 0.65743 0.79791 0.0692246 1646.8 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.626666 0.653121 0.825187 0.0694649 1587.88 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.615018 0.63918 0.877394 0.0648635 1476.87 0
:
: Elapsed time for training with 1600 events: 8.03 sec
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.342 sec
: Elapsed time for evaluation of 1600 events: 0.35 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.104e-02
: 2 : vars : 9.109e-03
: 3 : vars : 8.521e-03
: 4 : vars : 8.012e-03
: 5 : vars : 7.963e-03
: 6 : vars : 7.803e-03
: 7 : vars : 7.750e-03
: 8 : vars : 7.547e-03
: 9 : vars : 7.367e-03
: 10 : vars : 7.202e-03
: 11 : vars : 7.076e-03
: 12 : vars : 7.030e-03
: 13 : vars : 6.847e-03
: 14 : vars : 6.827e-03
: 15 : vars : 6.812e-03
: 16 : vars : 6.800e-03
: 17 : vars : 6.789e-03
: 18 : vars : 6.764e-03
: 19 : vars : 6.758e-03
: 20 : vars : 6.687e-03
: 21 : vars : 6.654e-03
: 22 : vars : 6.592e-03
: 23 : vars : 6.585e-03
: 24 : vars : 6.496e-03
: 25 : vars : 6.476e-03
: 26 : vars : 6.472e-03
: 27 : vars : 6.439e-03
: 28 : vars : 6.408e-03
: 29 : vars : 6.369e-03
: 30 : vars : 6.314e-03
: 31 : vars : 6.163e-03
: 32 : vars : 6.134e-03
: 33 : vars : 6.132e-03
: 34 : vars : 6.019e-03
: 35 : vars : 6.014e-03
: 36 : vars : 6.007e-03
: 37 : vars : 5.976e-03
: 38 : vars : 5.784e-03
: 39 : vars : 5.764e-03
: 40 : vars : 5.745e-03
: 41 : vars : 5.718e-03
: 42 : vars : 5.706e-03
: 43 : vars : 5.669e-03
: 44 : vars : 5.590e-03
: 45 : vars : 5.584e-03
: 46 : vars : 5.560e-03
: 47 : vars : 5.547e-03
: 48 : vars : 5.492e-03
: 49 : vars : 5.443e-03
: 50 : vars : 5.424e-03
: 51 : vars : 5.419e-03
: 52 : vars : 5.410e-03
: 53 : vars : 5.380e-03
: 54 : vars : 5.321e-03
: 55 : vars : 5.297e-03
: 56 : vars : 5.244e-03
: 57 : vars : 5.226e-03
: 58 : vars : 5.223e-03
: 59 : vars : 5.209e-03
: 60 : vars : 5.176e-03
: 61 : vars : 5.141e-03
: 62 : vars : 5.135e-03
: 63 : vars : 5.116e-03
: 64 : vars : 5.093e-03
: 65 : vars : 5.061e-03
: 66 : vars : 4.995e-03
: 67 : vars : 4.967e-03
: 68 : vars : 4.946e-03
: 69 : vars : 4.943e-03
: 70 : vars : 4.943e-03
: 71 : vars : 4.934e-03
: 72 : vars : 4.922e-03
: 73 : vars : 4.879e-03
: 74 : vars : 4.837e-03
: 75 : vars : 4.826e-03
: 76 : vars : 4.812e-03
: 77 : vars : 4.771e-03
: 78 : vars : 4.765e-03
: 79 : vars : 4.750e-03
: 80 : vars : 4.712e-03
: 81 : vars : 4.689e-03
: 82 : vars : 4.673e-03
: 83 : vars : 4.637e-03
: 84 : vars : 4.633e-03
: 85 : vars : 4.632e-03
: 86 : vars : 4.582e-03
: 87 : vars : 4.549e-03
: 88 : vars : 4.531e-03
: 89 : vars : 4.529e-03
: 90 : vars : 4.511e-03
: 91 : vars : 4.500e-03
: 92 : vars : 4.491e-03
: 93 : vars : 4.487e-03
: 94 : vars : 4.476e-03
: 95 : vars : 4.462e-03
: 96 : vars : 4.462e-03
: 97 : vars : 4.461e-03
: 98 : vars : 4.454e-03
: 99 : vars : 4.421e-03
: 100 : vars : 4.414e-03
: 101 : vars : 4.369e-03
: 102 : vars : 4.359e-03
: 103 : vars : 4.347e-03
: 104 : vars : 4.344e-03
: 105 : vars : 4.336e-03
: 106 : vars : 4.312e-03
: 107 : vars : 4.304e-03
: 108 : vars : 4.301e-03
: 109 : vars : 4.289e-03
: 110 : vars : 4.270e-03
: 111 : vars : 4.267e-03
: 112 : vars : 4.221e-03
: 113 : vars : 4.203e-03
: 114 : vars : 4.200e-03
: 115 : vars : 4.198e-03
: 116 : vars : 4.194e-03
: 117 : vars : 4.153e-03
: 118 : vars : 4.141e-03
: 119 : vars : 4.123e-03
: 120 : vars : 4.013e-03
: 121 : vars : 3.998e-03
: 122 : vars : 3.996e-03
: 123 : vars : 3.960e-03
: 124 : vars : 3.944e-03
: 125 : vars : 3.941e-03
: 126 : vars : 3.933e-03
: 127 : vars : 3.932e-03
: 128 : vars : 3.910e-03
: 129 : vars : 3.906e-03
: 130 : vars : 3.904e-03
: 131 : vars : 3.869e-03
: 132 : vars : 3.866e-03
: 133 : vars : 3.857e-03
: 134 : vars : 3.841e-03
: 135 : vars : 3.797e-03
: 136 : vars : 3.740e-03
: 137 : vars : 3.722e-03
: 138 : vars : 3.639e-03
: 139 : vars : 3.619e-03
: 140 : vars : 3.614e-03
: 141 : vars : 3.612e-03
: 142 : vars : 3.575e-03
: 143 : vars : 3.543e-03
: 144 : vars : 3.527e-03
: 145 : vars : 3.524e-03
: 146 : vars : 3.522e-03
: 147 : vars : 3.502e-03
: 148 : vars : 3.502e-03
: 149 : vars : 3.499e-03
: 150 : vars : 3.471e-03
: 151 : vars : 3.455e-03
: 152 : vars : 3.424e-03
: 153 : vars : 3.421e-03
: 154 : vars : 3.417e-03
: 155 : vars : 3.412e-03
: 156 : vars : 3.399e-03
: 157 : vars : 3.367e-03
: 158 : vars : 3.366e-03
: 159 : vars : 3.334e-03
: 160 : vars : 3.322e-03
: 161 : vars : 3.316e-03
: 162 : vars : 3.299e-03
: 163 : vars : 3.292e-03
: 164 : vars : 3.277e-03
: 165 : vars : 3.256e-03
: 166 : vars : 3.207e-03
: 167 : vars : 3.198e-03
: 168 : vars : 3.164e-03
: 169 : vars : 3.157e-03
: 170 : vars : 3.151e-03
: 171 : vars : 3.148e-03
: 172 : vars : 3.092e-03
: 173 : vars : 3.088e-03
: 174 : vars : 3.043e-03
: 175 : vars : 3.042e-03
: 176 : vars : 3.041e-03
: 177 : vars : 3.034e-03
: 178 : vars : 3.013e-03
: 179 : vars : 3.009e-03
: 180 : vars : 2.986e-03
: 181 : vars : 2.925e-03
: 182 : vars : 2.882e-03
: 183 : vars : 2.861e-03
: 184 : vars : 2.859e-03
: 185 : vars : 2.856e-03
: 186 : vars : 2.815e-03
: 187 : vars : 2.789e-03
: 188 : vars : 2.776e-03
: 189 : vars : 2.744e-03
: 190 : vars : 2.711e-03
: 191 : vars : 2.695e-03
: 192 : vars : 2.670e-03
: 193 : vars : 2.669e-03
: 194 : vars : 2.581e-03
: 195 : vars : 2.566e-03
: 196 : vars : 2.553e-03
: 197 : vars : 2.551e-03
: 198 : vars : 2.546e-03
: 199 : vars : 2.513e-03
: 200 : vars : 2.511e-03
: 201 : vars : 2.492e-03
: 202 : vars : 2.453e-03
: 203 : vars : 2.446e-03
: 204 : vars : 2.402e-03
: 205 : vars : 2.379e-03
: 206 : vars : 2.358e-03
: 207 : vars : 2.335e-03
: 208 : vars : 2.327e-03
: 209 : vars : 2.322e-03
: 210 : vars : 2.289e-03
: 211 : vars : 2.286e-03
: 212 : vars : 2.274e-03
: 213 : vars : 2.196e-03
: 214 : vars : 2.176e-03
: 215 : vars : 2.095e-03
: 216 : vars : 2.094e-03
: 217 : vars : 2.072e-03
: 218 : vars : 2.053e-03
: 219 : vars : 2.037e-03
: 220 : vars : 2.008e-03
: 221 : vars : 2.004e-03
: 222 : vars : 1.995e-03
: 223 : vars : 1.984e-03
: 224 : vars : 1.938e-03
: 225 : vars : 1.910e-03
: 226 : vars : 1.871e-03
: 227 : vars : 1.814e-03
: 228 : vars : 1.753e-03
: 229 : vars : 1.694e-03
: 230 : vars : 1.669e-03
: 231 : vars : 1.639e-03
: 232 : vars : 1.624e-03
: 233 : vars : 1.594e-03
: 234 : vars : 1.578e-03
: 235 : vars : 1.567e-03
: 236 : vars : 1.529e-03
: 237 : vars : 1.498e-03
: 238 : vars : 1.221e-03
: 239 : vars : 1.219e-03
: 240 : vars : 9.018e-04
: 241 : vars : 8.625e-04
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.54584
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 6.75001
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.57737
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.79306
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00365 sec
: Elapsed time for evaluation of 400 events: 0.00382 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0129 sec
: Elapsed time for evaluation of 400 events: 0.015 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0873 sec
: Elapsed time for evaluation of 400 events: 0.098 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.783
: dataset TMVA_CNN_CPU : 0.662
: dataset TMVA_DNN_CPU : 0.622
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.125 (0.362) 0.365 (0.710) 0.713 (0.897)
: dataset TMVA_CNN_CPU : 0.025 (0.065) 0.285 (0.295) 0.515 (0.592)
: dataset TMVA_DNN_CPU : 0.015 (0.095) 0.190 (0.332) 0.435 (0.642)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m