Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.42 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.018 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 109.458
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.857352 0.823587 0.122041 0.0120464 10909.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.646149 0.772036 0.12067 0.0115864 11000.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.540459 0.760972 0.120878 0.0118695 11008.3 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.472631 0.75508 0.122042 0.011931 10898.1 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.428144 0.69897 0.122281 0.0117593 10857.6 0
: 6 | 0.358171 0.738005 0.122446 0.0112142 10788.3 1
: 7 | 0.315096 0.732293 0.124512 0.0114409 10612.8 2
: 8 | 0.289211 0.715078 0.122307 0.0128471 10962.9 3
: 9 | 0.249491 0.775109 0.127656 0.0117292 10351.4 4
: 10 | 0.213344 0.770374 0.123003 0.0112958 10742.4 5
:
: Elapsed time for training with 1600 events: 1.25 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0619 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 61.3951
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 5.2838 2.21673 0.973417 0.0865393 1353.06 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.55328 1.48188 0.90179 0.0807993 1461.65 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.940926 0.803003 0.916971 0.0907212 1452.35 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.75568 0.705594 0.850655 0.0759692 1549.01 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.699364 0.702727 0.87453 0.0824066 1514.92 0
: 6 | 0.692772 0.708307 0.901572 0.0760114 1453.56 1
: 7 | 0.675954 0.705561 0.861857 0.0705313 1516.44 2
: 8 Minimum Test error found - save the configuration
: 8 | 0.672155 0.684584 0.850694 0.0724616 1541.96 0
: 9 | 0.648377 0.68571 0.862455 0.0729238 1519.89 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.644597 0.683304 0.863488 0.0733997 1518.82 0
:
: Elapsed time for training with 1600 events: 8.95 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.381 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.844e-03
: 2 : vars : 7.910e-03
: 3 : vars : 7.793e-03
: 4 : vars : 7.740e-03
: 5 : vars : 7.700e-03
: 6 : vars : 7.345e-03
: 7 : vars : 7.247e-03
: 8 : vars : 7.125e-03
: 9 : vars : 7.121e-03
: 10 : vars : 6.918e-03
: 11 : vars : 6.757e-03
: 12 : vars : 6.729e-03
: 13 : vars : 6.547e-03
: 14 : vars : 6.503e-03
: 15 : vars : 6.501e-03
: 16 : vars : 6.440e-03
: 17 : vars : 6.338e-03
: 18 : vars : 6.191e-03
: 19 : vars : 6.102e-03
: 20 : vars : 6.083e-03
: 21 : vars : 6.081e-03
: 22 : vars : 6.063e-03
: 23 : vars : 6.034e-03
: 24 : vars : 5.997e-03
: 25 : vars : 5.920e-03
: 26 : vars : 5.880e-03
: 27 : vars : 5.875e-03
: 28 : vars : 5.874e-03
: 29 : vars : 5.822e-03
: 30 : vars : 5.775e-03
: 31 : vars : 5.721e-03
: 32 : vars : 5.694e-03
: 33 : vars : 5.670e-03
: 34 : vars : 5.656e-03
: 35 : vars : 5.650e-03
: 36 : vars : 5.643e-03
: 37 : vars : 5.617e-03
: 38 : vars : 5.615e-03
: 39 : vars : 5.604e-03
: 40 : vars : 5.603e-03
: 41 : vars : 5.568e-03
: 42 : vars : 5.455e-03
: 43 : vars : 5.435e-03
: 44 : vars : 5.433e-03
: 45 : vars : 5.429e-03
: 46 : vars : 5.399e-03
: 47 : vars : 5.390e-03
: 48 : vars : 5.374e-03
: 49 : vars : 5.268e-03
: 50 : vars : 5.253e-03
: 51 : vars : 5.245e-03
: 52 : vars : 5.193e-03
: 53 : vars : 5.180e-03
: 54 : vars : 5.169e-03
: 55 : vars : 5.150e-03
: 56 : vars : 5.149e-03
: 57 : vars : 5.129e-03
: 58 : vars : 5.109e-03
: 59 : vars : 5.098e-03
: 60 : vars : 5.081e-03
: 61 : vars : 5.072e-03
: 62 : vars : 5.033e-03
: 63 : vars : 5.007e-03
: 64 : vars : 4.978e-03
: 65 : vars : 4.964e-03
: 66 : vars : 4.962e-03
: 67 : vars : 4.943e-03
: 68 : vars : 4.901e-03
: 69 : vars : 4.841e-03
: 70 : vars : 4.830e-03
: 71 : vars : 4.822e-03
: 72 : vars : 4.822e-03
: 73 : vars : 4.813e-03
: 74 : vars : 4.799e-03
: 75 : vars : 4.796e-03
: 76 : vars : 4.791e-03
: 77 : vars : 4.781e-03
: 78 : vars : 4.773e-03
: 79 : vars : 4.722e-03
: 80 : vars : 4.706e-03
: 81 : vars : 4.705e-03
: 82 : vars : 4.671e-03
: 83 : vars : 4.637e-03
: 84 : vars : 4.634e-03
: 85 : vars : 4.612e-03
: 86 : vars : 4.607e-03
: 87 : vars : 4.574e-03
: 88 : vars : 4.573e-03
: 89 : vars : 4.511e-03
: 90 : vars : 4.502e-03
: 91 : vars : 4.496e-03
: 92 : vars : 4.486e-03
: 93 : vars : 4.481e-03
: 94 : vars : 4.451e-03
: 95 : vars : 4.429e-03
: 96 : vars : 4.409e-03
: 97 : vars : 4.368e-03
: 98 : vars : 4.356e-03
: 99 : vars : 4.342e-03
: 100 : vars : 4.279e-03
: 101 : vars : 4.260e-03
: 102 : vars : 4.236e-03
: 103 : vars : 4.234e-03
: 104 : vars : 4.227e-03
: 105 : vars : 4.219e-03
: 106 : vars : 4.218e-03
: 107 : vars : 4.177e-03
: 108 : vars : 4.171e-03
: 109 : vars : 4.156e-03
: 110 : vars : 4.131e-03
: 111 : vars : 4.116e-03
: 112 : vars : 4.103e-03
: 113 : vars : 4.096e-03
: 114 : vars : 4.085e-03
: 115 : vars : 4.056e-03
: 116 : vars : 4.043e-03
: 117 : vars : 4.038e-03
: 118 : vars : 4.034e-03
: 119 : vars : 4.031e-03
: 120 : vars : 4.015e-03
: 121 : vars : 4.010e-03
: 122 : vars : 3.997e-03
: 123 : vars : 3.990e-03
: 124 : vars : 3.966e-03
: 125 : vars : 3.918e-03
: 126 : vars : 3.902e-03
: 127 : vars : 3.898e-03
: 128 : vars : 3.859e-03
: 129 : vars : 3.859e-03
: 130 : vars : 3.855e-03
: 131 : vars : 3.839e-03
: 132 : vars : 3.825e-03
: 133 : vars : 3.822e-03
: 134 : vars : 3.816e-03
: 135 : vars : 3.810e-03
: 136 : vars : 3.799e-03
: 137 : vars : 3.783e-03
: 138 : vars : 3.773e-03
: 139 : vars : 3.763e-03
: 140 : vars : 3.760e-03
: 141 : vars : 3.758e-03
: 142 : vars : 3.750e-03
: 143 : vars : 3.733e-03
: 144 : vars : 3.713e-03
: 145 : vars : 3.708e-03
: 146 : vars : 3.708e-03
: 147 : vars : 3.664e-03
: 148 : vars : 3.663e-03
: 149 : vars : 3.621e-03
: 150 : vars : 3.597e-03
: 151 : vars : 3.564e-03
: 152 : vars : 3.562e-03
: 153 : vars : 3.559e-03
: 154 : vars : 3.547e-03
: 155 : vars : 3.523e-03
: 156 : vars : 3.521e-03
: 157 : vars : 3.505e-03
: 158 : vars : 3.469e-03
: 159 : vars : 3.465e-03
: 160 : vars : 3.452e-03
: 161 : vars : 3.433e-03
: 162 : vars : 3.425e-03
: 163 : vars : 3.358e-03
: 164 : vars : 3.342e-03
: 165 : vars : 3.341e-03
: 166 : vars : 3.341e-03
: 167 : vars : 3.310e-03
: 168 : vars : 3.306e-03
: 169 : vars : 3.293e-03
: 170 : vars : 3.290e-03
: 171 : vars : 3.260e-03
: 172 : vars : 3.241e-03
: 173 : vars : 3.225e-03
: 174 : vars : 3.221e-03
: 175 : vars : 3.180e-03
: 176 : vars : 3.168e-03
: 177 : vars : 3.154e-03
: 178 : vars : 3.125e-03
: 179 : vars : 3.107e-03
: 180 : vars : 3.104e-03
: 181 : vars : 3.074e-03
: 182 : vars : 3.065e-03
: 183 : vars : 3.043e-03
: 184 : vars : 3.040e-03
: 185 : vars : 2.973e-03
: 186 : vars : 2.951e-03
: 187 : vars : 2.909e-03
: 188 : vars : 2.881e-03
: 189 : vars : 2.873e-03
: 190 : vars : 2.860e-03
: 191 : vars : 2.810e-03
: 192 : vars : 2.791e-03
: 193 : vars : 2.774e-03
: 194 : vars : 2.771e-03
: 195 : vars : 2.701e-03
: 196 : vars : 2.693e-03
: 197 : vars : 2.682e-03
: 198 : vars : 2.665e-03
: 199 : vars : 2.657e-03
: 200 : vars : 2.639e-03
: 201 : vars : 2.638e-03
: 202 : vars : 2.624e-03
: 203 : vars : 2.618e-03
: 204 : vars : 2.607e-03
: 205 : vars : 2.579e-03
: 206 : vars : 2.565e-03
: 207 : vars : 2.548e-03
: 208 : vars : 2.528e-03
: 209 : vars : 2.508e-03
: 210 : vars : 2.428e-03
: 211 : vars : 2.397e-03
: 212 : vars : 2.395e-03
: 213 : vars : 2.379e-03
: 214 : vars : 2.377e-03
: 215 : vars : 2.343e-03
: 216 : vars : 2.320e-03
: 217 : vars : 2.288e-03
: 218 : vars : 2.284e-03
: 219 : vars : 2.275e-03
: 220 : vars : 2.260e-03
: 221 : vars : 2.217e-03
: 222 : vars : 2.198e-03
: 223 : vars : 2.185e-03
: 224 : vars : 2.174e-03
: 225 : vars : 2.036e-03
: 226 : vars : 2.022e-03
: 227 : vars : 1.933e-03
: 228 : vars : 1.872e-03
: 229 : vars : 1.853e-03
: 230 : vars : 1.852e-03
: 231 : vars : 1.843e-03
: 232 : vars : 1.842e-03
: 233 : vars : 1.806e-03
: 234 : vars : 1.776e-03
: 235 : vars : 1.753e-03
: 236 : vars : 1.705e-03
: 237 : vars : 1.648e-03
: 238 : vars : 1.574e-03
: 239 : vars : 1.549e-03
: 240 : vars : 1.539e-03
: 241 : vars : 1.523e-03
: 242 : vars : 1.501e-03
: 243 : vars : 1.466e-03
: 244 : vars : 1.451e-03
: 245 : vars : 1.322e-03
: 246 : vars : 1.255e-03
: 247 : vars : 1.249e-03
: 248 : vars : 8.410e-04
: 249 : vars : 2.917e-04
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.37005
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.5415
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 12.5669
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 9.3774
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00446 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0148 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.1 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.730
: dataset TMVA_DNN_CPU : 0.679
: dataset TMVA_CNN_CPU : 0.574
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.085 (0.260) 0.295 (0.635) 0.625 (0.870)
: dataset TMVA_DNN_CPU : 0.035 (0.105) 0.228 (0.465) 0.599 (0.732)
: dataset TMVA_CNN_CPU : 0.025 (0.063) 0.169 (0.283) 0.398 (0.493)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m