Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.45 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0204 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 155.999
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.15852 0.927118 0.141563 0.0140219 9408.71 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.713138 0.762212 0.136725 0.012945 9694.66 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.611002 0.735002 0.123482 0.0129269 10854.3 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.536247 0.719548 0.122848 0.0115793 10784.7 0
: 5 | 0.484504 0.732189 0.120035 0.0111635 11022.2 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.439686 0.693009 0.124253 0.0116319 10655.2 0
: 7 | 0.383258 0.714788 0.122661 0.011128 10759.2 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.333529 0.687446 0.125933 0.0118738 10520.8 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.297519 0.68423 0.125058 0.0118073 10596 0
: 10 | 0.265735 0.7167 0.125972 0.0126433 10588.6 1
:
: Elapsed time for training with 1600 events: 1.29 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0627 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 273.866
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.21075 1.24986 0.968645 0.0786809 1348.37 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.886403 0.844131 0.914594 0.0844514 1445.53 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.732993 0.703993 0.945821 0.0833664 1391.38 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.712171 0.698482 0.922511 0.0786927 1422.11 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.700454 0.694205 0.951773 0.0750493 1368.73 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.679107 0.677883 0.881017 0.0769559 1492.42 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.659277 0.669272 0.940419 0.0950035 1419.42 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.64264 0.653493 0.883707 0.0813063 1495.51 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.641745 0.638426 0.953374 0.100034 1406.24 0
: 10 | 0.610305 0.650938 0.910107 0.0765181 1439.56 1
:
: Elapsed time for training with 1600 events: 9.37 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.397 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.362e-03
: 2 : vars : 8.535e-03
: 3 : vars : 8.491e-03
: 4 : vars : 8.285e-03
: 5 : vars : 8.194e-03
: 6 : vars : 8.124e-03
: 7 : vars : 7.838e-03
: 8 : vars : 7.803e-03
: 9 : vars : 7.791e-03
: 10 : vars : 7.782e-03
: 11 : vars : 7.773e-03
: 12 : vars : 7.504e-03
: 13 : vars : 7.492e-03
: 14 : vars : 7.430e-03
: 15 : vars : 7.361e-03
: 16 : vars : 7.307e-03
: 17 : vars : 7.246e-03
: 18 : vars : 7.181e-03
: 19 : vars : 7.025e-03
: 20 : vars : 6.962e-03
: 21 : vars : 6.932e-03
: 22 : vars : 6.773e-03
: 23 : vars : 6.770e-03
: 24 : vars : 6.755e-03
: 25 : vars : 6.748e-03
: 26 : vars : 6.737e-03
: 27 : vars : 6.635e-03
: 28 : vars : 6.582e-03
: 29 : vars : 6.548e-03
: 30 : vars : 6.537e-03
: 31 : vars : 6.209e-03
: 32 : vars : 6.207e-03
: 33 : vars : 6.203e-03
: 34 : vars : 6.173e-03
: 35 : vars : 6.096e-03
: 36 : vars : 6.010e-03
: 37 : vars : 5.995e-03
: 38 : vars : 5.876e-03
: 39 : vars : 5.777e-03
: 40 : vars : 5.761e-03
: 41 : vars : 5.735e-03
: 42 : vars : 5.728e-03
: 43 : vars : 5.658e-03
: 44 : vars : 5.639e-03
: 45 : vars : 5.615e-03
: 46 : vars : 5.614e-03
: 47 : vars : 5.607e-03
: 48 : vars : 5.562e-03
: 49 : vars : 5.561e-03
: 50 : vars : 5.520e-03
: 51 : vars : 5.515e-03
: 52 : vars : 5.467e-03
: 53 : vars : 5.454e-03
: 54 : vars : 5.443e-03
: 55 : vars : 5.412e-03
: 56 : vars : 5.392e-03
: 57 : vars : 5.334e-03
: 58 : vars : 5.322e-03
: 59 : vars : 5.314e-03
: 60 : vars : 5.313e-03
: 61 : vars : 5.289e-03
: 62 : vars : 5.259e-03
: 63 : vars : 5.251e-03
: 64 : vars : 5.223e-03
: 65 : vars : 5.166e-03
: 66 : vars : 5.158e-03
: 67 : vars : 5.142e-03
: 68 : vars : 5.136e-03
: 69 : vars : 5.089e-03
: 70 : vars : 5.060e-03
: 71 : vars : 5.057e-03
: 72 : vars : 5.054e-03
: 73 : vars : 5.035e-03
: 74 : vars : 5.021e-03
: 75 : vars : 5.020e-03
: 76 : vars : 5.001e-03
: 77 : vars : 4.997e-03
: 78 : vars : 4.990e-03
: 79 : vars : 4.966e-03
: 80 : vars : 4.934e-03
: 81 : vars : 4.911e-03
: 82 : vars : 4.907e-03
: 83 : vars : 4.859e-03
: 84 : vars : 4.820e-03
: 85 : vars : 4.798e-03
: 86 : vars : 4.749e-03
: 87 : vars : 4.736e-03
: 88 : vars : 4.732e-03
: 89 : vars : 4.680e-03
: 90 : vars : 4.677e-03
: 91 : vars : 4.576e-03
: 92 : vars : 4.518e-03
: 93 : vars : 4.509e-03
: 94 : vars : 4.488e-03
: 95 : vars : 4.474e-03
: 96 : vars : 4.467e-03
: 97 : vars : 4.457e-03
: 98 : vars : 4.456e-03
: 99 : vars : 4.447e-03
: 100 : vars : 4.441e-03
: 101 : vars : 4.406e-03
: 102 : vars : 4.405e-03
: 103 : vars : 4.355e-03
: 104 : vars : 4.347e-03
: 105 : vars : 4.343e-03
: 106 : vars : 4.335e-03
: 107 : vars : 4.318e-03
: 108 : vars : 4.270e-03
: 109 : vars : 4.237e-03
: 110 : vars : 4.232e-03
: 111 : vars : 4.229e-03
: 112 : vars : 4.228e-03
: 113 : vars : 4.210e-03
: 114 : vars : 4.192e-03
: 115 : vars : 4.149e-03
: 116 : vars : 4.147e-03
: 117 : vars : 4.143e-03
: 118 : vars : 4.114e-03
: 119 : vars : 4.101e-03
: 120 : vars : 4.095e-03
: 121 : vars : 4.078e-03
: 122 : vars : 4.043e-03
: 123 : vars : 4.038e-03
: 124 : vars : 4.028e-03
: 125 : vars : 3.965e-03
: 126 : vars : 3.959e-03
: 127 : vars : 3.941e-03
: 128 : vars : 3.913e-03
: 129 : vars : 3.880e-03
: 130 : vars : 3.819e-03
: 131 : vars : 3.808e-03
: 132 : vars : 3.790e-03
: 133 : vars : 3.773e-03
: 134 : vars : 3.769e-03
: 135 : vars : 3.742e-03
: 136 : vars : 3.738e-03
: 137 : vars : 3.734e-03
: 138 : vars : 3.722e-03
: 139 : vars : 3.697e-03
: 140 : vars : 3.692e-03
: 141 : vars : 3.621e-03
: 142 : vars : 3.603e-03
: 143 : vars : 3.603e-03
: 144 : vars : 3.593e-03
: 145 : vars : 3.590e-03
: 146 : vars : 3.556e-03
: 147 : vars : 3.552e-03
: 148 : vars : 3.552e-03
: 149 : vars : 3.541e-03
: 150 : vars : 3.540e-03
: 151 : vars : 3.539e-03
: 152 : vars : 3.498e-03
: 153 : vars : 3.489e-03
: 154 : vars : 3.487e-03
: 155 : vars : 3.487e-03
: 156 : vars : 3.403e-03
: 157 : vars : 3.374e-03
: 158 : vars : 3.373e-03
: 159 : vars : 3.368e-03
: 160 : vars : 3.311e-03
: 161 : vars : 3.278e-03
: 162 : vars : 3.238e-03
: 163 : vars : 3.170e-03
: 164 : vars : 3.152e-03
: 165 : vars : 3.123e-03
: 166 : vars : 3.113e-03
: 167 : vars : 3.062e-03
: 168 : vars : 3.005e-03
: 169 : vars : 2.971e-03
: 170 : vars : 2.969e-03
: 171 : vars : 2.961e-03
: 172 : vars : 2.950e-03
: 173 : vars : 2.922e-03
: 174 : vars : 2.891e-03
: 175 : vars : 2.877e-03
: 176 : vars : 2.792e-03
: 177 : vars : 2.776e-03
: 178 : vars : 2.774e-03
: 179 : vars : 2.747e-03
: 180 : vars : 2.743e-03
: 181 : vars : 2.736e-03
: 182 : vars : 2.713e-03
: 183 : vars : 2.654e-03
: 184 : vars : 2.630e-03
: 185 : vars : 2.630e-03
: 186 : vars : 2.614e-03
: 187 : vars : 2.603e-03
: 188 : vars : 2.601e-03
: 189 : vars : 2.597e-03
: 190 : vars : 2.589e-03
: 191 : vars : 2.589e-03
: 192 : vars : 2.580e-03
: 193 : vars : 2.536e-03
: 194 : vars : 2.531e-03
: 195 : vars : 2.523e-03
: 196 : vars : 2.433e-03
: 197 : vars : 2.375e-03
: 198 : vars : 2.367e-03
: 199 : vars : 2.343e-03
: 200 : vars : 2.336e-03
: 201 : vars : 2.323e-03
: 202 : vars : 2.314e-03
: 203 : vars : 2.255e-03
: 204 : vars : 2.212e-03
: 205 : vars : 2.207e-03
: 206 : vars : 2.205e-03
: 207 : vars : 2.176e-03
: 208 : vars : 2.161e-03
: 209 : vars : 2.158e-03
: 210 : vars : 2.139e-03
: 211 : vars : 2.116e-03
: 212 : vars : 2.116e-03
: 213 : vars : 2.092e-03
: 214 : vars : 2.086e-03
: 215 : vars : 2.061e-03
: 216 : vars : 2.030e-03
: 217 : vars : 1.994e-03
: 218 : vars : 1.944e-03
: 219 : vars : 1.919e-03
: 220 : vars : 1.912e-03
: 221 : vars : 1.905e-03
: 222 : vars : 1.881e-03
: 223 : vars : 1.872e-03
: 224 : vars : 1.832e-03
: 225 : vars : 1.817e-03
: 226 : vars : 1.798e-03
: 227 : vars : 1.762e-03
: 228 : vars : 1.680e-03
: 229 : vars : 1.631e-03
: 230 : vars : 1.601e-03
: 231 : vars : 1.593e-03
: 232 : vars : 1.553e-03
: 233 : vars : 1.524e-03
: 234 : vars : 1.495e-03
: 235 : vars : 1.338e-03
: 236 : vars : 1.170e-03
: 237 : vars : 9.984e-04
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.22313
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.37224
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.47585
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.48068
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00501 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0146 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.106 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.747
: dataset TMVA_DNN_CPU : 0.711
: dataset TMVA_CNN_CPU : 0.697
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.160 (0.372) 0.335 (0.671) 0.651 (0.865)
: dataset TMVA_DNN_CPU : 0.015 (0.125) 0.335 (0.653) 0.621 (0.818)
: dataset TMVA_CNN_CPU : 0.045 (0.110) 0.250 (0.341) 0.625 (0.649)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m