Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.47 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0158 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 60.4134
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.84305 0.849247 0.122122 0.0124461 10941.3 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.642938 0.751032 0.124885 0.0122401 10653 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.582804 0.728167 0.127629 0.0124914 10422.3 0
: 4 | 0.514336 0.737382 0.132758 0.0151892 10206.8 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.455426 0.715583 0.146224 0.0116568 8917.48 0
: 6 | 0.407842 0.733142 0.12573 0.012216 10571.4 1
: 7 | 0.346505 0.916281 0.14385 0.0113883 9059.21 2
: 8 | 0.306479 0.744833 0.132026 0.0123824 10029.8 3
: 9 | 0.261752 0.725515 0.128936 0.01214 10274.3 4
: 10 Minimum Test error found - save the configuration
: 10 | 0.238883 0.683898 0.124824 0.0120034 10636.3 0
:
: Elapsed time for training with 1600 events: 1.33 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.112 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 35.5713
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.33388 1.05677 0.925475 0.0798433 1419.06 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.868898 0.900591 0.897327 0.0788467 1466.13 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.743685 0.70151 0.958634 0.0872252 1377.08 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.67989 0.693332 0.919033 0.0813595 1432.54 0
: 5 | 0.674046 0.699841 0.914179 0.0762649 1432.13 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.654567 0.681427 0.943206 0.0840057 1396.65 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.634339 0.663633 0.955065 0.0837803 1377.28 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.613518 0.651119 0.926436 0.0800729 1417.83 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.586723 0.636951 0.937247 0.0792507 1398.61 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.558536 0.614003 0.944451 0.0891652 1403.04 0
:
: Elapsed time for training with 1600 events: 9.43 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.439 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.537e-03
: 2 : vars : 9.087e-03
: 3 : vars : 8.910e-03
: 4 : vars : 8.595e-03
: 5 : vars : 8.337e-03
: 6 : vars : 8.177e-03
: 7 : vars : 8.110e-03
: 8 : vars : 8.069e-03
: 9 : vars : 7.846e-03
: 10 : vars : 7.801e-03
: 11 : vars : 7.786e-03
: 12 : vars : 7.775e-03
: 13 : vars : 7.772e-03
: 14 : vars : 7.768e-03
: 15 : vars : 7.691e-03
: 16 : vars : 7.335e-03
: 17 : vars : 7.293e-03
: 18 : vars : 7.170e-03
: 19 : vars : 7.125e-03
: 20 : vars : 6.944e-03
: 21 : vars : 6.882e-03
: 22 : vars : 6.853e-03
: 23 : vars : 6.843e-03
: 24 : vars : 6.683e-03
: 25 : vars : 6.631e-03
: 26 : vars : 6.602e-03
: 27 : vars : 6.550e-03
: 28 : vars : 6.487e-03
: 29 : vars : 6.350e-03
: 30 : vars : 6.321e-03
: 31 : vars : 6.314e-03
: 32 : vars : 6.158e-03
: 33 : vars : 6.141e-03
: 34 : vars : 6.138e-03
: 35 : vars : 6.115e-03
: 36 : vars : 6.100e-03
: 37 : vars : 6.088e-03
: 38 : vars : 6.012e-03
: 39 : vars : 5.979e-03
: 40 : vars : 5.976e-03
: 41 : vars : 5.849e-03
: 42 : vars : 5.813e-03
: 43 : vars : 5.759e-03
: 44 : vars : 5.679e-03
: 45 : vars : 5.655e-03
: 46 : vars : 5.595e-03
: 47 : vars : 5.571e-03
: 48 : vars : 5.513e-03
: 49 : vars : 5.505e-03
: 50 : vars : 5.488e-03
: 51 : vars : 5.416e-03
: 52 : vars : 5.411e-03
: 53 : vars : 5.403e-03
: 54 : vars : 5.346e-03
: 55 : vars : 5.335e-03
: 56 : vars : 5.328e-03
: 57 : vars : 5.280e-03
: 58 : vars : 5.244e-03
: 59 : vars : 5.152e-03
: 60 : vars : 5.101e-03
: 61 : vars : 5.026e-03
: 62 : vars : 5.010e-03
: 63 : vars : 4.962e-03
: 64 : vars : 4.952e-03
: 65 : vars : 4.945e-03
: 66 : vars : 4.939e-03
: 67 : vars : 4.907e-03
: 68 : vars : 4.889e-03
: 69 : vars : 4.868e-03
: 70 : vars : 4.807e-03
: 71 : vars : 4.804e-03
: 72 : vars : 4.795e-03
: 73 : vars : 4.767e-03
: 74 : vars : 4.764e-03
: 75 : vars : 4.751e-03
: 76 : vars : 4.746e-03
: 77 : vars : 4.726e-03
: 78 : vars : 4.699e-03
: 79 : vars : 4.691e-03
: 80 : vars : 4.682e-03
: 81 : vars : 4.661e-03
: 82 : vars : 4.623e-03
: 83 : vars : 4.586e-03
: 84 : vars : 4.541e-03
: 85 : vars : 4.526e-03
: 86 : vars : 4.492e-03
: 87 : vars : 4.455e-03
: 88 : vars : 4.451e-03
: 89 : vars : 4.444e-03
: 90 : vars : 4.397e-03
: 91 : vars : 4.396e-03
: 92 : vars : 4.388e-03
: 93 : vars : 4.386e-03
: 94 : vars : 4.382e-03
: 95 : vars : 4.380e-03
: 96 : vars : 4.375e-03
: 97 : vars : 4.342e-03
: 98 : vars : 4.339e-03
: 99 : vars : 4.325e-03
: 100 : vars : 4.314e-03
: 101 : vars : 4.294e-03
: 102 : vars : 4.270e-03
: 103 : vars : 4.209e-03
: 104 : vars : 4.157e-03
: 105 : vars : 4.146e-03
: 106 : vars : 4.143e-03
: 107 : vars : 4.137e-03
: 108 : vars : 4.106e-03
: 109 : vars : 4.087e-03
: 110 : vars : 4.080e-03
: 111 : vars : 4.070e-03
: 112 : vars : 4.060e-03
: 113 : vars : 4.039e-03
: 114 : vars : 4.025e-03
: 115 : vars : 3.990e-03
: 116 : vars : 3.974e-03
: 117 : vars : 3.961e-03
: 118 : vars : 3.955e-03
: 119 : vars : 3.954e-03
: 120 : vars : 3.929e-03
: 121 : vars : 3.887e-03
: 122 : vars : 3.884e-03
: 123 : vars : 3.880e-03
: 124 : vars : 3.864e-03
: 125 : vars : 3.860e-03
: 126 : vars : 3.853e-03
: 127 : vars : 3.851e-03
: 128 : vars : 3.842e-03
: 129 : vars : 3.829e-03
: 130 : vars : 3.770e-03
: 131 : vars : 3.739e-03
: 132 : vars : 3.683e-03
: 133 : vars : 3.670e-03
: 134 : vars : 3.662e-03
: 135 : vars : 3.638e-03
: 136 : vars : 3.614e-03
: 137 : vars : 3.599e-03
: 138 : vars : 3.575e-03
: 139 : vars : 3.535e-03
: 140 : vars : 3.522e-03
: 141 : vars : 3.515e-03
: 142 : vars : 3.496e-03
: 143 : vars : 3.495e-03
: 144 : vars : 3.488e-03
: 145 : vars : 3.486e-03
: 146 : vars : 3.464e-03
: 147 : vars : 3.458e-03
: 148 : vars : 3.457e-03
: 149 : vars : 3.418e-03
: 150 : vars : 3.415e-03
: 151 : vars : 3.350e-03
: 152 : vars : 3.338e-03
: 153 : vars : 3.333e-03
: 154 : vars : 3.325e-03
: 155 : vars : 3.296e-03
: 156 : vars : 3.285e-03
: 157 : vars : 3.248e-03
: 158 : vars : 3.240e-03
: 159 : vars : 3.219e-03
: 160 : vars : 3.173e-03
: 161 : vars : 3.165e-03
: 162 : vars : 3.155e-03
: 163 : vars : 3.152e-03
: 164 : vars : 3.121e-03
: 165 : vars : 3.111e-03
: 166 : vars : 3.109e-03
: 167 : vars : 3.101e-03
: 168 : vars : 3.088e-03
: 169 : vars : 3.075e-03
: 170 : vars : 3.072e-03
: 171 : vars : 3.062e-03
: 172 : vars : 3.058e-03
: 173 : vars : 3.045e-03
: 174 : vars : 3.042e-03
: 175 : vars : 3.031e-03
: 176 : vars : 3.028e-03
: 177 : vars : 2.997e-03
: 178 : vars : 2.984e-03
: 179 : vars : 2.951e-03
: 180 : vars : 2.907e-03
: 181 : vars : 2.870e-03
: 182 : vars : 2.854e-03
: 183 : vars : 2.843e-03
: 184 : vars : 2.825e-03
: 185 : vars : 2.818e-03
: 186 : vars : 2.813e-03
: 187 : vars : 2.801e-03
: 188 : vars : 2.795e-03
: 189 : vars : 2.791e-03
: 190 : vars : 2.774e-03
: 191 : vars : 2.771e-03
: 192 : vars : 2.747e-03
: 193 : vars : 2.704e-03
: 194 : vars : 2.693e-03
: 195 : vars : 2.684e-03
: 196 : vars : 2.675e-03
: 197 : vars : 2.647e-03
: 198 : vars : 2.644e-03
: 199 : vars : 2.634e-03
: 200 : vars : 2.610e-03
: 201 : vars : 2.603e-03
: 202 : vars : 2.518e-03
: 203 : vars : 2.470e-03
: 204 : vars : 2.465e-03
: 205 : vars : 2.444e-03
: 206 : vars : 2.376e-03
: 207 : vars : 2.364e-03
: 208 : vars : 2.355e-03
: 209 : vars : 2.184e-03
: 210 : vars : 2.181e-03
: 211 : vars : 2.140e-03
: 212 : vars : 2.130e-03
: 213 : vars : 2.114e-03
: 214 : vars : 2.082e-03
: 215 : vars : 2.073e-03
: 216 : vars : 2.054e-03
: 217 : vars : 2.040e-03
: 218 : vars : 1.965e-03
: 219 : vars : 1.935e-03
: 220 : vars : 1.933e-03
: 221 : vars : 1.852e-03
: 222 : vars : 1.843e-03
: 223 : vars : 1.819e-03
: 224 : vars : 1.812e-03
: 225 : vars : 1.799e-03
: 226 : vars : 1.779e-03
: 227 : vars : 1.769e-03
: 228 : vars : 1.755e-03
: 229 : vars : 1.693e-03
: 230 : vars : 1.628e-03
: 231 : vars : 1.608e-03
: 232 : vars : 1.503e-03
: 233 : vars : 1.497e-03
: 234 : vars : 1.448e-03
: 235 : vars : 1.306e-03
: 236 : vars : 1.280e-03
: 237 : vars : 1.276e-03
: 238 : vars : 1.263e-03
: 239 : vars : 1.188e-03
: 240 : vars : 1.169e-03
: 241 : vars : 1.161e-03
: 242 : vars : 1.118e-03
: 243 : vars : 5.863e-04
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.60002
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.58508
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.34808
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.29918
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00487 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0143 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.112 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.761
: dataset TMVA_DNN_CPU : 0.741
: dataset TMVA_CNN_CPU : 0.636
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.155 (0.445) 0.445 (0.690) 0.682 (0.849)
: dataset TMVA_DNN_CPU : 0.105 (0.255) 0.405 (0.662) 0.625 (0.857)
: dataset TMVA_CNN_CPU : 0.075 (0.125) 0.229 (0.423) 0.500 (0.655)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m