Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.31 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0135 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 110.315
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.882463 0.886992 0.103807 0.0102581 12827.5 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.691016 0.759394 0.103321 0.0101143 12874.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.591656 0.714456 0.102806 0.0100454 12936.5 0
: 4 | 0.531208 0.761518 0.102629 0.0097649 12922.1 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.457179 0.684165 0.102856 0.0100393 12928.7 0
: 6 | 0.411445 0.729847 0.1024 0.00968699 12943.1 1
: 7 | 0.354754 0.690252 0.102895 0.00984189 12895.9 2
: 8 Minimum Test error found - save the configuration
: 8 | 0.315514 0.677924 0.102605 0.0100731 12968.5 0
: 9 | 0.24851 0.686997 0.102199 0.00974841 12979.9 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.209428 0.664808 0.102458 0.00997869 12975.8 0
:
: Elapsed time for training with 1600 events: 1.05 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0509 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 93.5915
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.16396 0.786474 0.717266 0.0648005 1839.18 0
: 2 | 0.940646 0.909434 0.707939 0.0628052 1860.08 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.775319 0.776682 0.719494 0.0639536 1830.55 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.728724 0.697648 0.710806 0.0643438 1856.26 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.68104 0.687716 0.717053 0.0644427 1838.77 0
: 6 | 0.66166 0.688243 0.73256 0.062517 1790.93 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.643671 0.659227 0.711981 0.0634268 1850.27 0
: 8 | 0.616547 0.675725 0.715762 0.0629824 1838.29 1
: 9 | 0.630749 0.670467 0.72697 0.0637313 1809.3 2
: 10 Minimum Test error found - save the configuration
: 10 | 0.569639 0.603208 0.742608 0.0660854 1773.78 0
:
: Elapsed time for training with 1600 events: 7.27 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.348 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.775e-03
: 2 : vars : 8.696e-03
: 3 : vars : 8.600e-03
: 4 : vars : 8.001e-03
: 5 : vars : 7.890e-03
: 6 : vars : 7.797e-03
: 7 : vars : 7.794e-03
: 8 : vars : 7.489e-03
: 9 : vars : 7.445e-03
: 10 : vars : 7.386e-03
: 11 : vars : 7.334e-03
: 12 : vars : 7.187e-03
: 13 : vars : 7.158e-03
: 14 : vars : 7.145e-03
: 15 : vars : 7.087e-03
: 16 : vars : 7.057e-03
: 17 : vars : 6.956e-03
: 18 : vars : 6.936e-03
: 19 : vars : 6.844e-03
: 20 : vars : 6.797e-03
: 21 : vars : 6.648e-03
: 22 : vars : 6.643e-03
: 23 : vars : 6.581e-03
: 24 : vars : 6.447e-03
: 25 : vars : 6.328e-03
: 26 : vars : 6.321e-03
: 27 : vars : 6.320e-03
: 28 : vars : 6.241e-03
: 29 : vars : 6.231e-03
: 30 : vars : 6.194e-03
: 31 : vars : 6.193e-03
: 32 : vars : 6.174e-03
: 33 : vars : 6.132e-03
: 34 : vars : 6.100e-03
: 35 : vars : 6.041e-03
: 36 : vars : 6.037e-03
: 37 : vars : 5.980e-03
: 38 : vars : 5.971e-03
: 39 : vars : 5.951e-03
: 40 : vars : 5.895e-03
: 41 : vars : 5.892e-03
: 42 : vars : 5.887e-03
: 43 : vars : 5.835e-03
: 44 : vars : 5.835e-03
: 45 : vars : 5.827e-03
: 46 : vars : 5.788e-03
: 47 : vars : 5.756e-03
: 48 : vars : 5.748e-03
: 49 : vars : 5.716e-03
: 50 : vars : 5.707e-03
: 51 : vars : 5.684e-03
: 52 : vars : 5.620e-03
: 53 : vars : 5.617e-03
: 54 : vars : 5.614e-03
: 55 : vars : 5.607e-03
: 56 : vars : 5.573e-03
: 57 : vars : 5.518e-03
: 58 : vars : 5.463e-03
: 59 : vars : 5.445e-03
: 60 : vars : 5.435e-03
: 61 : vars : 5.358e-03
: 62 : vars : 5.331e-03
: 63 : vars : 5.306e-03
: 64 : vars : 5.306e-03
: 65 : vars : 5.299e-03
: 66 : vars : 5.264e-03
: 67 : vars : 5.239e-03
: 68 : vars : 5.234e-03
: 69 : vars : 5.205e-03
: 70 : vars : 5.137e-03
: 71 : vars : 5.099e-03
: 72 : vars : 5.070e-03
: 73 : vars : 5.024e-03
: 74 : vars : 5.024e-03
: 75 : vars : 5.005e-03
: 76 : vars : 4.991e-03
: 77 : vars : 4.981e-03
: 78 : vars : 4.929e-03
: 79 : vars : 4.914e-03
: 80 : vars : 4.837e-03
: 81 : vars : 4.812e-03
: 82 : vars : 4.733e-03
: 83 : vars : 4.729e-03
: 84 : vars : 4.715e-03
: 85 : vars : 4.651e-03
: 86 : vars : 4.629e-03
: 87 : vars : 4.621e-03
: 88 : vars : 4.612e-03
: 89 : vars : 4.605e-03
: 90 : vars : 4.562e-03
: 91 : vars : 4.549e-03
: 92 : vars : 4.523e-03
: 93 : vars : 4.509e-03
: 94 : vars : 4.501e-03
: 95 : vars : 4.488e-03
: 96 : vars : 4.479e-03
: 97 : vars : 4.479e-03
: 98 : vars : 4.448e-03
: 99 : vars : 4.445e-03
: 100 : vars : 4.419e-03
: 101 : vars : 4.417e-03
: 102 : vars : 4.408e-03
: 103 : vars : 4.402e-03
: 104 : vars : 4.402e-03
: 105 : vars : 4.392e-03
: 106 : vars : 4.381e-03
: 107 : vars : 4.368e-03
: 108 : vars : 4.305e-03
: 109 : vars : 4.297e-03
: 110 : vars : 4.288e-03
: 111 : vars : 4.278e-03
: 112 : vars : 4.262e-03
: 113 : vars : 4.247e-03
: 114 : vars : 4.238e-03
: 115 : vars : 4.221e-03
: 116 : vars : 4.217e-03
: 117 : vars : 4.201e-03
: 118 : vars : 4.190e-03
: 119 : vars : 4.126e-03
: 120 : vars : 4.100e-03
: 121 : vars : 4.074e-03
: 122 : vars : 4.039e-03
: 123 : vars : 3.999e-03
: 124 : vars : 3.991e-03
: 125 : vars : 3.990e-03
: 126 : vars : 3.976e-03
: 127 : vars : 3.957e-03
: 128 : vars : 3.935e-03
: 129 : vars : 3.935e-03
: 130 : vars : 3.931e-03
: 131 : vars : 3.923e-03
: 132 : vars : 3.912e-03
: 133 : vars : 3.886e-03
: 134 : vars : 3.871e-03
: 135 : vars : 3.745e-03
: 136 : vars : 3.724e-03
: 137 : vars : 3.714e-03
: 138 : vars : 3.710e-03
: 139 : vars : 3.692e-03
: 140 : vars : 3.683e-03
: 141 : vars : 3.671e-03
: 142 : vars : 3.646e-03
: 143 : vars : 3.582e-03
: 144 : vars : 3.567e-03
: 145 : vars : 3.521e-03
: 146 : vars : 3.517e-03
: 147 : vars : 3.510e-03
: 148 : vars : 3.508e-03
: 149 : vars : 3.502e-03
: 150 : vars : 3.487e-03
: 151 : vars : 3.484e-03
: 152 : vars : 3.461e-03
: 153 : vars : 3.420e-03
: 154 : vars : 3.392e-03
: 155 : vars : 3.388e-03
: 156 : vars : 3.372e-03
: 157 : vars : 3.361e-03
: 158 : vars : 3.360e-03
: 159 : vars : 3.336e-03
: 160 : vars : 3.302e-03
: 161 : vars : 3.294e-03
: 162 : vars : 3.248e-03
: 163 : vars : 3.216e-03
: 164 : vars : 3.205e-03
: 165 : vars : 3.191e-03
: 166 : vars : 3.187e-03
: 167 : vars : 3.186e-03
: 168 : vars : 3.180e-03
: 169 : vars : 3.179e-03
: 170 : vars : 3.177e-03
: 171 : vars : 3.166e-03
: 172 : vars : 3.118e-03
: 173 : vars : 3.036e-03
: 174 : vars : 3.023e-03
: 175 : vars : 3.011e-03
: 176 : vars : 3.009e-03
: 177 : vars : 2.903e-03
: 178 : vars : 2.830e-03
: 179 : vars : 2.819e-03
: 180 : vars : 2.776e-03
: 181 : vars : 2.775e-03
: 182 : vars : 2.773e-03
: 183 : vars : 2.768e-03
: 184 : vars : 2.765e-03
: 185 : vars : 2.753e-03
: 186 : vars : 2.752e-03
: 187 : vars : 2.742e-03
: 188 : vars : 2.691e-03
: 189 : vars : 2.645e-03
: 190 : vars : 2.641e-03
: 191 : vars : 2.625e-03
: 192 : vars : 2.625e-03
: 193 : vars : 2.611e-03
: 194 : vars : 2.554e-03
: 195 : vars : 2.528e-03
: 196 : vars : 2.505e-03
: 197 : vars : 2.481e-03
: 198 : vars : 2.469e-03
: 199 : vars : 2.461e-03
: 200 : vars : 2.455e-03
: 201 : vars : 2.413e-03
: 202 : vars : 2.389e-03
: 203 : vars : 2.388e-03
: 204 : vars : 2.360e-03
: 205 : vars : 2.319e-03
: 206 : vars : 2.311e-03
: 207 : vars : 2.308e-03
: 208 : vars : 2.273e-03
: 209 : vars : 2.266e-03
: 210 : vars : 2.211e-03
: 211 : vars : 2.211e-03
: 212 : vars : 2.188e-03
: 213 : vars : 2.176e-03
: 214 : vars : 2.174e-03
: 215 : vars : 2.078e-03
: 216 : vars : 2.078e-03
: 217 : vars : 2.054e-03
: 218 : vars : 2.050e-03
: 219 : vars : 2.004e-03
: 220 : vars : 2.003e-03
: 221 : vars : 1.819e-03
: 222 : vars : 1.765e-03
: 223 : vars : 1.761e-03
: 224 : vars : 1.732e-03
: 225 : vars : 1.717e-03
: 226 : vars : 1.698e-03
: 227 : vars : 1.676e-03
: 228 : vars : 1.530e-03
: 229 : vars : 1.527e-03
: 230 : vars : 1.495e-03
: 231 : vars : 1.450e-03
: 232 : vars : 1.300e-03
: 233 : vars : 1.270e-03
: 234 : vars : 1.215e-03
: 235 : vars : 1.036e-03
: 236 : vars : 1.009e-03
: 237 : vars : 8.728e-04
: 238 : vars : 6.868e-04
: 239 : vars : 5.682e-04
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.69317
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.25635
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.41196
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.15482
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00346 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0126 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.087 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.804
: dataset TMVA_CNN_CPU : 0.771
: dataset TMVA_DNN_CPU : 0.748
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.090 (0.355) 0.441 (0.755) 0.778 (0.925)
: dataset TMVA_CNN_CPU : 0.015 (0.125) 0.355 (0.493) 0.705 (0.781)
: dataset TMVA_DNN_CPU : 0.066 (0.330) 0.440 (0.726) 0.675 (0.865)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m