Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.43 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.014 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 13.742
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.826978 0.767348 0.14302 0.0115626 9128.45 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.680874 0.762357 0.113487 0.0107918 11685.1 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.608115 0.692794 0.110123 0.0108313 12085.7 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.541674 0.691552 0.111188 0.0108564 11960.4 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.480914 0.682304 0.109658 0.0105092 12103 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.435341 0.67947 0.109719 0.0126104 12357.3 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.389172 0.6527 0.124417 0.0106791 10550.6 0
: 8 | 0.331853 0.657785 0.105597 0.0100102 12554.1 1
: 9 | 0.272127 0.667915 0.105733 0.00996376 12530.1 2
: 10 | 0.253648 0.667388 0.110408 0.0099654 11947.1 3
:
: Elapsed time for training with 1600 events: 1.17 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0569 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 18.5763
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.39248 0.804043 0.888585 0.0825018 1488.68 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.736853 0.723604 0.947337 0.0796616 1383.01 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.697308 0.700766 0.851237 0.0747144 1545.35 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.672651 0.697166 0.801306 0.0706623 1642.39 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.651501 0.690604 0.856416 0.0783525 1542.29 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.643035 0.681862 0.82393 0.0712228 1594.25 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.607835 0.667299 0.975973 0.105701 1378.88 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.578971 0.650047 1.09392 0.0789613 1182.31 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.547031 0.632792 0.83375 0.0849141 1602.49 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.511631 0.625393 0.862199 0.0845385 1543.09 0
:
: Elapsed time for training with 1600 events: 9.01 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.385 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.678e-03
: 2 : vars : 8.611e-03
: 3 : vars : 8.386e-03
: 4 : vars : 8.305e-03
: 5 : vars : 8.235e-03
: 6 : vars : 7.896e-03
: 7 : vars : 7.592e-03
: 8 : vars : 7.366e-03
: 9 : vars : 7.290e-03
: 10 : vars : 7.272e-03
: 11 : vars : 7.038e-03
: 12 : vars : 7.001e-03
: 13 : vars : 6.959e-03
: 14 : vars : 6.858e-03
: 15 : vars : 6.857e-03
: 16 : vars : 6.805e-03
: 17 : vars : 6.721e-03
: 18 : vars : 6.668e-03
: 19 : vars : 6.583e-03
: 20 : vars : 6.404e-03
: 21 : vars : 6.385e-03
: 22 : vars : 6.330e-03
: 23 : vars : 6.319e-03
: 24 : vars : 6.286e-03
: 25 : vars : 6.214e-03
: 26 : vars : 6.196e-03
: 27 : vars : 6.191e-03
: 28 : vars : 6.185e-03
: 29 : vars : 6.159e-03
: 30 : vars : 6.158e-03
: 31 : vars : 6.142e-03
: 32 : vars : 6.085e-03
: 33 : vars : 6.069e-03
: 34 : vars : 6.027e-03
: 35 : vars : 6.017e-03
: 36 : vars : 6.011e-03
: 37 : vars : 5.964e-03
: 38 : vars : 5.941e-03
: 39 : vars : 5.786e-03
: 40 : vars : 5.743e-03
: 41 : vars : 5.719e-03
: 42 : vars : 5.679e-03
: 43 : vars : 5.669e-03
: 44 : vars : 5.636e-03
: 45 : vars : 5.624e-03
: 46 : vars : 5.514e-03
: 47 : vars : 5.482e-03
: 48 : vars : 5.469e-03
: 49 : vars : 5.462e-03
: 50 : vars : 5.454e-03
: 51 : vars : 5.438e-03
: 52 : vars : 5.418e-03
: 53 : vars : 5.366e-03
: 54 : vars : 5.351e-03
: 55 : vars : 5.298e-03
: 56 : vars : 5.273e-03
: 57 : vars : 5.214e-03
: 58 : vars : 5.190e-03
: 59 : vars : 5.166e-03
: 60 : vars : 5.143e-03
: 61 : vars : 5.139e-03
: 62 : vars : 5.136e-03
: 63 : vars : 5.125e-03
: 64 : vars : 5.090e-03
: 65 : vars : 5.079e-03
: 66 : vars : 5.066e-03
: 67 : vars : 5.044e-03
: 68 : vars : 5.037e-03
: 69 : vars : 5.014e-03
: 70 : vars : 4.971e-03
: 71 : vars : 4.884e-03
: 72 : vars : 4.881e-03
: 73 : vars : 4.862e-03
: 74 : vars : 4.832e-03
: 75 : vars : 4.829e-03
: 76 : vars : 4.818e-03
: 77 : vars : 4.814e-03
: 78 : vars : 4.796e-03
: 79 : vars : 4.790e-03
: 80 : vars : 4.753e-03
: 81 : vars : 4.718e-03
: 82 : vars : 4.716e-03
: 83 : vars : 4.710e-03
: 84 : vars : 4.689e-03
: 85 : vars : 4.673e-03
: 86 : vars : 4.666e-03
: 87 : vars : 4.663e-03
: 88 : vars : 4.644e-03
: 89 : vars : 4.644e-03
: 90 : vars : 4.620e-03
: 91 : vars : 4.616e-03
: 92 : vars : 4.614e-03
: 93 : vars : 4.593e-03
: 94 : vars : 4.569e-03
: 95 : vars : 4.555e-03
: 96 : vars : 4.552e-03
: 97 : vars : 4.518e-03
: 98 : vars : 4.508e-03
: 99 : vars : 4.500e-03
: 100 : vars : 4.483e-03
: 101 : vars : 4.464e-03
: 102 : vars : 4.416e-03
: 103 : vars : 4.402e-03
: 104 : vars : 4.395e-03
: 105 : vars : 4.336e-03
: 106 : vars : 4.319e-03
: 107 : vars : 4.289e-03
: 108 : vars : 4.268e-03
: 109 : vars : 4.250e-03
: 110 : vars : 4.243e-03
: 111 : vars : 4.239e-03
: 112 : vars : 4.207e-03
: 113 : vars : 4.195e-03
: 114 : vars : 4.178e-03
: 115 : vars : 4.173e-03
: 116 : vars : 4.148e-03
: 117 : vars : 4.110e-03
: 118 : vars : 4.109e-03
: 119 : vars : 4.100e-03
: 120 : vars : 4.093e-03
: 121 : vars : 4.043e-03
: 122 : vars : 4.025e-03
: 123 : vars : 3.976e-03
: 124 : vars : 3.949e-03
: 125 : vars : 3.942e-03
: 126 : vars : 3.935e-03
: 127 : vars : 3.915e-03
: 128 : vars : 3.914e-03
: 129 : vars : 3.873e-03
: 130 : vars : 3.843e-03
: 131 : vars : 3.795e-03
: 132 : vars : 3.793e-03
: 133 : vars : 3.789e-03
: 134 : vars : 3.787e-03
: 135 : vars : 3.740e-03
: 136 : vars : 3.738e-03
: 137 : vars : 3.729e-03
: 138 : vars : 3.721e-03
: 139 : vars : 3.707e-03
: 140 : vars : 3.696e-03
: 141 : vars : 3.688e-03
: 142 : vars : 3.633e-03
: 143 : vars : 3.620e-03
: 144 : vars : 3.596e-03
: 145 : vars : 3.587e-03
: 146 : vars : 3.573e-03
: 147 : vars : 3.562e-03
: 148 : vars : 3.537e-03
: 149 : vars : 3.512e-03
: 150 : vars : 3.441e-03
: 151 : vars : 3.411e-03
: 152 : vars : 3.405e-03
: 153 : vars : 3.404e-03
: 154 : vars : 3.401e-03
: 155 : vars : 3.376e-03
: 156 : vars : 3.338e-03
: 157 : vars : 3.322e-03
: 158 : vars : 3.310e-03
: 159 : vars : 3.310e-03
: 160 : vars : 3.282e-03
: 161 : vars : 3.264e-03
: 162 : vars : 3.250e-03
: 163 : vars : 3.248e-03
: 164 : vars : 3.218e-03
: 165 : vars : 3.215e-03
: 166 : vars : 3.214e-03
: 167 : vars : 3.202e-03
: 168 : vars : 3.179e-03
: 169 : vars : 3.169e-03
: 170 : vars : 3.169e-03
: 171 : vars : 3.151e-03
: 172 : vars : 3.116e-03
: 173 : vars : 3.098e-03
: 174 : vars : 3.090e-03
: 175 : vars : 3.062e-03
: 176 : vars : 3.059e-03
: 177 : vars : 3.053e-03
: 178 : vars : 3.047e-03
: 179 : vars : 3.038e-03
: 180 : vars : 2.979e-03
: 181 : vars : 2.976e-03
: 182 : vars : 2.973e-03
: 183 : vars : 2.958e-03
: 184 : vars : 2.764e-03
: 185 : vars : 2.760e-03
: 186 : vars : 2.744e-03
: 187 : vars : 2.702e-03
: 188 : vars : 2.699e-03
: 189 : vars : 2.682e-03
: 190 : vars : 2.677e-03
: 191 : vars : 2.629e-03
: 192 : vars : 2.625e-03
: 193 : vars : 2.613e-03
: 194 : vars : 2.612e-03
: 195 : vars : 2.595e-03
: 196 : vars : 2.593e-03
: 197 : vars : 2.587e-03
: 198 : vars : 2.537e-03
: 199 : vars : 2.521e-03
: 200 : vars : 2.507e-03
: 201 : vars : 2.462e-03
: 202 : vars : 2.449e-03
: 203 : vars : 2.423e-03
: 204 : vars : 2.422e-03
: 205 : vars : 2.416e-03
: 206 : vars : 2.363e-03
: 207 : vars : 2.359e-03
: 208 : vars : 2.298e-03
: 209 : vars : 2.284e-03
: 210 : vars : 2.218e-03
: 211 : vars : 2.195e-03
: 212 : vars : 2.140e-03
: 213 : vars : 2.114e-03
: 214 : vars : 2.098e-03
: 215 : vars : 2.079e-03
: 216 : vars : 2.053e-03
: 217 : vars : 2.043e-03
: 218 : vars : 2.015e-03
: 219 : vars : 2.004e-03
: 220 : vars : 1.970e-03
: 221 : vars : 1.942e-03
: 222 : vars : 1.941e-03
: 223 : vars : 1.889e-03
: 224 : vars : 1.870e-03
: 225 : vars : 1.865e-03
: 226 : vars : 1.827e-03
: 227 : vars : 1.825e-03
: 228 : vars : 1.803e-03
: 229 : vars : 1.797e-03
: 230 : vars : 1.791e-03
: 231 : vars : 1.777e-03
: 232 : vars : 1.718e-03
: 233 : vars : 1.705e-03
: 234 : vars : 1.699e-03
: 235 : vars : 1.598e-03
: 236 : vars : 1.568e-03
: 237 : vars : 1.530e-03
: 238 : vars : 1.278e-03
: 239 : vars : 1.208e-03
: 240 : vars : 1.149e-03
: 241 : vars : 1.134e-03
: 242 : vars : 1.014e-03
: 243 : vars : 7.256e-04
: 244 : vars : 7.013e-04
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.8207
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 6.92161
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.0393
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.87357
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00365 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0147 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0951 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_DNN_CPU : 0.747
: dataset BDT : 0.718
: dataset TMVA_CNN_CPU : 0.707
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_DNN_CPU : 0.065 (0.168) 0.337 (0.635) 0.658 (0.842)
: dataset BDT : 0.135 (0.275) 0.285 (0.687) 0.523 (0.902)
: dataset TMVA_CNN_CPU : 0.100 (0.165) 0.356 (0.474) 0.628 (0.747)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m