Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.29 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0139 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 93.8577
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.919368 0.899583 0.113433 0.011094 11725.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.720349 0.731065 0.105647 0.0102439 12578.2 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.622068 0.71125 0.104787 0.0101956 12686.2 0
: 4 | 0.558041 0.770244 0.105265 0.0101373 12614.6 1
: 5 | 0.497076 0.754318 0.10716 0.0101137 12365.2 2
: 6 Minimum Test error found - save the configuration
: 6 | 0.442801 0.704483 0.104153 0.0101989 12772.2 0
: 7 | 0.396157 0.717915 0.11203 0.00984556 11743.5 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.365011 0.698746 0.106038 0.0112027 12653.6 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.315616 0.693923 0.107154 0.0104253 12405.8 0
: 10 | 0.254633 0.728261 0.103669 0.0100919 12823.7 1
:
: Elapsed time for training with 1600 events: 1.09 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0545 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 108.937
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.94958 1.11515 0.784643 0.0655563 1668.78 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.836799 0.705697 0.789334 0.0699016 1667.98 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.707076 0.704497 0.812326 0.0685333 1613.35 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.687848 0.699073 0.855506 0.0734692 1534.46 0
: 5 | 0.67558 0.701554 0.861171 0.0749875 1526.36 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.66967 0.695434 0.850503 0.0687402 1534.99 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.661448 0.684492 0.822265 0.0670107 1588.87 0
: 8 | 0.643249 0.696404 0.791239 0.0658956 1654.39 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.642517 0.674609 0.785575 0.0716658 1680.89 0
: 10 | 0.619042 0.67565 0.807441 0.0661895 1618.88 1
:
: Elapsed time for training with 1600 events: 8.23 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.368 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.183e-03
: 2 : vars : 8.565e-03
: 3 : vars : 8.476e-03
: 4 : vars : 7.839e-03
: 5 : vars : 7.726e-03
: 6 : vars : 7.535e-03
: 7 : vars : 7.491e-03
: 8 : vars : 7.395e-03
: 9 : vars : 7.372e-03
: 10 : vars : 7.319e-03
: 11 : vars : 7.233e-03
: 12 : vars : 7.080e-03
: 13 : vars : 7.030e-03
: 14 : vars : 6.992e-03
: 15 : vars : 6.917e-03
: 16 : vars : 6.889e-03
: 17 : vars : 6.851e-03
: 18 : vars : 6.717e-03
: 19 : vars : 6.650e-03
: 20 : vars : 6.593e-03
: 21 : vars : 6.554e-03
: 22 : vars : 6.553e-03
: 23 : vars : 6.512e-03
: 24 : vars : 6.381e-03
: 25 : vars : 6.274e-03
: 26 : vars : 6.226e-03
: 27 : vars : 6.180e-03
: 28 : vars : 6.040e-03
: 29 : vars : 6.038e-03
: 30 : vars : 6.003e-03
: 31 : vars : 5.968e-03
: 32 : vars : 5.960e-03
: 33 : vars : 5.939e-03
: 34 : vars : 5.898e-03
: 35 : vars : 5.897e-03
: 36 : vars : 5.886e-03
: 37 : vars : 5.871e-03
: 38 : vars : 5.870e-03
: 39 : vars : 5.827e-03
: 40 : vars : 5.790e-03
: 41 : vars : 5.656e-03
: 42 : vars : 5.610e-03
: 43 : vars : 5.583e-03
: 44 : vars : 5.574e-03
: 45 : vars : 5.572e-03
: 46 : vars : 5.567e-03
: 47 : vars : 5.483e-03
: 48 : vars : 5.427e-03
: 49 : vars : 5.419e-03
: 50 : vars : 5.394e-03
: 51 : vars : 5.374e-03
: 52 : vars : 5.321e-03
: 53 : vars : 5.318e-03
: 54 : vars : 5.287e-03
: 55 : vars : 5.251e-03
: 56 : vars : 5.246e-03
: 57 : vars : 5.230e-03
: 58 : vars : 5.209e-03
: 59 : vars : 5.204e-03
: 60 : vars : 5.192e-03
: 61 : vars : 5.149e-03
: 62 : vars : 5.084e-03
: 63 : vars : 5.042e-03
: 64 : vars : 5.030e-03
: 65 : vars : 5.011e-03
: 66 : vars : 4.963e-03
: 67 : vars : 4.951e-03
: 68 : vars : 4.913e-03
: 69 : vars : 4.903e-03
: 70 : vars : 4.882e-03
: 71 : vars : 4.878e-03
: 72 : vars : 4.876e-03
: 73 : vars : 4.870e-03
: 74 : vars : 4.865e-03
: 75 : vars : 4.793e-03
: 76 : vars : 4.761e-03
: 77 : vars : 4.753e-03
: 78 : vars : 4.675e-03
: 79 : vars : 4.666e-03
: 80 : vars : 4.658e-03
: 81 : vars : 4.655e-03
: 82 : vars : 4.630e-03
: 83 : vars : 4.583e-03
: 84 : vars : 4.573e-03
: 85 : vars : 4.548e-03
: 86 : vars : 4.530e-03
: 87 : vars : 4.494e-03
: 88 : vars : 4.429e-03
: 89 : vars : 4.429e-03
: 90 : vars : 4.427e-03
: 91 : vars : 4.405e-03
: 92 : vars : 4.400e-03
: 93 : vars : 4.398e-03
: 94 : vars : 4.377e-03
: 95 : vars : 4.375e-03
: 96 : vars : 4.356e-03
: 97 : vars : 4.306e-03
: 98 : vars : 4.294e-03
: 99 : vars : 4.285e-03
: 100 : vars : 4.244e-03
: 101 : vars : 4.213e-03
: 102 : vars : 4.203e-03
: 103 : vars : 4.181e-03
: 104 : vars : 4.174e-03
: 105 : vars : 4.171e-03
: 106 : vars : 4.136e-03
: 107 : vars : 4.118e-03
: 108 : vars : 4.116e-03
: 109 : vars : 4.113e-03
: 110 : vars : 4.107e-03
: 111 : vars : 4.092e-03
: 112 : vars : 4.054e-03
: 113 : vars : 4.053e-03
: 114 : vars : 4.042e-03
: 115 : vars : 4.016e-03
: 116 : vars : 4.005e-03
: 117 : vars : 4.002e-03
: 118 : vars : 3.998e-03
: 119 : vars : 3.995e-03
: 120 : vars : 3.992e-03
: 121 : vars : 3.988e-03
: 122 : vars : 3.967e-03
: 123 : vars : 3.916e-03
: 124 : vars : 3.903e-03
: 125 : vars : 3.899e-03
: 126 : vars : 3.869e-03
: 127 : vars : 3.869e-03
: 128 : vars : 3.858e-03
: 129 : vars : 3.850e-03
: 130 : vars : 3.785e-03
: 131 : vars : 3.776e-03
: 132 : vars : 3.762e-03
: 133 : vars : 3.758e-03
: 134 : vars : 3.744e-03
: 135 : vars : 3.743e-03
: 136 : vars : 3.742e-03
: 137 : vars : 3.715e-03
: 138 : vars : 3.705e-03
: 139 : vars : 3.687e-03
: 140 : vars : 3.684e-03
: 141 : vars : 3.668e-03
: 142 : vars : 3.665e-03
: 143 : vars : 3.639e-03
: 144 : vars : 3.627e-03
: 145 : vars : 3.619e-03
: 146 : vars : 3.619e-03
: 147 : vars : 3.617e-03
: 148 : vars : 3.603e-03
: 149 : vars : 3.598e-03
: 150 : vars : 3.574e-03
: 151 : vars : 3.562e-03
: 152 : vars : 3.558e-03
: 153 : vars : 3.552e-03
: 154 : vars : 3.515e-03
: 155 : vars : 3.496e-03
: 156 : vars : 3.471e-03
: 157 : vars : 3.464e-03
: 158 : vars : 3.451e-03
: 159 : vars : 3.434e-03
: 160 : vars : 3.418e-03
: 161 : vars : 3.410e-03
: 162 : vars : 3.383e-03
: 163 : vars : 3.379e-03
: 164 : vars : 3.377e-03
: 165 : vars : 3.374e-03
: 166 : vars : 3.367e-03
: 167 : vars : 3.290e-03
: 168 : vars : 3.243e-03
: 169 : vars : 3.210e-03
: 170 : vars : 3.201e-03
: 171 : vars : 3.189e-03
: 172 : vars : 3.171e-03
: 173 : vars : 3.101e-03
: 174 : vars : 3.070e-03
: 175 : vars : 3.067e-03
: 176 : vars : 3.055e-03
: 177 : vars : 3.048e-03
: 178 : vars : 3.028e-03
: 179 : vars : 3.013e-03
: 180 : vars : 3.003e-03
: 181 : vars : 3.000e-03
: 182 : vars : 2.953e-03
: 183 : vars : 2.952e-03
: 184 : vars : 2.907e-03
: 185 : vars : 2.844e-03
: 186 : vars : 2.796e-03
: 187 : vars : 2.783e-03
: 188 : vars : 2.763e-03
: 189 : vars : 2.761e-03
: 190 : vars : 2.750e-03
: 191 : vars : 2.737e-03
: 192 : vars : 2.736e-03
: 193 : vars : 2.721e-03
: 194 : vars : 2.713e-03
: 195 : vars : 2.710e-03
: 196 : vars : 2.704e-03
: 197 : vars : 2.701e-03
: 198 : vars : 2.682e-03
: 199 : vars : 2.676e-03
: 200 : vars : 2.642e-03
: 201 : vars : 2.641e-03
: 202 : vars : 2.632e-03
: 203 : vars : 2.613e-03
: 204 : vars : 2.586e-03
: 205 : vars : 2.540e-03
: 206 : vars : 2.491e-03
: 207 : vars : 2.477e-03
: 208 : vars : 2.434e-03
: 209 : vars : 2.367e-03
: 210 : vars : 2.346e-03
: 211 : vars : 2.341e-03
: 212 : vars : 2.305e-03
: 213 : vars : 2.303e-03
: 214 : vars : 2.300e-03
: 215 : vars : 2.274e-03
: 216 : vars : 2.255e-03
: 217 : vars : 2.247e-03
: 218 : vars : 2.234e-03
: 219 : vars : 2.224e-03
: 220 : vars : 2.194e-03
: 221 : vars : 2.182e-03
: 222 : vars : 2.174e-03
: 223 : vars : 2.151e-03
: 224 : vars : 2.061e-03
: 225 : vars : 1.992e-03
: 226 : vars : 1.947e-03
: 227 : vars : 1.944e-03
: 228 : vars : 1.900e-03
: 229 : vars : 1.889e-03
: 230 : vars : 1.830e-03
: 231 : vars : 1.701e-03
: 232 : vars : 1.696e-03
: 233 : vars : 1.600e-03
: 234 : vars : 1.591e-03
: 235 : vars : 1.590e-03
: 236 : vars : 1.563e-03
: 237 : vars : 1.555e-03
: 238 : vars : 1.544e-03
: 239 : vars : 1.283e-03
: 240 : vars : 1.204e-03
: 241 : vars : 1.168e-03
: 242 : vars : 1.010e-03
: 243 : vars : 8.053e-04
: 244 : vars : 7.304e-04
: 245 : vars : 5.248e-04
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.09112
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.40979
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.09281
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.35256
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00354 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0131 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0922 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.752
: dataset TMVA_DNN_CPU : 0.628
: dataset TMVA_CNN_CPU : 0.615
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.085 (0.250) 0.350 (0.695) 0.645 (0.884)
: dataset TMVA_DNN_CPU : 0.080 (0.175) 0.255 (0.518) 0.465 (0.763)
: dataset TMVA_CNN_CPU : 0.010 (0.040) 0.215 (0.251) 0.452 (0.547)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m