| 
| template<class T >  | 
| SVector< T, 3 >  | ROOT::Math::Cross (const SVector< T, 3 > &lhs, const SVector< T, 3 > &rhs) | 
|   | Vector Cross Product (only for 3-dim vectors) \( \vec{c} = \vec{a}\times\vec{b} \).  
  | 
|   | 
| template<class T , class A >  | 
| SVector< T, 3 >  | ROOT::Math::Cross (const SVector< T, 3 > &lhs, const VecExpr< A, T, 3 > &rhs) | 
|   | 
| template<class A , class T >  | 
| SVector< T, 3 >  | ROOT::Math::Cross (const VecExpr< A, T, 3 > &lhs, const SVector< T, 3 > &rhs) | 
|   | 
| template<class A , class B , class T >  | 
| SVector< T, 3 >  | ROOT::Math::Cross (const VecExpr< A, T, 3 > &lhs, const VecExpr< B, T, 3 > &rhs) | 
|   | 
| template<class T , unsigned int D>  | 
| T  | ROOT::Math::Dot (const SVector< T, D > &lhs, const SVector< T, D > &rhs) | 
|   | Vector dot product.  
  | 
|   | 
| template<class A , class T , unsigned int D>  | 
| T  | ROOT::Math::Dot (const SVector< T, D > &lhs, const VecExpr< A, T, D > &rhs) | 
|   | 
| template<class A , class T , unsigned int D>  | 
| T  | ROOT::Math::Dot (const VecExpr< A, T, D > &lhs, const SVector< T, D > &rhs) | 
|   | 
| template<class A , class B , class T , unsigned int D>  | 
| T  | ROOT::Math::Dot (const VecExpr< A, T, D > &lhs, const VecExpr< B, T, D > &rhs) | 
|   | 
| template<class T >  | 
| T  | ROOT::Math::Lmag (const SVector< T, 4 > &rhs) | 
|   | Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors) Length of a vector Lorentz-Vector: \( |\vec{v}| = \sqrt{v_0^2 - v_1^2 - v_2^2 -v_3^2} \).  
  | 
|   | 
| template<class A , class T >  | 
| T  | ROOT::Math::Lmag (const VecExpr< A, T, 4 > &rhs) | 
|   | 
| template<class T >  | 
| T  | ROOT::Math::Lmag2 (const SVector< T, 4 > &rhs) | 
|   | Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors) Template to compute \( |\vec{v}|^2 = v_0^2 - v_1^2 - v_2^2 -v_3^2 \).  
  | 
|   | 
| template<class A , class T >  | 
| T  | ROOT::Math::Lmag2 (const VecExpr< A, T, 4 > &rhs) | 
|   | 
| template<class T , unsigned int D>  | 
| T  | ROOT::Math::Mag (const SVector< T, D > &rhs) | 
|   | Vector magnitude (Euclidean norm) Compute : \( |\vec{v}| = \sqrt{\sum_iv_i^2} \).  
  | 
|   | 
| template<class A , class T , unsigned int D>  | 
| T  | ROOT::Math::Mag (const VecExpr< A, T, D > &rhs) | 
|   | 
| template<class T , unsigned int D>  | 
| T  | ROOT::Math::Mag2 (const SVector< T, D > &rhs) | 
|   | Vector magnitude square Template to compute \(|\vec{v}|^2 = \sum_iv_i^2 \).  
  | 
|   | 
| template<class A , class T , unsigned int D>  | 
| T  | ROOT::Math::Mag2 (const VecExpr< A, T, D > &rhs) | 
|   | 
| template<class T >  | 
| const T  | ROOT::Math::Maximum (const T &lhs, const T &rhs) | 
|   | maximum.  
  | 
|   | 
| template<class T >  | 
| const T  | ROOT::Math::Minimum (const T &lhs, const T &rhs) | 
|   | minimum.  
  | 
|   | 
| template<class T >  | 
| int  | ROOT::Math::Round (const T &x) | 
|   | round.  
  | 
|   | 
| template<class T >  | 
| int  | ROOT::Math::Sign (const T &x) | 
|   | sign.  
  | 
|   | 
| template<class T >  | 
| const T  | ROOT::Math::Square (const T &x) | 
|   | square Template function to compute \(x\cdot x \), for any type T returning a type T  
  | 
|   | 
| template<class T , unsigned int D>  | 
| SVector< T, D >  | ROOT::Math::Unit (const SVector< T, D > &rhs) | 
|   | Unit.  
  | 
|   | 
| template<class A , class T , unsigned int D>  | 
| SVector< T, D >  | ROOT::Math::Unit (const VecExpr< A, T, D > &rhs) | 
|   |