Logo ROOT  
Reference Guide
rf108_plotbinning.py File Reference

Namespaces

 rf108_plotbinning
 

Detailed Description

View in nbviewer Open in SWAN Basic functionality: plotting unbinned data with alternate and variable binnings

import ROOT
# Set up model
# ---------------------
# Build a B decay pdf with mixing
dt = ROOT.RooRealVar("dt", "dt", -20, 20)
dm = ROOT.RooRealVar("dm", "dm", 0.472)
tau = ROOT.RooRealVar("tau", "tau", 1.547)
w = ROOT.RooRealVar("w", "mistag rate", 0.1)
dw = ROOT.RooRealVar("dw", "delta mistag rate", 0.)
mixState = ROOT.RooCategory("mixState", "B0/B0bar mixing state")
mixState.defineType("mixed", -1)
mixState.defineType("unmixed", 1)
tagFlav = ROOT.RooCategory("tagFlav", "Flavour of the tagged B0")
tagFlav.defineType("B0", 1)
tagFlav.defineType("B0bar", -1)
# Build a gaussian resolution model
dterr = ROOT.RooRealVar("dterr", "dterr", 0.1, 1.0)
bias1 = ROOT.RooRealVar("bias1", "bias1", 0)
sigma1 = ROOT.RooRealVar("sigma1", "sigma1", 0.1)
gm1 = ROOT.RooGaussModel("gm1", "gauss model 1", dt, bias1, sigma1)
# Construct Bdecay (x) gauss
bmix = ROOT.RooBMixDecay("bmix", "decay", dt, mixState, tagFlav,
tau, dm, w, dw, gm1, ROOT.RooBMixDecay.DoubleSided)
# Sample data from model
# --------------------------------------------
# Sample 2000 events in (dt,mixState,tagFlav) from bmix
data = bmix.generate(ROOT.RooArgSet(dt, mixState, tagFlav), 2000)
# Show dt distribution with custom binning
# -------------------------------------------------------------------------------
# Make plot of dt distribution of data in range (-15,15) with fine binning
# for dt>0 and coarse binning for dt<0
# Create binning object with range (-15,15)
tbins = ROOT.RooBinning(-15, 15)
# Add 60 bins with uniform spacing in range (-15,0)
tbins.addUniform(60, -15, 0)
# Add 15 bins with uniform spacing in range (0,15)
tbins.addUniform(15, 0, 15)
# Make plot with specified binning
dtframe = dt.frame(ROOT.RooFit.Range(-15, 15),
ROOT.RooFit.Title("dt distribution with custom binning"))
data.plotOn(dtframe, ROOT.RooFit.Binning(tbins))
bmix.plotOn(dtframe)
# NB: Note that bin density for each bin is adjusted to that of default frame binning as shown
# in Y axis label (100 bins -. Events/0.4*Xaxis-dim) so that all bins
# represent a consistent density distribution
# Show mixstate asymmetry with custom binning
# ------------------------------------------------------------------------------------
# Make plot of dt distribution of data asymmetry in 'mixState' with
# variable binning
# Create binning object with range (-10,10)
abins = ROOT.RooBinning(-10, 10)
# Add boundaries at 0, (-1,1), (-2,2), (-3,3), (-4,4) and (-6,6)
abins.addBoundary(0)
abins.addBoundaryPair(1)
abins.addBoundaryPair(2)
abins.addBoundaryPair(3)
abins.addBoundaryPair(4)
abins.addBoundaryPair(6)
# Create plot frame in dt
aframe = dt.frame(ROOT.RooFit.Range(-10, 10), ROOT.RooFit.Title(
"mixState asymmetry distribution with custom binning"))
# Plot mixState asymmetry of data with specified customg binning
data.plotOn(aframe, ROOT.RooFit.Asymmetry(
mixState), ROOT.RooFit.Binning(abins))
# Plot corresponding property of pdf
bmix.plotOn(aframe, ROOT.RooFit.Asymmetry(mixState))
# Adjust vertical range of plot to sensible values for an asymmetry
aframe.SetMinimum(-1.1)
aframe.SetMaximum(1.1)
# NB: For asymmetry distributions no density corrects are needed (and are
# thus not applied)
# Draw plots on canvas
c = ROOT.TCanvas("rf108_plotbinning", "rf108_plotbinning", 800, 400)
c.Divide(2)
c.cd(1)
ROOT.gPad.SetLeftMargin(0.15)
dtframe.GetYaxis().SetTitleOffset(1.6)
dtframe.Draw()
c.cd(2)
ROOT.gPad.SetLeftMargin(0.15)
aframe.GetYaxis().SetTitleOffset(1.6)
aframe.Draw()
c.SaveAs("rf108_plotbinning.png")
Date
February 2018
Authors
Clemens Lange, Wouter Verkerke (C++ version)

Definition in file rf108_plotbinning.py.