4 #ifndef ROOT_Math_Dfactir
5 #define ROOT_Math_Dfactir
45 template <
class Matrix,
unsigned int n,
unsigned int idim>
46 bool Dfactir(Matrix& rhs,
typename Matrix::value_type& det,
unsigned int* ir)
51 if (idim <
n ||
n <= 0) {
58 typename Matrix::value_type*
a = rhs.Array();
61 unsigned int nxch, i, j, k,
l;
62 typename Matrix::value_type p,
q, tf;
73 for (j = 1; j <=
n; ++j) {
74 const unsigned int ji = j * idim;
75 const unsigned int jj = j + ji;
81 for (i = j + 1; i <=
n; ++i) {
90 for (l = 1; l <=
n; ++
l) {
91 const unsigned int li = l*idim;
92 const unsigned int jli = j + li;
93 const unsigned int kli = k + li;
99 ir[nxch] = (j << 12) + k;
111 if (t < 1e-19 || t > 1e19) {
122 const unsigned int jm1 = j - 1;
123 const unsigned int jpi = (j + 1) * idim;
124 const unsigned int jjpi = j + jpi;
126 for (k = j + 1; k <=
n; ++k) {
127 const unsigned int ki = k * idim;
128 const unsigned int jki = j + ki;
129 const unsigned int kji = k + jpi;
131 for (i = 1; i <= jm1; ++i) {
132 const unsigned int ii = i * idim;
133 a[jki] -= a[i + ki] * a[j +
ii];
134 a[kji] -= a[i + jpi] * a[k +
ii];
138 a[kji] -= a[jjpi] * a[k + ji];
bool Dfactir(Matrix &rhs, typename Matrix::value_type &det, unsigned int *ir)
Dfactir.
static Vc_ALWAYS_INLINE Vector< T > abs(const Vector< T > &x)