31 #ifndef ROOT_TMVA_MethodBDT
32 #define ROOT_TMVA_MethodBDT
49 #ifndef ROOT_TMVA_MethodBase
52 #ifndef ROOT_TMVA_DecisionTree
55 #ifndef ROOT_TMVA_Event
147 inline const std::vector<TMVA::DecisionTree*> &
GetForest()
const;
167 const TString& className )
const;
225 std::map< const TMVA::Event*,std::vector<double> >
fResiduals;
Double_t AdaCost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
the AdaCost boosting algorithm takes a simple cost Matrix (currently fixed for all events...
void Train(void)
BDT training.
void PreProcessNegativeEventWeights()
o.k.
Double_t AdaBoostR2(std::vector< const TMVA::Event * > &, DecisionTree *dt)
adaption of the AdaBoost to regression problems (see H.Drucker 1997)
const std::vector< double > & GetBoostWeights() const
const std::vector< TMVA::DecisionTree * > & GetForest() const
Double_t Boost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
apply the boosting alogrithim (the algorithm is selecte via the the "option" given in the constructor...
void WriteMonitoringHistosToFile(void) const
Here we could write some histograms created during the processing to the output file.
std::vector< Bool_t > fIsLowSigCut
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
Bool_t fPairNegWeightsGlobal
void SetUseNvars(Int_t n)
void AddWeightsXMLTo(void *parent) const
write weights to XML
Double_t GradBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
Calculate the desired response value for each region.
const Ranking * CreateRanking()
Compute ranking of input variables.
void MakeClassSpecificHeader(std::ostream &, const TString &) const
specific class header
std::vector< Bool_t > fIsHighSigCut
void DeclareOptions()
define the options (their key words) that can be set in the option string know options: nTrees number...
std::vector< Double_t > fVariableImportance
Double_t fMinLinCorrForFisher
std::vector< const TMVA::Event * > fEventSample
Double_t Bagging()
call it boot-strapping, re-sampling or whatever you like, in the end it is nothing else but applying ...
std::map< const TMVA::Event *, std::pair< Double_t, Double_t > > fWeightedResiduals
void DeterminePreselectionCuts(const std::vector< const TMVA::Event * > &eventSample)
find useful preselection cuts that will be applied before and Decision Tree training.
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
void UpdateTargetsRegression(std::vector< const TMVA::Event * > &, Bool_t first=kFALSE)
Calculate current residuals for all events and update targets for next iteration. ...
Double_t GetWeightedQuantile(std::vector< std::pair< Double_t, Double_t > > vec, const Double_t quantile, const Double_t SumOfWeights=0.0)
calculates the quantile of the distribution of the first pair entries weighted with the values in the...
std::vector< Bool_t > fIsHighBkgCut
void SetShrinkage(Double_t s)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
void GetHelpMessage() const
Get help message text.
std::vector< Double_t > fHighBkgCut
Double_t GetGradBoostMVA(const TMVA::Event *e, UInt_t nTrees)
returns MVA value: -1 for background, 1 for signal
Double_t fBaggedSampleFraction
Bool_t fInverseBoostNegWeights
virtual void SetTuneParameters(std::map< TString, Double_t > tuneParameters)
set the tuning parameters accoding to the argument
#define ClassDef(name, id)
Double_t fSigToBkgFraction
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
BDT can handle classification with multiple classes and regression with one regression-target.
void Reset(void)
reset the method, as if it had just been instantiated (forget all training etc.)
Double_t RegBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
a special boosting only for Regression ...
void SetMinNodeSize(Double_t sizeInPercent)
std::vector< Double_t > fHighSigCut
void MakeClassInstantiateNode(DecisionTreeNode *n, std::ostream &fout, const TString &className) const
recursively descends a tree and writes the node instance to the output streem
Double_t fTransitionPoint
const std::vector< Float_t > & GetMulticlassValues()
get the multiclass MVA response for the BDT classifier
Double_t GradBoostRegression(std::vector< const TMVA::Event * > &, DecisionTree *dt)
Implementation of M_TreeBoost using a Huber loss function as desribed by Friedman 1999...
void InitGradBoost(std::vector< const TMVA::Event * > &)
initialize targets for first tree
Bool_t fNoNegWeightsInTraining
const std::vector< Float_t > & GetRegressionValues()
get the regression value generated by the BDTs
void InitEventSample()
initialize the event sample (i.e. reset the boost-weights... etc)
std::vector< Bool_t > fIsLowBkgCut
std::vector< Double_t > fLowBkgCut
Double_t fNodePurityLimit
void SetBaggedSampleFraction(Double_t f)
void BoostMonitor(Int_t iTree)
fills the ROCIntegral vs Itree from the testSample for the monitoring plots during the training ...
Bool_t fTrainWithNegWeights
virtual ~MethodBDT(void)
destructor Note: fEventSample and ValidationSample are already deleted at the end of TRAIN When they ...
void SetNodePurityLimit(Double_t l)
Double_t PrivateGetMvaValue(const TMVA::Event *ev, Double_t *err=0, Double_t *errUpper=0, UInt_t useNTrees=0)
Return the MVA value (range [-1;1]) that classifies the event according to the majority vote from the...
SeparationBase * fSepType
void Init(void)
common initialisation with defaults for the BDT-Method
void ReadWeightsFromXML(void *parent)
reads the BDT from the xml file
Double_t AdaBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
the AdaBoost implementation.
Double_t TestTreeQuality(DecisionTree *dt)
test the tree quality.. in terms of Miscalssification
DecisionTree::EPruneMethod fPruneMethod
void ReadWeightsFromStream(std::istream &istr)
read the weights (BDT coefficients)
Double_t ApplyPreselectionCuts(const Event *ev)
aply the preselection cuts before even bothing about any Decision Trees in the GetMVA ...
void UpdateTargets(std::vector< const TMVA::Event * > &, UInt_t cls=0)
Calculate residua for all events;.
const std::vector< const TMVA::Event * > & GetTrainingEvents() const
Describe directory structure in memory.
void SetMaxDepth(Int_t d)
void SetAdaBoostBeta(Double_t b)
std::vector< const TMVA::Event * > * fTrainSample
virtual std::map< TString, Double_t > OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA")
call the Optimzier with the set of paremeters and ranges that are meant to be tuned.
TString fNegWeightTreatment
void GetBaggedSubSample(std::vector< const TMVA::Event * > &)
fills fEventSample with fBaggedSampleFraction*NEvents random training events
MethodBDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="", TDirectory *theTargetDir=0)
std::vector< const TMVA::Event * > fValidationSample
std::vector< DecisionTree * > fForest
std::vector< Double_t > GetVariableImportance()
Return the relative variable importance, normalized to all variables together having the importance 1...
Double_t fFValidationEvents
std::vector< Double_t > fLowSigCut
A TTree object has a header with a name and a title.
std::map< const TMVA::Event *, std::vector< double > > fResiduals
static const Int_t fgDebugLevel
virtual void ReadWeightsFromStream(std::istream &)=0
std::vector< const TMVA::Event * > fSubSample
void MakeClassSpecific(std::ostream &, const TString &) const
make ROOT-independent C++ class for classifier response (classifier-specific implementation) ...
std::vector< double > fBoostWeights