ROOT  6.07/01
Reference Guide
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
MethodHMatrix.h
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
3 
4 /**********************************************************************************
5  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6  * Package: TMVA *
7  * Class : MethodHMatrix *
8  * Web : http://tmva.sourceforge.net *
9  * *
10  * Description: *
11  * H-Matrix method, which is implemented as a simple comparison of *
12  * chi-squared estimators for signal and background, taking into account *
13  * the linear correlations between the input variables. *
14  * Method is (also) used by D0 Collaboration (FNAL) for electron *
15  * identification; for more information, see, eg, *
16  * http://www-d0.fnal.gov/d0dist/dist/packages/tau_hmchisq/devel/doc/ *
17  * *
18  * Authors (alphabetical): *
19  * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
20  * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
21  * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
22  * *
23  * Copyright (c) 2005: *
24  * CERN, Switzerland *
25  * U. of Victoria, Canada *
26  * MPI-K Heidelberg, Germany *
27  * *
28  * Redistribution and use in source and binary forms, with or without *
29  * modification, are permitted according to the terms listed in LICENSE *
30  * (http://tmva.sourceforge.net/LICENSE) *
31  **********************************************************************************/
32 
33 #ifndef ROOT_TMVA_MethodHMatrix
34 #define ROOT_TMVA_MethodHMatrix
35 
36 //////////////////////////////////////////////////////////////////////////
37 // //
38 // MethodHMatrix //
39 // //
40 // H-Matrix method, which is implemented as a simple comparison of //
41 // chi-squared estimators for signal and background, taking into //
42 // account the linear correlations between the input variables //
43 // //
44 //////////////////////////////////////////////////////////////////////////
45 
46 #ifndef ROOT_TMVA_MethodBase
47 #include "TMVA/MethodBase.h"
48 #endif
49 #ifndef ROOT_TMVA_TMatrixDfwd
50 #ifndef ROOT_TMatrixDfwd
51 #include "TMatrixDfwd.h"
52 #endif
53 #endif
54 #ifndef ROOT_TMVA_TVectorD
55 #ifndef ROOT_TVectorD
56 #include "TVectorD.h"
57 #endif
58 #endif
59 
60 namespace TMVA {
61 
62  class MethodHMatrix : public MethodBase {
63 
64  public:
65 
66  MethodHMatrix( const TString& jobName,
67  const TString& methodTitle,
68  DataSetInfo& theData,
69  const TString& theOption = "",
70  TDirectory* theTargetDir = 0 );
71 
72  MethodHMatrix( DataSetInfo& theData,
73  const TString& theWeightFile,
74  TDirectory* theTargetDir = NULL );
75 
76  virtual ~MethodHMatrix();
77 
78  virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets );
79 
80  // training method
81  void Train();
82 
84 
85  // write weights to file
86  void AddWeightsXMLTo( void* parent ) const;
87 
88  // read weights from file
89  void ReadWeightsFromStream( std::istream& istr );
90  void ReadWeightsFromXML( void* wghtnode );
91  // calculate the MVA value
92  Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );
93 
94  // ranking of input variables
95  const Ranking* CreateRanking() { return 0; }
96 
97  protected:
98 
99  // make ROOT-independent C++ class for classifier response (classifier-specific implementation)
100  void MakeClassSpecific( std::ostream&, const TString& ) const;
101 
102  // get help message text
103  void GetHelpMessage() const;
104 
105  private:
106 
107  // the option handling methods
108  void DeclareOptions();
109  void ProcessOptions();
110 
111  // returns chi2 estimator for given type (signal or background)
113 
114  // compute correlation matrices
116 
117  // arrays of input evt vs. variable
118  TMatrixD* fInvHMatrixS; // inverse H-matrix (signal)
119  TMatrixD* fInvHMatrixB; // inverse H-matrix (background)
120  TVectorD* fVecMeanS; // vector of mean values (signal)
121  TVectorD* fVecMeanB; // vector of mean values (background)
122 
123  // default initialisation method called by all constructors
124  void Init();
125 
126  ClassDef(MethodHMatrix,0) // H-Matrix method, a simple comparison of chi-squared estimators for signal and background
127  };
128 
129 } // namespace TMVA
130 
131 #endif
void ReadWeightsFromXML(void *wghtnode)
read weights from XML file
void Init()
default initialization called by all constructors
void AddWeightsXMLTo(void *parent) const
create XML description for HMatrix classification
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns the H-matrix signal estimator
void ProcessOptions()
process user options
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
EAnalysisType
Definition: Types.h:124
Basic string class.
Definition: TString.h:137
bool Bool_t
Definition: RtypesCore.h:59
TMatrixD * fInvHMatrixS
void ReadWeightsFromStream(std::istream &istr)
read variable names and min/max NOTE: the latter values are mandatory for the normalisation in the re...
virtual ~MethodHMatrix()
destructor
#define ClassDef(name, id)
Definition: Rtypes.h:254
void GetHelpMessage() const
get help message text
MethodHMatrix(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="", TDirectory *theTargetDir=0)
unsigned int UInt_t
Definition: RtypesCore.h:42
void Train()
computes H-matrices for signal and background samples
double Double_t
Definition: RtypesCore.h:55
Describe directory structure in memory.
Definition: TDirectory.h:44
void ComputeCovariance(Bool_t, TMatrixD *)
compute covariance matrix
int type
Definition: TGX11.cxx:120
void MakeClassSpecific(std::ostream &, const TString &) const
write Fisher-specific classifier response
const Ranking * CreateRanking()
Definition: MethodHMatrix.h:95
void DeclareOptions()
MethodHMatrix options: none (apart from those implemented in MethodBase)
#define NULL
Definition: Rtypes.h:82
TMatrixD * fInvHMatrixB
virtual void ReadWeightsFromStream(std::istream &)=0
Double_t GetChi2(Types::ESBType)
compute chi2-estimator for event according to type (signal/background)